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Abstract

We apply Particle Swarm Optimization (PSO) and Differential Evolution (DE) on a multi–item
inventory optimization model with supplier selection, limited capacity and defective items. The
model assumes an individual cost per transaction as well as aproduct–dependent holding cost. The
goal is the determination of an optimal procurement strategy given the demand over a finite planning
horizon. This is formulated as a highly–constrained mixed–integer optimization problem, which
is solved using PSO and DE. In addition, the original mixed–integer model is reduced to a real–
parameter optimization task and solved with the same algorithms. The results for both approaches
are reported and statistically analyzed, offering useful insight regarding the most promising setting.

1 Introduction

Particle Swarm Optimization (PSO) [7] and Differential Evolution (DE) [16] are two of the most popular
heuristic optimization algorithms. Their popularity can be attributed to the combination of high efficiency
with minor implementation effort, which renders them accessible to researchers in diverse scientific
fields. PSO and DE have apparent structural and operational similarities such as the use of an iteratively
updated population of potential solutions. The updating process is based on combinations of difference
vectors among existing population members. Selection of the best–performing solutions produces the
necessary probabilistic pressure for sampling in the most promising regions of the search space.

Operations Research (OR) has offered a rich ground for application of Evolutionary Algorithms
(EAs). Numerous works verified the effectiveness of EAs in solving various problems, including schedul-
ing, routing, production planning, management and economic administration etc. Among others,sup-
plier selectioncombined withinventory managementis a central problem with a remarkable amount of
relative work in literature. Supplier selection problems are usually formulated as mixed–integer opti-
mization problems, incorporating purchasing, transportation and inventory costs over multiple periods,
under the conditions of multiple sourcing, criteria and constraints. Extensions on lot–sizing with sup-
plier selection for multi–period and multi–product cases have been studied, along with cases with limited
capacities on suppliers [1, 5].

In many research works, the products are considered to be of perfect quality. However, in realistic
production environments there is often a probability of imperfect quality. It is important for the optimal
policy to take into account the relationship between quality imperfection and lot sizing. Such a model was
studied in [14], where a probability that production goes out of control was considered. Further models
have been considered, incorporating inspection policy [15]. The issue of non–shortages in models with
proportional imperfect quality was evoked in [8], where theproportion of imperfect items was assumed to
be a random variable. Other models considered the rework of defective products [6], flexible production
processes [4], as well as multi–stage lot sizing for imperfect production processes [2].

Recently, a new model was proposed by Rezaei and Davoodi [13]. This model refers to the problem
of lot sizing with supplier selection, considering crucialconcepts such as imperfect items and limited
storage capacity. The problem was formulated as a highly constrained mixed–integer optimization task
and it was solved by using two different approaches: a deterministic one using the Lindo software1 and a

1http://www.lindo.com
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stochastic one based on Genetic Algorithms (GAs). The latter approach was shown to be very promising
and triggered our interest in applying PSO and DE on the specific model, since both algorithms have
proved to be very competitive to GAs. Also, the proposed model involves intimately related integer and
real–valued variables. In simple words, the integer variables represent the decision of ordering a product
from a specific supplier or not, while the real variables specify the exact quantity. However, the decision
of not ordering can be equivalently represented solely by assuming a zero value of the corresponding real
variable. This way, the model can be simplified by dropping all integer parameters, thereby reducing its
dimension. However, the application of PSO and DE on the simplified problem requires some caution, as
it will be analyzed in a later section. Finally, the constraints can be handled by using a penalty function
approach, which has shown to offer a straightforward solution in constrained optimization cases [12].

In our study, we considered the Unified PSO (UPSO) [11] algorithm as well as the five standard DE
operators [16]. UPSO generalizes the standard PSO, producing highly competitive schemes that com-
bine its exploration/exploitation properties as reportedin previous works [9, 12]. For both algorithms,
initialization in feasible points was not required. The rest of the paper is organized as follows: UPSO
and DE are briefly described in Section 2, while the considered optimization models are exposed in Sec-
tion 3. Experimental setting and results are reported and discussed in Section 4 and the paper concludes
in Section 5.

2 Background Information

In the following paragraphs, the UPSO and DE algorithms are briefly described.

2.1 Unified Particle Swarm Optimization

The original PSO algorithm was introduced in 1995 by Eberhart and Kennedy [7]. Its main concept
includes a population, called aswarm, of potential solutions, called theparticles, probing the search
space. The particles iteratively move in the search space with an adaptable velocity, retaining in amemory
the best positions they have ever visited, i.e., the positions with the lowest function values.

The exploration capability of PSO is promoted byinformation exchangeamong particles. More
specifically, each particle is assigned a (usually index–dependent) neighborhood. In theglobal PSO
variant, also known asgbest, the neighborhood of each particle is the whole swarm and theoverall best
position is the main information–provider for all particles. On the other hand, in thelocal PSO variant,
also known aslbest, the neighborhoods are strictly smaller usually consisting of a few particles. In such
cases, each particle may have its own leader that influences its velocity update. Perhaps the most common
neighborhood topology is thering, where each particle assumes as neighbors its mates with neighboring
indices [12].

To put it formally, consider the minimization problem:

min
x∈V⊂Rn

f(x).

Then, a swarm ofN particles is a setS of n–dimensional search points,xi ∈ S, i = 1, 2, . . . , N . The
i–th particle has a velocity (position shift),vi, and retains in memory the best position,pi ∈ S, it has ever
visited. A ring neighborhood of radiusm for the particlexi, implies that the experience of the particles
with indices from the setBi = {i−m, . . . , i, . . . , i+m} will be available toxi at each iteration.

Assume thatgi is the index of the best position found so far in the neighborhood ofxi:

gi = arg min
j∈Bi

{f(pj)},

and lett denote the iteration counter. Then, according to theconstriction coefficientversion of PSO [3],
the swarm is updated as follows:
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wherei = 1, 2, . . . , N , andj = 1, 2, . . . , n. The parameterχ is the constriction coefficient and it is used
as a means to control the magnitude of the velocities. The other two parameters are defined asϕ1 = c1 r1
andϕ2 = c2 r2, wherec1 andc2 are positive constants, also called thecognitiveand thesocialparameter,
respectively, andr1, r2, are random variables uniformly distributed in[0, 1], different for eachi, j andt.
Based on the stability analysis of Clerc and Kennedy [3], thevalues,χ = 0.729, c1 = c2 = 2.05, are
considered as the default parameter set. Ifx

(t+1)
i improves the best positionp(t)i , it replaces it inp(t+1)

i .
Otherwise, the best position remains unchanged.

UPSO was proposed as an alternative PSO scheme that combinesthe different exploration/exploitation
properties of the gbest and lbest PSO models [10, 11]. The original UPSO scheme is based on the con-
striction coefficient PSO variant defined in Eqs. (1) and (2),although it can be straightforwardly defined
also for other variants. Putting it formally, letG(t+1)

i andL(t+1)
i denote the velocity update of thei–th

particle for the gbest and lbest PSO, respectively:
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wheret denotes the iteration counter;g is the index of the overall best position; andgi is the index of
the best particle in the neighborhood ofxi. Then, UPSO updates the particle’s position according to the
scheme [10]:

U
(t+1)
ij = (1− u)L

(t+1)
i + uG

(t+1)
i , (5)

x
(t+1)
ij = x

(t)
ij + U

(t+1)
ij , (6)

where the parameteru is called theunification factorand balances the influence (trade–off) of the global
and local search directions. Note that the lbest and gbest PSO models can be obtained foru = 0 and
u = 1, respectively.

The standard UPSO scheme was further extended by introducing a stochastic parameter to imitate
mutation in EAs. Mutation can help towards the preservationof population diversity, which has a crucial
impact on the swarm’s exploration capability. Thus, depending on the variant of UPSO under consider-
ation, Eq. (5) can be written either as:

U
(t+1)
i = (1− u)L

(t+1)
i + r3 uG

(t+1)
i , (7)

which is mostly based on the lbest PSO or as:

U
(t+1)
i = r3 (1− u)L

(t+1)
i + uG

(t+1)
i , (8)

which is mostly based on the gbest PSO. The mutation parameter, r3, is a normally distributed variable.
The convergence properties of these variants were studied in [10] and UPSO’s competitiveness was
experimentally verified in various problems [12].

2.2 Differential Evolution

The DE algorithm was introduced by Storn and Price [16] as a population–based, stochastic optimization
algorithm for numerical optimization problems. DE employsa population,P = {x1, x2, . . . , xN}, of
individuals to probe the search space. The population is randomly initialized, usually following a uniform
distribution over the search space. As in PSO, each individual is ann–dimensional vector, serving as a
candidate solution of the corresponding minimization problem. The population is evolved by applying
two operators,mutationand recombination, for producing new candidate solutions. Then,selectionis
performed to construct the new population. The aforementioned operators are applied iteratively until a
termination criterion is fulfilled.
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The mutation operator produces a new vector,vi, for each individual,xi, i = 1, 2, . . . , N , by combin-
ing xi with some of its mates. Different operators have been developed for this task, with the following
being the most common ones:

DE1 : v
(t+1)
i = x(t)g + F

(

x(t)r1
− x(t)r2

)

, (9)

DE2 : v
(t+1)
i = x(t)r1

+ F
(

x(t)r2
− x(t)r3

)

, (10)

DE3 : v
(t+1)
i = x

(t)
i + F

(

x(t)g − x
(t)
i + x(t)r1

− x(t)r2

)

, (11)

DE4 : v
(t+1)
i = x(t)g + F

(

x(t)r1
− x(t)r2

+ x(t)r3
− x(t)r4

)

, (12)

DE5 : v
(t+1)
i = x(t)r1

+ F
(

x(t)r2
− x(t)r3

+ x(t)r4
− x(t)r5

)

, (13)

wheret denotes the iteration counter;F is a fixed user–defined parameter;g denotes the index of the
best individual in the population, i.e., the one with the lowest function value; andri ∈ {1, 2, . . . , N},
i = 1, 2, . . . , 5, are mutually different, randomly selected indices that differ also fromi. Obviously, in
order to be able to apply all DE mutation operators, it must hold thatN > 5.

After mutation, recombination is applied on the generated vector,vi, producing atrial vector, ui =
(ui1, ui2, . . . , uin), i = 1, 2, . . . , N , as follows:

u
(t+1)
ij =











v
(t+1)
ij , if Rj 6 CR or j = RI(i),

x
(t)
ij , if Rj > CR and j 6= RI(i),

(14)

wherej = 1, 2, . . . , n; Rj is thej–th evaluation of a uniform random number generator in the range
[0, 1]; CR ∈ [0, 1] is a user–defined crossover constant; andRI(i) is an index randomly selected from the
set{1, 2, . . . , n}. Finally, the produced trial vector,ui, is compared against the corresponding individual,
xi, and the best between them is included in the population of the next generation.

3 Problem formulation

In this section, we describe the original model [13] as well as the simplified one, along with the penalty
function used in our study. Prior to the descriptions, we shall state the following assumptions [13]:

(1) The transaction cost,oj, for supplierj is independent of the variety and quantity of the ordered
products.

(2) The holding cost,hi, of producti is product–dependent.

(3) The demand,dit, for producti at time periodt is known over a planning horizon.

(4) Items of imperfect quality are kept in stock and sold prior to the next period in a single batch.

(5) Each lot of producti received from supplierj contains a percentageρij of defective items.

(6) Purchasing price of producti from supplierj is bij . Good quality items are sold in pricesgi per
unit, while defective items are sold in a single batch at a discounted price,sdi.

(7) A screening process of the lot is conducted with a unit screening cost,ci, for producti.

(8) Each supplier has a limited capacity.

(9) All requirements must be fulfilled in the period in which they occur. Backordering and shortage is
not allowed.

(10) Producti needs a storage space,wi, and the total storage capacity isW .
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3.1 Original Model

Following the aforementioned assumptions, Rezaei and Davoodi [13] developed a mathematical model
that refers to the scenario of supply chain with multiple products and multiple suppliers, all of which have
limited capacity. The demand over a finite planning horizon is also known and an optimal procurement
strategy for this multi–period horizon is to be determined.

Each of the products can be sourced from a number of approved suppliers. However, a supplier–
dependent transaction cost applies whenever an order is placed. A product–dependent holding cost per
period applies for each product in the inventory that is carried across a period in the planning horizon.
Also a maximum storage space at each period is considered. Inorder to maximize the total profit, the
decision maker needs to decide what products to order, in what quantities, by which suppliers, and at
which time periods. Assuming thati denotes the product,j denotes the supplier andt denotes the time
period, the required quantity is denoted asxijt.

The objective function, henceforth called theoriginal model, is defined as follows [13]:

max f (xijt, yjt) =





∑
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∑

j
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∑
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j
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t

∑
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dik







 . (15)

It consists of the sum of the revenues of selling good qualityproducts and imperfect quality products,
subtracting the purchase cost of the products, the transaction cost for the suppliers, the screening cost
of the products and the holding cost for the remaining inventory at each time period. Obviously, since
the problem is defined as maximization, the negative of the objective function defines the corresponding
minimization task. The parametersyjt are binary and they are defined asyjt = 1 if an order is placed
to supplierj at time periodt, while yjt = 0 otherwise. Also, the problem is highly constrained. More
specifically, there are four types of constraints [13]:

Type I: CI(i, j, t) =
∑t

k=1

∑

j xijk (1− ρij)−
∑t

k=1 dik > 0, for all i and t,

Type II : CII(i, j, t) =
(

∑T
k=1 dik

)

yjt − xijt (1− ρij) > 0, for all i, j and t,

Type III : CIII(i, j, t) =
∑

iwi

(

∑t
k=1

∑

j xijk (1− ρij)−
∑t

k=1 dik

)

6 W, for all t,

Type IV : 0 6 xijt 6 kij , for all i, j and t,

wherekij is the capacity of supplierj for producti. The following interpretations can be stated for the
four types of constraints [13]:

(1) All requirements must be fulfilled in the period in which they occur.

(2) Backordering and shortage are not allowed (Type I).

(3) All orders are accompanied by the appropriate transaction cost (Type II).

(4) The total storage space is limited byW (Type III).

(5) Suppliers have limited capacities (Type IV).

If I, J andT denote the number of products, suppliers and time periods, respectively, then the number
of constraints is equal toMc(I, J, T ) = (I × T ) + (I × J × T ) + T + 2 × (I × J × T ), while the
number of variablesyjt andxijt (problem dimension) is equal toMv(I, J, T ) = (J ×T )+ (I ×J ×T ).
Obviously, even for small values ofI, J andT , the corresponding problem constitutes a challenging task
due to the large number of variables and constraints.
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3.2 Simplified Model

The original model can be simplified by eliminating the integer parameters, thereby reducing its dimen-
sion. Indeed, based on the definition of the parametersyjt, we can infer a dependence between them and
xijt, as follows:

yjt =







1, if xijt > 0 for at least onei,

0, otherwise.
(16)

Thus, the variablesyjt are set to1 if an order is placed on supplierj at time periodt, otherwise they
are set to0. If an order is not placed, i.e.,yjt = 0, then the quantitiesxijt of all products ordered from
supplierj at time periodt, shall also be equal to zero. In practice, we consider thatxijt is equal to zero
if it is actually smaller than a predefined small threshold, i.e.,0 < xijt 6 εz.

Therefore, we may drop the integer parameters,yjt, from our optimization problem and retain only
xijt. It is not required to modify the form of the objective function in Eq. (15), as far as we determine
the parametersyjt by using Eq. (16) whenever a function evaluation is conducted. We will call this
formulation thesimplified model.

The gain of removing the variablesyjt is twofold. On the one hand, the problem’s dimension is
reduced byJ ×T . On the other hand, the integer part of the problem is removed, hence it can be tackled
as a pure real–valued optimization problem. Nevertheless,for both the original and the simplified model
the number of constraints remains unchanged.

3.3 Penalty Function

In our approach, the constraints were handled by using a multi–stage penalty function. Assume that:

C̃s(i, j, t) =







|Cs(i, j, t)|, if constraint Cs(i, j, t) is violated,

0, otherwise,

wheres ∈ {I, II, III}, i = 1, 2, . . . , I, j = 1, 2, . . . , J , andt = 1, 2, . . . , T . Also, letPpen be a fixed
positive parameter. Then, the penalty function for the minimization problem is defined as follows:

F (xijt, yjt) = −f (xijt, yjt) +
∑

i,j,t,s

C̃s(i, j, t)Ppen, (17)

i.e., a penalty that depends on the degree of violation is added to the objective value for each violated
constraint. Usually, in order to avoid false penalization due to approximation errors, a violated constraint
is penalized only if its value exceeds a predefined violationtolerance, i.e.:

C̃s(i, j, t) > εc > 0.

Also, we shall note that it is not required to include Type IV constraints in the penalty function, as they
simply define the ranges of the variables and they can be explicitly handled by restricting the populations
within these box constraints. If an individual violates such a constraint, it is either blocked on the violated
limit or bounces back inside the search space.

4 Experimental Setting and Results

We considered the problem instance in [13] with3 products,3 suppliers and4 time periods, i.e.,I = 3,
J = 3, andT = 4. This implies a mixed–integer original model of dimensionMv(3, 3, 4) = 48, while
the corresponding real–valued simplified problem has dimensionM ′

v(3, 3, 4) = 36. In both cases, there
areMc(3, 3, 4) = 124 constraints from which,12 are of Type I,36 are of Type II,4 are of Type III and
the remaining are of Type IV. For the penalty function, the violation toleranceεc = 10−6 and the fixed
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Alg. Original model (with integer variables) Simplified model (without integer variables)

Feas. Mean StD Min Max Mean-NF StD-NFFeas. Mean StD Min Max Mean-NF StD-NF

UPSOℓ 100 15421.64 1914.48 8951.05 20971.63 – – 100 16759.17 3278.01 7509.59 24417.35 – –

UPSO.1 100 15212.12 2127.72 10375.01 20151.81 – – 100 18859.93 2238.09 11760.49 21770.91 – –
UPSO.1m 100 15668.70 2659.13 10428.47 24292.16 – – 100 16473.78 2618.19 8485.52 20836.61 – –

UPSO.5 91 14500.79 2438.09 8607.04 21344.48 9468.36 8710.50 87 16455.72 3125.58 7345.19 23142.99 5351.26 5928.03

UPSO.5m 99 15045.86 2799.24 9358.54 23203.40 243.50 0.00 86 15294.78 2772.99 6973.88 20877.98 8886.35 11535.16

UPSO.9 56 13859.20 2223.46 8478.83 22280.95 85763.78 73177.19 45 15088.82 2780.00 10010.74 20087.92 54858.49 67414.87

UPSO.9m 57 13993.82 1934.43 9927.13 18307.67 92979.01 70864.78 53 14991.10 3460.81 7498.16 23208.42 78242.57 74742.21

UPSOg 45 13415.84 1418.20 9323.64 16255.25 79836.19 72462.18 40 14908.15 2973.21 10283.91 22636.29 78306.92 97846.59

DE1 91 14624.70 4093.28 4924.90 23278.21 86100.71 62665.31 96 18651.37 2720.45 10802.69 23491.00 5751.31 6651.73

DE2 92 8516.30 2349.54 3624.98 15511.66 1978.72 1095.68 96 11995.80 1764.43 6495.59 14921.55 1314.26 378.57

DE3 100 20142.90 1658.85 11280.75 22690.86 – – 100 20191.47 1307.50 13530.06 22064.48 – –

DE4 100 12999.85 3619.56 5792.37 22410.83 – – 100 14869.66 2134.99 8000.83 19298.33 – –

DE5 3 7233.88 2969.75 5078.29 10621.32 11953.12 6506.82 4 8706.46 1121.83 7967.51 10378.10 14405.69 6870.72

Table 1: Results for all algorithms and problem instances averaged over100 experiments. Higher values
correspond to better solutions.

penaltyPpen = 103 were used. Also, the parameterεz = 10−6 was used to identify a zero component in
a solution vector.

Regarding the two algorithms, UPSO was considered for the unification factor valuesu = 0.0 (lbest),
0.1, 0.5, 0.9 and1.0 (gbest). These choices aimed at investigating the behaviorof both lbest–oriented and
gbest–oriented UPSO variants. The cases ofu = 0.1, 0.5 and0.9, were also considered in their mutated
variants defined in Eqs. (7) and (8). Henceforth, we will denote the UPSO variants as UPSOℓ, UPSO.1,
UPSO.1m, UPSO.5, UPSO.5m, UPSO.9, UPSO.9m, and UPSOg, respectively, where “m” denotes a
variant with mutation. The default PSO parameter values defined in Section 2.1 were adopted in our
study, while the Gaussian mutation termr3 ∼ N (0, 1) was used. Moreover, the five DE variants defined
in Eqs. (9)–(13) were considered with the common parameter valuesF = 0.5 andCR = 0.7.

Both UPSO and DE are primarily designed to tackle real–valued variables. For this reason, the
integer variables in the original problem were assumed to take real values in the range[0, 1] for the
swarm/population update, while they were rounded to the nearest integer (either0 or 1) for the function
evaluation. Contrary to this, the simplified model does not require such assumptions since all of its
parameters are real–valued.

The populations in both algorithms were randomly initialized in the search space. In the original
model, uniform initialization within the variables’ ranges is adequate. However, the simplified model
raises a crucial initialization issue. More specifically, in the original model the probability that an integer
parameter is initialized either to0 or 1 is equal, since the algorithms uniformly sample real numbers
within [0, 1]. On the other hand, the simplified model samples only within the ranges of the real param-
etersxijt, and then computes the correspondingyjt by using Eq. (16) and the relaxation parameterεz.
Yet, this initialization almost surely assigns valuesxijt > εz , which correspond toyjt = 1, since the
volume (Lebesque measure) of the fraction of the search space that corresponds toxijt < εz for all i
(and hence toyjt = 0) is very small, compared to the whole search space.

Therefore, performing a completely random initializationin the simplified model would be biased
towards the valuesyjt = 1, which correspond to solutions where all suppliers are getting product orders.
To alleviate this deficiency, the initialization of the algorithms in the simplified model was conducted as
follows:

xijt =







rijt, if Rijt > 0.5,

0, otherwise,

whereRijt is a random value uniformly distributed in[0, 1]. Thus, each component of the initial popula-
tion had equal probability of being zero or non–zero.

The performance of all UPSO and DE variants was tested on boththe original and the simplified
model. For each algorithm,100 independent experiments were performed. At each experiment, the
algorithm was allowed to perform103 iterations using swarm/population sizeN = 50. The best solution
detected throughout each experiment was recorded for each algorithm and problem instance, along with
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(a) Original model (b) Simplified model

Figure 1: Boxplots of achieved solution values for the original and the simplified model.

(a) Original model (b) Simplified model

Figure 2: Constraints violation per algorithm for the original and the simplified model.

its feasibility. If a solution was infeasible, the corresponding penalty term was also recorded to reveal
the degree of violation per case. Also, the total number of violated constraints over all experiments
was recorded per algorithm and problem instance to study thepossible tendency of an algorithm towards
violation of constraints of specific types. All experimentswere conducted using the data provided in [13].

The results were statistically analyzed and they are reported in Table 1 (notice that higher function
values correspond to better solutions since the problem is maximization). The first column reports the
corresponding algorithm. The next seven columns refer to the results for the original model, while the
last seven columns refer to the simplified model. For each model, the first column (Feas.) reports the
feasibility percentage of the obtained solutions in100 experiments. The next four columns expose the
mean, standard deviation, minimum and maximum of the obtained solution’s valueonly for the feasible
cases. For the infeasible cases, the next two columns (Mean-NF andStD-NF) report the mean and
standard deviation of the corresponding penalty term.

The best feasible solution obtained with the GA approach in [13] had objective value15266.8. As
we can see in the Table 1, UPSO with small unification factor, mutated or not, provided always fea-
sible solutions. Increasing the unification factor, i.e., moving closer to the gbest PSO model, resulted
in a remarkable performance reduction with the penalty terms of the obtained solutions increasing with
the value of the unification factor. On the other hand, two variants of the DE algorithm offered always
feasible solutions. Both these two approaches, DE3 and DE4,involve the best individual of the popu-
lation and two difference vectors. The best mean solution value was achieved by DE3 and it was equal
to 20142.90. However, the best solution attained ever was achieved by UPSO.1m and it was equal to
24292.16. On the other hand, the worst average performance was achieved by the DE5, which could
barely detect feasible solutions.

In the simplified model, the successful UPSO variants further improved their performance. The
same held also for the efficient DE approaches. The variants that failed to provide feasible solutions in
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Algorithm UPSOℓ UPSO.1 UPSO.1m UPSO.5 UPSO.5m UPSO.9 UPSO.9m UPSOg DE1 DE2 DE3 DE4 DE5

UPSOℓ ∗ ∗ − − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

UPSO.1 − ∗ ∗ ∗ ∗ ∗ ∗ ∗ − ∗ ∗ ∗ ∗

UPSO.1m − − ∗ − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

UPSO.5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

UPSO.5m − − − − − ∗ ∗ ∗ ∗ ∗ ∗ − ∗

UPSO.9 ∗ ∗ ∗ ∗ ∗ − − − ∗ ∗ ∗ ∗ ∗

UPSO.9m ∗ ∗ ∗ ∗ ∗ − − − ∗ ∗ ∗ ∗ ∗

UPSOg ∗ ∗ ∗ ∗ ∗ − − − ∗ ∗ ∗ ∗ ∗

DE1 ∗ ∗ ∗ − − ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

DE2 ∗ ∗ ∗ ∗ ∗ − − − ∗ ∗ ∗ ∗ ∗

DE3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − ∗ ∗

DE4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − ∗ ∗ ∗ ∗

DE5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −

Table 2: Wilcoxon rank–sum tests. The light gray area refersto the original model, while the darker gray
area refers to the simplified model. The existence of statistical significance is denoted with “*”, while the
lack is denoted with “–”. The main diagonal presents the algorithm’s performance in the original model
against itself in the simplified model.

the original model, retained their inferior performance also in the simplified model although their penalty
terms (violation magnitude) were reduced. Also, we can notice that the improvement of the successful
UPSO variants in the simplified model was higher than that of DE3 and DE4, although the latter exhibited
smaller standard deviations.

The obtained solution values are also graphically illustrated for the most promising algorithms in
Figs. 1(a) and 1(b), while the total number of violated constraints over all the100 experiments per
algorithm and problem instance are illustrated in Figs. 2(a) and 2(b), for the two models, respectively.

Compared to the solutions reported in [13], we can infer thatUPSO and DE exhibit higher proba-
bility of providing feasible solutions, although, the infeasible solutions of the GA approach in [13] lie
closer to the feasibility region, i.e., their violation magnitude is smaller than that of the infeasible solu-
tions obtained by DE and UPSO. Figures 2(a) and 2(b) reveal also that the violation mainly concerns
Type III and secondarily Type I constraints. An increase in Type II constraint violation is reported for
the simplified model, due to the special interpretation of the variablesyjt as functions ofxijt.

In addition to the aforementioned statistics, the performance of each pair of algorithms was tested
for statistical significance by using the Wilcoxon rank–sumtest. Thus, each pair of algorithms, A and B,
was tested against the null hypothesis that the samples of the obtained solution values for A and B have
the same median in a95% level of significance. The results of the tests are reported in Table 2. As can be
seen, in most cases there is statistically significant difference between the algorithms. Perhaps the most
important observation is the existence of significant differences of the most successful approaches in the
original model against themselves in the simplified model. This is also an indication that the simplified
model can be advantageous. The only exception to this observation is the DE3 approach, which hardly
exhibited any performance difference between the two models.

5 Conclusion

This paper constitutes an experimental investigation of the PSO and DE algorithms on a recently pro-
posed model for supply chain with multiple items and suppliers, where the goal is the determination of an
optimal procurement strategy given the demand for a finite planning horizon. In its original formulation,
the problem was modeled as a highly–constrained mixed–integer optimization task. Besides the appli-
cation of the two algorithms on the original model, a simplified model that reduces it to a real–valued
optimization task was also proposed and tackled with the same algorithms. The obtained results suggest
that the simplified model can be more advantageous for the successful algorithms than the original one.
Also, it was shown that UPSO and DE are highly competitive to the GA–based approaches reported in
the literature, constituting promising alternative solutions.
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