MIC 2011: The IX Metaheuristics International Conference 1-%7-1

Applying PSO and DE on Multi—ltem Inventory Problem
with Supplier Selection

G.S. Piperagkas C. Voglis', V.A. Tatsis, K.E. Parsopoulds K. Skour?

I Department of Computer Science, University of loannina--&#.10 loannina, Greece
gpiperag@cs.uoi.gr, voglis@cs.uoi.gr, tatsis.bill @ drmwam, kostasp@cs.uoi.gr

2 Department of Mathematics, University of loannina, GR-#®lbannina, Greece
kskouri@uoi.gr

Abstract

We apply Particle Swarm Optimization (PSO) and Differdrieolution (DE) on a multi—item
inventory optimization model with supplier selection, iied capacity and defective items. The
model assumes an individual cost per transaction as welpasduct—dependent holding cost. The
goal is the determination of an optimal procurement stsagggen the demand over a finite planning
horizon. This is formulated as a highly—constrained mixetkger optimization problem, which
is solved using PSO and DE. In addition, the original mixateger model is reduced to a real—
parameter optimization task and solved with the same dlgos. The results for both approaches
are reported and statistically analyzed, offering usefsight regarding the most promising setting.

1 Introduction

Particle Swarm Optimization (PSO) [7] and Differential Ew@n (DE) [16] are two of the most popular
heuristic optimization algorithms. Their popularity camddtributed to the combination of high efficiency
with minor implementation effort, which renders them asigle to researchers in diverse scientific
fields. PSO and DE have apparent structural and operationgésties such as the use of an iteratively
updated population of potential solutions. The updatiracess is based on combinations of difference
vectors among existing population members. Selection eb#st—performing solutions produces the
necessary probabilistic pressure for sampling in the nrashising regions of the search space.

Operations Research (OR) has offered a rich ground for agifuin of Evolutionary Algorithms
(EAs). Numerous works verified the effectiveness of EAs Imiag various problems, including schedul-
ing, routing, production planning, management and ecoo@dministration etc. Among othersup-
plier selectioncombined withinventory managemetg a central problem with a remarkable amount of
relative work in literature. Supplier selection problermms asually formulated as mixed—integer opti-
mization problems, incorporating purchasing, transpionaand inventory costs over multiple periods,
under the conditions of multiple sourcing, criteria andstaaints. Extensions on lot—sizing with sup-
plier selection for multi—-period and multi—product casaséhbeen studied, along with cases with limited
capacities on suppliers [1, 5].

In many research works, the products are considered to berfegb quality. However, in realistic
production environments there is often a probability of @rfpct quality. It is important for the optimal
policy to take into account the relationship between quatiperfection and lot sizing. Such a model was
studied in [14], where a probability that production goetsaficontrol was considered. Further models
have been considered, incorporating inspection policy. [I&e issue of non—shortages in models with
proportional imperfect quality was evoked in [8], where pheportion of imperfect items was assumed to
be a random variable. Other models considered the reworgfettive products [6], flexible production
processes [4], as well as multi—stage lot sizing for impenieoduction processes [2].

Recently, a new model was proposed by Rezaei and Davoodi Th8 model refers to the problem
of lot sizing with supplier selection, considering cruciaincepts such as imperfect items and limited
storage capacity. The problem was formulated as a highlgtcained mixed—integer optimization task
and it was solved by using two different approaches: a détéstic one using the Lindo softwafeand a

*http://www.lindo.com
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stochastic one based on Genetic Algorithms (GAs). Therlafiproach was shown to be very promising
and triggered our interest in applying PSO and DE on the Bpeaubdel, since both algorithms have
proved to be very competitive to GAs. Also, the proposed rhiodelves intimately related integer and
real-valued variables. In simple words, the integer véggmkepresent the decision of ordering a product
from a specific supplier or not, while the real variables #pedhe exact quantity. However, the decision
of not ordering can be equivalently represented solely byragng a zero value of the corresponding real
variable. This way, the model can be simplified by droppingnééger parameters, thereby reducing its
dimension. However, the application of PSO and DE on thelgfiegbproblem requires some caution, as
it will be analyzed in a later section. Finally, the consitaican be handled by using a penalty function
approach, which has shown to offer a straightforward smiuith constrained optimization cases [12].

In our study, we considered the Unified PSO (UPSOQO) [11] allgorias well as the five standard DE
operators [16]. UPSO generalizes the standard PSO, prayihajhly competitive schemes that com-
bine its exploration/exploitation properties as repoitegrevious works [9, 12]. For both algorithms,
initialization in feasible points was not required. Thetrafsthe paper is organized as follows: UPSO
and DE are briefly described in Section 2, while the consitlepimization models are exposed in Sec-
tion 3. Experimental setting and results are reported aswldsed in Section 4 and the paper concludes
in Section 5.

2 Background Information

In the following paragraphs, the UPSO and DE algorithms &edlp described.

2.1 Unified Particle Swarm Optimization

The original PSO algorithm was introduced in 1995 by Ebdrhad Kennedy [7]. Its main concept
includes a population, called swarm of potential solutions, called thgarticles probing the search
space. The particles iteratively move in the search spateaniadaptable velocity, retaining imeemory
the best positions they have ever visited, i.e., the pastivith the lowest function values.

The exploration capability of PSO is promoted imjormation exchangamong particles. More
specifically, each particle is assigned a (usually indegeddent) neighborhood. In thggobal PSO
variant, also known agbest the neighborhood of each particle is the whole swarm andvkeall best
position is the main information—provider for all partisleOn the other hand, in thecal PSO variant,
also known asbest the neighborhoods are strictly smaller usually congistiha few particles. In such
cases, each particle may have its own leader that influetsceslocity update. Perhaps the most common
neighborhood topology is théng, where each particle assumes as neighbors its mates withbwoging
indices [12].

To put it formally, consider the minimization problem:

o, S (@)-
Then, a swarm ofV particles is a seb of n—dimensional search pointg; € S,i =1,2,...,N. The
i—th particle has a velocity (position shift),, and retains in memory the best positipne .S, it has ever
visited. A ring neighborhood of radius for the particlex;, implies that the experience of the particles
with indices from the seB; = {i —m,...,i,...,i+ m} will be available tar; at each iteration.

Assume thay; is the index of the best position found so far in the neighbodhof z;:

gi = arggg{f(pj)},

and lett denote the iteration counter. Then, according tocwstriction coefficientersion of PSO [3],
the swarm is updated as follows:

USH) — x [UZ_(;) + o <Pz(‘§‘) — xg)) + o2 (P_f,?] - xiﬁ))} ’ @)
LD wz(j) n Uz'(]t'ﬂ)? 2

ij
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wherei = 1,2,...,N,andj = 1,2,...,n. The parametey is the constriction coefficient and it is used
as a means to control the magnitude of the velocities. Ther dtfo parameters are definedgas= c¢;
andys = co 79, Wherec; andes are positive constants, also called tognitiveand thesocialparameter,
respectively, and, r2, are random variables uniformly distributed[in 1], different for each, j andt¢.
Based on the stability analysis of Clerc and Kennedy [3]vidlees,y = 0.729, ¢; = ¢y = 2.05, are
considered as the default parameter se:t;l(tlfl) improves the best positiopk(t), it replaces it ir;ogtﬂ).
Otherwise, the best position remains unchanged.

UPSO was proposed as an alternative PSO scheme that cortit@rierent exploration/exploitation
properties of the gbest and Ibest PSO models [10, 11]. TlgnatiUPSO scheme is based on the con-
striction coefficient PSO variant defined in Egs. (1) and é&hough it can be straightforwardly defined
also for other variants. Putting it formally, 16" and L") denote the velocity update of thieth
particle for the ghest and Ibest PSO, respectively:

GG = x o) e (0 = 2)) 4 () - 2] 3)
LG = o+ (o) = 2D) + o (0 - 2] (4)

wheret denotes the iteration countey;is the index of the overall best position; apdis the index of
the best patrticle in the neighborhoodagf Then, UPSO updates the particle’s position accordingeo th
scheme [10]:

vE = - Y+ uGtY, (5)
A0 = 0 g gy, (6)

where the parameteris called theunification factorand balances the influence (trade—off) of the global
and local search directions. Note that the Ibest and gbeStR&dels can be obtained for= 0 and
u = 1, respectively.

The standard UPSO scheme was further extended by intraflacgtochastic parameter to imitate
mutation in EAs. Mutation can help towards the preservatigmopulation diversity, which has a crucial
impact on the swarm’s exploration capability. Thus, dejp@pdn the variant of UPSO under consider-
ation, Eqg. (5) can be written either as:
ytt — (1 —wu) Lgtﬂ) + r3 uthH), (7

7

which is mostly based on the Ibest PSO or as:

U =y (1= w) LY+ u G, (8)
which is mostly based on the gbest PSO. The mutation pargmegtés a normally distributed variable.
The convergence properties of these variants were studi¢tloj and UPSO’s competitiveness was
experimentally verified in various problems [12].

2.2 Differential Evolution

The DE algorithm was introduced by Storn and Price [16] agauladion—based, stochastic optimization
algorithm for numerical optimization problems. DE empl@ygopulation,P = {z1,z2,...,zn}, Of
individuals to probe the search space. The population @omalty initialized, usually following a uniform
distribution over the search space. As in PSO, each indWiduann—dimensional vector, serving as a
candidate solution of the corresponding minimization pgob The population is evolved by applying
two operatorsmutationandrecombination for producing new candidate solutions. Theglectionis
performed to construct the new population. The aforemeaticoperators are applied iteratively until a
termination criterion is fulfilled.
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The mutation operator produces a hew veaigrfor each individualg;, 7 = 1,2, ..., N, by combin-
ing x; with some of its mates. Different operators have been dpeeldor this task, with the following
being the most common ones:

DE1 : vgt“) = mgt) + F (ngl) — x%)) ) ©)
DE2: vi(tﬂ) = :U,(fl) + F (xf];) — x&?) , (10)
DE3 : vz(t“) = mgt) + F (xgt) — xz(t) + %(«tl) - wﬁ?) ) (11)
DEA4 : vl-(tﬂ) = SCgt) +F (a@(f? - 307(};) + 357(«? - 55&?) ) 12)
DEs: ol ™ = 20+ F (2 -2+ af) - a), (13)
wheret denotes the iteration countek; is a fixed user—defined parametegrgenotes the index of the
best individual in the population, i.e., the one with the éstvfunction value; and; € {1,2,..., N},
i =1,2,...,5, are mutually different, randomly selected indices th#fedialso fromi. Obviously, in

order to be able to apply all DE mutation operators, it mudd tat N > 5.
After mutation, recombination is applied on the generatector,v;, producing drial vector, u; =
(W1, Wiy - - Uin), @ = 1,2,..., N, as follows:

1) . . .
USJF ), if R; <CR or j = RI(i),

ut = (14)
2\, if Rj > CR and j # RI(i),
wherej = 1,2,...,n; R; is the j—th evaluation of a uniform random number generator in tingea
[0,1]; CR € [0, 1] is a user—defined crossover constant; 8h{) is an index randomly selected from the
set{1,2,...,n}. Finally, the produced trial vectos,, is compared against the corresponding individual,

x;, and the best between them is included in the populationeofiéixt generation.

3 Problem formulation

In this section, we describe the original model [13] as weltree simplified one, along with the penalty
function used in our study. Prior to the descriptions, wdl shate the following assumptions [13]:

(1) The transaction cosby, for supplier; is independent of the variety and quantity of the ordered
products.

(2) The holding costh;, of product;: is product—dependent.

(3) The demandy;;, for product: at time period: is known over a planning horizon.

(4) Items of imperfect quality are kept in stock and sold ptathe next period in a single batch.
(5) Each lot of product received from supplief contains a percentage; of defective items.

(6) Purchasing price of productirom supplier; is b;;. Good quality items are sold in pricg; per
unit, while defective items are sold in a single batch at adalisted pricesg;.

(7) A screening process of the lot is conducted with a uniéesting costg;, for producti.
(8) Each supplier has a limited capacity.

(9) All requirements must be fulfilled in the period in whidtel occur. Backordering and shortage is
not allowed.

(10) Product needs a storage spaee, and the total storage capacitylis.
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3.1 Original Model

Following the aforementioned assumptions, Rezaei and @h\&3] developed a mathematical model
that refers to the scenario of supply chain with multipledurcts and multiple suppliers, all of which have
limited capacity. The demand over a finite planning horizbalso known and an optimal procurement
strategy for this multi—-period horizon is to be determined.

Each of the products can be sourced from a number of appraymuiars. However, a supplier—
dependent transaction cost applies whenever an orderdscla product—dependent holding cost per
period applies for each product in the inventory that isiedracross a period in the planning horizon.
Also a maximum storage space at each period is considereatdém to maximize the total profit, the
decision maker needs to decide what products to order, it @uentities, by which suppliers, and at
which time periods. Assuming thadenotes the producj,denotes the supplier ariddenotes the time
period, the required quantity is denotedas.

The objective function, henceforth called thiginal mode] is defined as follows [13]:

max f (ije, Yjt) Zzzwm —pig) S+ Y DD Tigpigsai| = | Y>> Tijibij
i gt iog

t t
YD o+ D DY w3 > b [ DD wigp (L—pij) = Y di || (15)
7t i gt Pt k=1

k=1 j

It consists of the sum of the revenues of selling good qualiducts and imperfect quality products,
subtracting the purchase cost of the products, the trdoracbst for the suppliers, the screening cost
of the products and the holding cost for the remaining inmgnat each time period. Obviously, since
the problem is defined as maximization, the negative of theatilze function defines the corresponding
minimization task. The parameteys, are binary and they are definedgs = 1 if an order is placed
to supplier;j at time periodt, while y;; = 0 otherwise. Also, the problem is highly constrained. More
specifically, there are four types of constraints [13]:

Typel:  Cr(i,j,t) = S5, > Tigk (1 — pij) — S dixk =0, forall i and ¢,

Type ll: Cp(i,j,t) = (Zgzl dik) Yjt — xije (1 — pij) =0,  for all 4, j and t,

Type Il Cy (2,5, 1) = 32, wi <ZZ:1 > wije (1= pig) = Sy dik) <W,  forallt,
Type IV: 0 < x5 < ki,  for all 4,5 and ¢,

wherek;; is the capacity of supplief for product:. The following interpretations can be stated for the
four types of constraints [13]:

(1) All requirements must be fulfilled in the period in whidiey occur.

(2) Backordering and shortage are not allowed (Type ).

(3) All orders are accompanied by the appropriate trarmactdst (Type I1).
(4) The total storage space is limited By (Type Ill).

(5) Suppliers have limited capacities (Type V).

If I, J andT denote the number of products, suppliers and time periedpectively, then the number
of constraints is equal t8/.(1,J,T) = I xT)+ (I x J xT)+T + 2 x (I x J x T), while the
number of variableg;; andx;;; (problem dimension) is equal o/, (1, J,T) = (J xT)+ (I x J xT).
Obviously, even for small values &f J andT, the corresponding problem constitutes a challenging task
due to the large number of variables and constraints.
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3.2 Simplified Model

The original model can be simplified by eliminating the irdegarameters, thereby reducing its dimen-
sion. Indeed, based on the definition of the parametgrsve can infer a dependence between them and
xijt, as follows:
1, if z;;; > 0 for at least one,
Yjt = (16)
0, otherwise.

Thus, the variableg;; are set tol if an order is placed on suppligrat time periodt, otherwise they
are set td. If an order is not placed, i.ey,;; = 0, then the quantities;;; of all products ordered from
supplier; at time periodt, shall also be equal to zero. In practice, we considerthais equal to zero
if it is actually smaller than a predefined small threshalel,® < z;;; < €..

Therefore, we may drop the integer parametgys,from our optimization problem and retain only
xij- Itis not required to modify the form of the objective furmtiin Eq. (15), as far as we determine
the parameterg;; by using Eq. (16) whenever a function evaluation is conducté/e will call this
formulation thesimplified model

The gain of removing the variables; is twofold. On the one hand, the problem’s dimension is
reduced by/ x T'. On the other hand, the integer part of the problem is remdweakte it can be tackled
as a pure real-valued optimization problem. Neverthefessoth the original and the simplified model
the number of constraints remains unchanged.

3.3 Penalty Function

In our approach, the constraints were handled by using a-+stalge penalty function. Assume that:

i |Cs(i,4,t)|, if constraint C,(i, j,t) is violated
Cs(i, j,t) =
0, otherwise

wheres € {I,II,IIl},i=1,2,...,1,j =1,2,....J,andt = 1,2,...,T. Also, let P,., be a fixed
positive parameter. Then, the penalty function for the mimation problem is defined as follows:

f(xijhyjt) wzgtay]t Z C Z ]7 pen7 (17)

7.]7t73

i.e., a penalty that depends on the degree of violation igdol the objective value for each violated
constraint. Usually, in order to avoid false penalizatiom tb approximation errors, a violated constraint
is penalized only if its value exceeds a predefined violatiderance, i.e.:

Cy(i,j,t) > e. > 0.

Also, we shall note that it is not required to include Type Khstraints in the penalty function, as they
simply define the ranges of the variables and they can becitiphiandled by restricting the populations
within these box constraints. If an individual violateslsaaconstraint, it is either blocked on the violated
limit or bounces back inside the search space.

4 Experimental Setting and Results

We considered the problem instance in [13] withroducts,3 suppliers and time periods, i.e.] = 3,

J =3, andT = 4. This implies a mixed—integer original model of dimensith (3, 3,4) = 48, while
the corresponding real-valued simplified problem has dgieen/, (3, 3,4) = 36. In both cases, there
are M.(3,3,4) = 124 constraints from which]2 are of Type 1,36 are of Type 1,4 are of Type Il and
the remaining are of Type IV. For the penalty function, thelation tolerance:, = 10~% and the fixed
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Alg. Original model (with integer variables) Simplified model (without integer variables)

Feas. Mean StD Min Max Mean-NF StD-NFFeas. Mean StD Min Max  Mean-NF StD-NF
UPSCx 100 15421.64 1914.48 8951.05 20971.63 - —| 100 16759.17 3278.01 7509.59 24417.35 - -
UPSO.1 | 100 15212.12 2127.72 10375.01 20151.81 - —| 100 18859.93 2238.09 11760.49 21770.91 - -
UPSO.1m 100 15668.70 2659.13 10428.47 24292.16 - —| 100 16473.78 2618.19 8485.52 20836.61 - -
UPSO.5 91 14500.79 2438.09 8607.04 21344.48 9468.36 8710.50| 87 16455.72 3125.58 7345.19 23142.99 5351.26 5928.03
UPSO.5m 99 15045.86 2799.24 9358.54 23203.40 243.50 0.00| 86 15294.78 2772.99 6973.88 20877.98 8886.35 11535.16

UPSO.9 56 13859.20 2223.46 8478.83 22280.95 85763.78 73177.19| 45 15088.82 2780.00 10010.74 20087.92 54858.49 67414.87
UPSO.9m 57 13993.82 1934.43 9927.13 18307.67 92979.01 70864.78 | 53 14991.10 3460.81 7498.16 23208.42 78242.57 74742.21
UPSOg 45 13415.84 1418.20 9323.64 16255.25 79836.19 72462.18| 40 14908.15 2973.21 10283.91 22636.29 78306.92 97846.59

DE1 91 14624.70 4093.28 4924.90 23278.21 86100.71 62665.31| 96 18651.37 2720.45 10802.69 23491.00 5751.31 6651.73
DE2 92 8516.30 2349.54 3624.98 15511.66 1978.72 1095.68| 96 11995.80 1764.43 6495.59 14921.55 1314.26 378.57
DE3 100 20142.90 1658.85 11280.75 22690.86 - —| 100 20191.47 1307.50 13530.06 22064.48 - -
DE4 100 12999.85 3619.56 5792.37 22410.83 - —| 100 14869.66 2134.99 8000.83 19298.33 - -
DE5S 3 7233.88 2969.75 5078.29 10621.32 11953.12 6506.82 4 8706.46 1121.83 7967.51 10378.10 14405.69 6870.72

Table 1: Results for all algorithms and problem instancesayed ovet 00 experiments. Higher values
correspond to better solutions.

penalty P, = 10% were used. Also, the parameter= 10~° was used to identify a zero component in
a solution vector.

Regarding the two algorithms, UPSO was considered for ttiation factor values = 0.0 (Ibest),
0.1,0.5,0.9 and1.0 (gbest). These choices aimed at investigating the behak/mwth Ibest—oriented and
gbest-oriented UPSO variants. The cases €f0.1, 0.5 and0.9, were also considered in their mutated
variants defined in Eqgs. (7) and (8). Henceforth, we will dertbe UPSO variants as UPEQPSO.1,
UPSO.1m, UPSO.5, UPSO.5m, UPS0.9, UPS0.9m, and UPSOgctiesy, where “m” denotes a
variant with mutation. The default PSO parameter valuenddfin Section 2.1 were adopted in our
study, while the Gaussian mutation tergn~ N (0, 1) was used. Moreover, the five DE variants defined
in Egs. (9)—(13) were considered with the common parameteesF = 0.5 andCR = 0.7.

Both UPSO and DE are primarily designed to tackle real—hariables. For this reason, the
integer variables in the original problem were assumed ke taal values in the rangé, 1] for the
swarm/population update, while they were rounded to theaseéanteger (eithed or 1) for the function
evaluation. Contrary to this, the simplified model does mmuire such assumptions since all of its
parameters are real-valued.

The populations in both algorithms were randomly initiadizin the search space. In the original
model, uniform initialization within the variables’ rargés adequate. However, the simplified model
raises a crucial initialization issue. More specificaltyttie original model the probability that an integer
parameter is initialized either @ or 1 is equal, since the algorithms uniformly sample real number
within [0, 1]. On the other hand, the simplified model samples only withérranges of the real param-
etersz;;;, and then computes the correspondingby using Eq. (16) and the relaxation parameter
Yet, this initialization almost surely assigns valugs, > ¢., which correspond tg;; = 1, since the
volume (Lebesque measure) of the fraction of the searchegbat corresponds to;;; < ¢ for all
(and hence tg;; = 0) is very small, compared to the whole search space.

Therefore, performing a completely random initializationthe simplified model would be biased
towards the valueg;; = 1, which correspond to solutions where all suppliers arerggegiroduct orders.
To alleviate this deficiency, the initialization of the atgbms in the simplified model was conducted as
follows:

Tijt, if Rijt > 0.5,
Tijt =
0, otherwise
whereR;;; is a random value uniformly distributed @, 1]. Thus, each component of the initial popula-
tion had equal probability of being zero or non—zero.

The performance of all UPSO and DE variants was tested onthetloriginal and the simplified
model. For each algorithm,00 independent experiments were performed. At each expetjnien
algorithm was allowed to perfori0? iterations using swarm/population si2e= 50. The best solution
detected throughout each experiment was recorded for égatitm and problem instance, along with
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«10° Original 48-dimensional formulation 10* Reduced 36-dimensional formulation
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Figure 1: Boxplots of achieved solution values for the oxdgiand the simplified model.

Original 48-dimensional formulation Reduced 36-dimensional formulation
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Violations count
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UPSOI UPSO.1 UPSO.1m UPSO.5 UPSO.5m UPS0.9 UPSO.9m UPSOg  DE1 DE2 DE3 DE4 DES5 UPSOI  UPSO.1 UPSO.1m UPS0.5 UPSO.5m UPSO.9 UPSO_ 9m UPSOg  DE1 DE2 DE3 DE4 DES
Algorithm Algorithm

(a) Original model (b) Simplified model

Figure 2: Constraints violation per algorithm for the omigii and the simplified model.

its feasibility. If a solution was infeasible, the corresding penalty term was also recorded to reveal
the degree of violation per case. Also, the total number ofatéd constraints over all experiments
was recorded per algorithm and problem instance to studydbsible tendency of an algorithm towards
violation of constraints of specific types. All experimewsre conducted using the data provided in [13].

The results were statistically analyzed and they are redart Table 1 (notice that higher function
values correspond to better solutions since the problemaigmmization). The first column reports the
corresponding algorithm. The next seven columns referaéadBults for the original model, while the
last seven columns refer to the simplified model. For eacheamdle first column (Feas.) reports the
feasibility percentage of the obtained solutionsl@® experiments. The next four columns expose the
mean, standard deviation, minimum and maximum of the obthgolution’s valuenly for the feasible
cases For the infeasible cases, the next two columns (Mean-NFStBdNF) report the mean and
standard deviation of the corresponding penalty term.

The best feasible solution obtained with the GA approaci 8} had objective valué5266.8. As
we can see in the Table 1, UPSO with small unification factarfated or not, provided always fea-
sible solutions. Increasing the unification factor, i.eqving closer to the gbest PSO model, resulted
in a remarkable performance reduction with the penalty $epfrthe obtained solutions increasing with
the value of the unification factor. On the other hand, twaavds of the DE algorithm offered always
feasible solutions. Both these two approaches, DE3 and Didlye the best individual of the popu-
lation and two difference vectors. The best mean solutidneveras achieved by DE3 and it was equal
to 20142.90. However, the best solution attained ever was achieved yQJPm and it was equal to
24292.16. On the other hand, the worst average performance was achigyvthe DES5, which could
barely detect feasible solutions.

In the simplified model, the successful UPSO variants furtheroved their performance. The
same held also for the efficient DE approaches. The varibatddiled to provide feasible solutions in
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UPSO.1
UPSO.1m
UPSO.5
UPSO.5m
UPSO.9
UPSO.9m
UPSOg
DE1

DE2

DE3

DE4

DES5

m
w
lw)
o]
m
~
=}
m
al

* ¥ X ¥ | ¥ ¥ ¥ | % * *
* % % | % | ] | % % ¥ % %

¥ % ¥ | ox | | % % % ¥ %
¥ % o* | ox 1l o* ¥ ¥ ¥ %

* ¥ X ¥ ¥ ¥ ¥ * | % | x
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ | % ¥ ¥
* % % x | % % x | x| *
¥ ] % ¥ %X ¥ ¥ ¥ *¥ % ¥ | %
¥ K X X K ¥ X KX ¥ ¥ ¥ ¥ ¥
¥ Ok | ¥ ¥ ¥ ¥ X X X X ¥ ¥
¥ O¥ X ¥ X X ¥ ¥ | % ¥ ¥ ¥
| % % % % % *¥ % ¥ ¥ ¥ % ¥

* % % % % ¥ * % | % | |

Table 2: Wilcoxon rank—sum tests. The light gray area refetle original model, while the darker gray
area refers to the simplified model. The existence of siadistignificance is denoted with “*”, while the

lack is denoted with “~". The main diagonal presents the rigm’s performance in the original model
against itself in the simplified model.

the original model, retained their inferior performancsoah the simplified model although their penalty
terms (violation magnitude) were reduced. Also, we canceatat the improvement of the successful
UPSO variants in the simplified model was higher than thate8Bnd DE4, although the latter exhibited
smaller standard deviations.

The obtained solution values are also graphically illustigfor the most promising algorithms in
Figs. 1(a) and 1(b), while the total number of violated craists over all thel00 experiments per
algorithm and problem instance are illustrated in Figs) atal 2(b), for the two models, respectively.

Compared to the solutions reported in [13], we can infer BRSO and DE exhibit higher proba-
bility of providing feasible solutions, although, the iafble solutions of the GA approach in [13] lie
closer to the feasibility region, i.e., their violation nmétgide is smaller than that of the infeasible solu-
tions obtained by DE and UPSO. Figures 2(a) and 2(b) revealthkt the violation mainly concerns
Type lll and secondarily Type | constraints. An increase ypd |l constraint violation is reported for
the simplified model, due to the special interpretation efthriableg;; as functions oft; ;.

In addition to the aforementioned statistics, the perfaroeaof each pair of algorithms was tested
for statistical significance by using the Wilcoxon rank—si@st. Thus, each pair of algorithms, A and B,
was tested against the null hypothesis that the sampleg afltfained solution values for A and B have
the same median in®% level of significance. The results of the tests are reportd@ble 2. As can be
seen, in most cases there is statistically significant rdiffee between the algorithms. Perhaps the most
important observation is the existence of significant diffeees of the most successful approaches in the
original model against themselves in the simplified modélisTs also an indication that the simplified
model can be advantageous. The only exception to this dditsamis the DE3 approach, which hardly
exhibited any performance difference between the two nsodel

5 Conclusion

This paper constitutes an experimental investigation @RBO and DE algorithms on a recently pro-
posed model for supply chain with multiple items and supplieshere the goal is the determination of an
optimal procurement strategy given the demand for a fingaqihg horizon. In its original formulation,
the problem was modeled as a highly—constrained mixedyenteptimization task. Besides the appli-
cation of the two algorithms on the original model, a simetifimodel that reduces it to a real-valued
optimization task was also proposed and tackled with theesslgorithms. The obtained results suggest
that the simplified model can be more advantageous for theessful algorithms than the original one.
Also, it was shown that UPSO and DE are highly competitiveheo@A—based approaches reported in
the literature, constituting promising alternative sians.
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