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Abstract— A technique for the visualization of stochastic
population–based algorithms in multidimensional problems
with known global minimizers is proposed. The technique
employs projections of the populations in the 2–dimensional
vector space spanned by the two extremal eigenvectors of the
Hessian matrix of the objective function at a global minimizer.
This space condenses information regarding the shape of the
objective function around the given minimizer. The proposed
approach can provide intuition regarding the behavior of
the algorithm in unknown high–dimensional problems. It also
provides an alternative visualization framework for problems of
any dimension, which alleviates drawbacks of the most popular
projection methods. The proposed technique is illustrated for
three well–known population–based algorithms, namely, Dif-
ferential Evolution, Covariance Matrix Adaptation Evolution
Strategies and Particle Swarm Optimization, on three test
problems of different dimensionality.

I. INTRODUCTION

V ISUALIZATION is the process of converting numbers
into pictures [1], [2]. Visualizing the evolution of the

population as well as the trajectories of specific individuals,
such as the best individual, during the evolution process of a
stochastic population–based algorithm may provide intuition
regarding the algorithm’s dynamics and rate of convergence.
This information is considered very important for the devel-
opment of more efficient variants of the algorithm, as well
as for the selection of the most proper algorithm for a given
class of problems. Thus, visualization techniques are very
useful tools for the design and evaluation of algorithms.

In contrast to low–dimensional cases where visualiza-
tion is simple, high–dimensional cases exhibit difficulties
and require special treatment. The most trivial technique
for data visualization in an n–dimensional search space,
S ⊂ R

n, is the projection of the original vectors, x =
(x1, x2, . . . , xn)� ∈ S, on a 2–dimensional subspace, S′ ⊂
R

2, by setting (n − 2) arbitrarily selected components of
x equal to fixed values and varying the remaining ones.
Although simple, this approach does not guarantee the reli-
ability of the obtained information regarding the algorithm’s
performance and dynamics, due to its heavy dependence
on the choice of the subspace S′, i.e., the choice of the
components that will vary. Indeed, the projections of two
distinct n–dimensional points, y, z ∈ S, may be located
very near to each other in a projection space S′, and
very far in a different projection space, S′′, regardless of
their actual distance in S. Thus, the lack of information
regarding the choice of the most proper projection space may
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induce misleading conclusions regarding the behavior of the
algorithm, and, although in low–dimensional spaces all the
possible combinations of the projections can be drawn and
evaluated, in high–dimensional cases this is computationally
expensive and time consuming.

In this paper, a technique for the visualization of stochastic
population–based optimization algorithms in any dimension,
is proposed [3]. This technique visualizes the individuals of
a population by projecting them on the 2–dimensional vector
space spanned by the extremal eigenvectors of the Hessian
matrix of the objective function at a global minimizer of the
objective function. The choice of the specific vector space
is based on its properties regarding the shape of the ob-
jective function locally around the minimizer. The proposed
approach has already been applied for the visualization of
gradient–based methods with very promising results [3]–[5].
It also provides a unified framework for the visualization
of population–based algorithms in any dimension, exposing
the behavior of the algorithm in problems with known
characteristics and minimizers, which can be a very useful
hint regarding its performance in similar unknown problems.

The rest of the paper is organized as follows: the proposed
technique is described in Section II, while Section III is
devoted to a brief description of the algorithms that are
employed to illustrate its workings. The results of the appli-
cation of the proposed approach are reported in Section IV,
and the paper concludes in Section V.

II. THE PROPOSED VISUALIZATION TECHNIQUE

Consider the unconstrained optimization problem (without
loss of generality only the minimization case is considered),

min
x∈D⊂Rn

f(x),

and assume that

x∗ = arg min
x∈D

f(x),

is a global minimizer of f , i.e.,

f(x∗) � f(x), ∀x ∈ D.

Let ∇f(x) and ∇2f(x) be the gradient and the Hessian ma-
trix, respectively, of the objective function f at the point x =
(x1, x2, . . . , xn)�. Also, let λmin and λmax be the minimum
and maximum eigenvalue of ∇2f(x∗), respectively, and,
emin, emax, be the corresponding eigenvectors. Since ∇2f
is real and symmetric, all eigenvalues and eigenvectors are
real, and eigenvectors that correspond to distinct eigenvalues
are orthogonal. Consider the 2–dimensional subspace, E2,
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which is spanned by {emin, emax}. Then, the points x ∈ E2

can be determined by a pair (c1, c2) such that [3], [4],

x = x∗ + c1emin + c2emax, c1, c2 ∈ R, (1)

i.e., the pair (c1, c2) determines the coordinates of x in E2.
It is known that in a sufficiently small neighborhood of x∗,

the directions of the principal axes of the elliptical contours
(n–dimensional ellipsoids) are given by the eigenvectors of
∇2f , while the lengths of the axes are inversely proportional
to the square roots of the corresponding eigenvalues. Thus,
a variation along emax causes the largest change in f , while
emin corresponds to the least sensitive direction of change.
Consequently, the subspace E2 provides all the important
information regarding f around its global minimizer, thereby
constituting a very appealing choice as a subspace for the
visualization of points of arbitrary dimensionality [3].

The proposed approach has been applied for the vi-
sualization and investigation of the performance of tradi-
tional gradient–based algorithms, such as Steepest Descent
with Armijo Line Search, Fletcher–Reeves, Polak–Ribiere,
Davidon–Fletcher–Powell, and Broyden–Fletcher–Goldfarb–
Shanno [3], [5]. It has also been applied for studying the
behavior of well–known methods on problems with noisy
objective functions as well as for the visualization of neural
networks training algorithms, with promising results [4], [5].

The aforementioned technique can be directly applied for
visualizing the population of a population–based algorithm
during the evolution process in the original n–dimensional
search space S. This is achieved by projecting the individuals
under consideration on E2, i.e., by determining for each
individual x ∈ S, the corresponding pair (c1, c2) ∈ E2, such
that Eq. (1) holds. The proposed technique is independent of
the individuals’ dimension and provides a unique projection
subspace, which captures all relevant information regarding
the shape of the objective function in the neighborhood of
the global minimizer.

Besides the application of the aforementioned technique
for the direct visualization of the population during the
evolution in the original n–dimensional space, the proposed
technique can also be applied as follows: the algorithm is
initialized with a uniformly distributed population of pairs
(c1, c2) ∈ E2 and applied for the minimization of f directly
in the subspace E2. The global minimizer x∗ of f in the
n–dimensional space S corresponds, by definition, to the
origin of E2. For the evaluation of a pair (c1, c2) with f ,
the pair is first transformed to the corresponding point x in
the n–dimensional space using Eq. (1), and, subsequently
the obtained point x is passed as an argument to f to
obtain the objective function value. Since E2 captures all
possible changes of f , the 2–dimensional optimization can
reveal the dynamics of the algorithm with the advantage
of direct visualization on a plane. Moreover, 2–dimensional
optimization requires smaller population sizes, since the
problem’s dimension is reduced.

The main drawbacks of the proposed technique is the
requirement to foreknow the global minimizer of f , i.e., the

algorithms can be visualized and studied only on problems
with known global minimizers and computable Hessian ma-
trix on it. However, it can provide useful knowledge regard-
ing the algorithm’s performance on classes of similar test
functions by visualizing the algorithm on some representative
problems with known minimizers.

III. THE EMPLOYED EVOLUTIONARY ALGORITHMS

For completeness purposes, we briefly describe the algo-
rithms that were selected for the illustration of the proposed
technique.

A. Differential Evolution

Differential Evolution (DE) was developed by Storn and
Price [6]. It utilizes a population of N , n–dimensional
vectors, xi,G, i = 1, 2, . . . , N , for each iteration (generation),
G, of the algorithm. The initial population is taken to be
uniformly distributed in the search space. At each generation,
the mutation and crossover (recombination) operators are
applied on the individuals, giving rise to a new population,
which is subsequently subjected to the selection phase. This
phase effectively identifies the N best points from both
populations to comprise the next generation.

According to the mutation operator, for each vector xi,G,
i = 1, 2, . . . , N , a mutant vector is generated through the
equation:

vi,G+1 = xr1,G + F (xr2,G − xr3,G), (2)

where r1, r2, r3 ∈ {1, 2, . . . , N} are mutually different
random indices, and, F ∈ (0, 2]. The indices r1, r2, r3, also
need to differ from the current index, i. Consequently, to
apply mutation, N must be greater than or equal to 4.

Following the mutation phase, the crossover operator is
applied on the population. Thus, a trial vector,

ui,G+1 = (u1i,G+1
, u2i,G+1

, . . . , uni,G+1
), (3)

is generated, where,

uji,G+1
=

{
vji,G+1

, if (Rj � CR) or j = rnbr(i),
xji,G

, if (Rj > CR) and j �= rnbr(i),

where j = 1, 2, . . . , n; Rj is the j–th evaluation of a uniform
random number generator in the range [0, 1]; CR is a user–
defined crossover constant in the range [0, 1], and rnbr(i) is
a randomly chosen index from the set {1, 2, . . . , n}.

To decide whether or not the vector ui,G+1 will be a
member of the population of the next generation, it is
compared to xi,G. Thus,

xi,G+1 =

{
ui,G+1, if f(ui,G+1) < f(xi,G),
xi,G, otherwise.

The procedure described above is considered as the stan-
dard variant of the DE algorithm. Different mutation and
crossover operators have been applied with promising re-
sults [6]. In order to classify the different variants, the scheme

DE/x/y/z,
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is used, where x specifies the mutated vector (“rand” for
randomly selected individual or “best” for selection of the
best individual); y is the number of difference vectors used;
and, z denotes the crossover scheme (the scheme described
above is due to independent binomial experiments and it is
denoted as “bin”) [6]. According to this description scheme,
the DE variant described above is denoted as DE/rand/1/bin.

A highly beneficial scheme that deserves special attention
is the DE/best/2/bin, where,

vi,G+1 = xbest,G +F (xr1,G +xr2,G −xr3,G −xr4,G). (4)

The use of two difference vectors in this scheme seems to
improve the diversity of the population in cases where N is
adequately high [6].

B. Covariance Matrix Adaptation Evolution Strategies

Evolution Strategies (ES) have been developed by Rechen-
berg and Schwefel [7]–[10]. They exploit a population of
μ individuals to probe the search space. At each iteration
of the algorithm, λ offsprings are produced by recombining
and mutating a set of randomly chosen individuals from the
current population (parents). After the offsprings’ generation,
a selection phase takes place, where either the μ best
individuals among the offsprings or the μ best individuals
among both the parents and the offsprings are selected to
comprise the next generation. These two variants are denoted
as (μ, λ)–ES and (μ + λ)–ES, respectively.

ES use a set of parameters, called endogenous parame-
ters, to control certain statistical properties of the genetic
operators, especially those of the mutation operator. These
parameters can either be fixed or evolve during the evolution
process resulting in self–adaptive ES variants [11].

Covariance Matrix Adaptation Evolution Strategies
(CMA–ES) were developed by Hansen and Ostermeier [12].
They are self–adaptive (μW , λ)–ES, where W denotes
weighted recombination from μ out of λ individuals.
CMA–ES use a set of parameters,

pc,G ∈ R
n, CG ∈ R

n×n, pσ,G ∈ R
n, σG ∈ R

+,

where G denotes the generation number. The parameters are
initialized as follows: pc,0 = pσ,G = 0 and C0 = I (the
unity matrix), while σ0 and the initial weighted mean of
the μ best individuals, 〈x〉W,0, have to be chosen problem
dependent [12]. The object parameter vector xk,G+1, k =
1, 2, . . . , λ, is determined by the equation:

xk,G+1 = 〈x〉W,G + σG BGDGzk,G+1︸ ︷︷ ︸
∼N (0,CG)

,

where N (0, CG) denotes the Gaussian distribution with zero
mean and covariance matrix CG, and,

〈x〉W,G =
1∑μ

i=1 wi

μ∑
i=1

wixi:λ,G, wi ∈ R
+,

with i : λ denoting the i–th best individual, is the weighted
mean of the μ best individuals at generation G; σG ∈ R

+ is
the step size; zk,G+1 ∈ R

n are independent realizations of

a (0, I)–normally distributed random vector; and BG, DG

are determined by the symmetrical positive definite n × n
covariance matrix CG as follows [12]:

CG = BGDG(BGDG)� = BG(DG)2B�
G .

This is actually a singular value decomposition of CG. Thus,
the matrix DG is an n×n diagonal matrix with its diagonal
elements being equal to the square roots of the eigenvalues of
CG, while BG is an n×n orthogonal matrix that determines
the coordinate system, where the scaling with DG takes place
and its columns are the normalized eigenvectors of CG. A
complete analysis of the adaptation procedure of CG can be
found in [12].

C. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a swarm intel-
ligence algorithm, inspired from and based on the so-
cial dynamics and emergent behavior in socially organized
colonies [13]–[18].

PSO exploits a population of individuals to synchronously
probe promising regions of the search space. In this context,
the population is called a swarm and the individuals (i.e., the
search points) are called the particles. Each particle moves
with an adaptable velocity within the search space, and
retains a memory of the best position it has ever encountered.
In the global variant of PSO, the best position ever attained
by all individuals of the swarm is communicated to all
the particles at each iteration. In the local variant, each
particle is assigned to a topological neighborhood consisting
of a prespecified number of particles. In this case, the
best position ever attained by the particles that comprise a
neighborhood is communicated among them [14], [16].

Assume an n–dimensional search space, S ⊂ R
n, and

a swarm consisting of N particles. The i–th particle is in
effect an n–dimensional vector xi = (xi1, xi2, . . . , xin)� ∈
S. The velocity of this particle is also an n–dimensional
vector, vi = (vi1, vi2, . . . , vin)�. The best previous position
encountered by the i–th particle in S is denoted by pi =
(pi1, pi2, . . . , pin)� ∈ S. Assume gi to be the index of the
particle that attained the best previous position among all the
particles in the neighborhood of the i–th particle, and G to
be the iteration counter. Then, the swarm is manipulated by
the equations [19]:

vi,G+1 = χ
[
vi,G + c1 r1

(
pi,G − xi,G

)
+c2 r2

(
pgi,G − xi,G

)]
, (5)

xi,G+1 = xi,G + vi,G+1, (6)

where i = 1, 2, . . . , N ; χ is a parameter called constriction
factor; c1 and c2 are two parameters called cognitive and so-
cial parameters respectively; and r1, r2, are random numbers
uniformly distributed within the range [0, 1].

The constriction factor constitutes a mechanism for con-
trolling the magnitude of velocities and it is derived analyt-
ically through the formula [19]:

χ =
2κ

|2 − φ −
√

φ2 − 4φ| , (7)
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Fig. 1. The trajectory of the population’s mean while optimizing F1 in S,
projected in the vector space E2.

for φ > 4, where φ = c1 + c2 and κ = 1. Different
configurations of χ as well as a thorough theoretical analysis
of the derivation of Eq. (7) can be found in [19], [20].

IV. APPLICATION OF THE PROPOSED TECHNIQUE

The proposed visualization technique has been sugges-
tively applied for DE, CMA–ES and PSO on the following
test problems:

TEST PROBLEM 1 (Rosenbrock function) [21]. This problem
is 2–dimensional and it is defined by:

F1(x) =
[
10

(
x2 − x2

1

)]2
+ (1 − x1)

2
.

It has the global minimum F ∗
1 = 0 at x∗ = (1, 1)�.

TEST PROBLEM 2 (Extended Powell Singular function) [21].
This problem is 12–dimensional and it is defined by:

F2(x) =

12∑
i=1

f2
i (x),

where,

f4i−3(x) = x4i−3 + 10x4i−2,

f4i−2(x) =
√

5(x4i−1 − x4i),

f4i−1(x) = (x4i−2 − 2x4i−1)
2,

f4i(x) =
√

10(x4i−3 − x4i)
2,

with i = 1, 2, 3. It has the global minimum F ∗
2 = 0 at x∗ =

(0, 0, . . . , 0)�.

TEST PROBLEM 3 (Schwefel Double Sum function) [10].
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Fig. 2. The trajectory of the population’s best while optimizing F1 in S,
projected in the vector space E2.

This problem is 20–dimensional and it is defined by:

F3(x) =
20∑

i=1

⎛
⎝ i∑

j=1

xj

⎞
⎠

2

.

It has the global minimum F ∗
3 = 0 at x∗ = (0, 0, . . . , 0)�.

The DE/best/2/bin version of the DE algorithm, the global
variant of the constriction factor PSO, as well as the default
CMA–ES algorithm proposed in [12] have been used to
illustrate the proposed visualization technique on the afore-
mentioned test problems. The choice of the specific versions
of the algorithms has been motivated by their developers’
suggestions as well as their superior performance in several
applications. Here, our intention is rather the illustration of
the proposed technique than the comparison of the algo-
rithms.

Initially, the proposed visualization technique was ap-
plied for the visualization of specific individuals of the
populations during the minimization in the n–dimensional
space, S, where n is the dimension of the problem under
consideration. For this purpose, a population of 10 × n
individuals was used for each algorithm, and a maximum
number of 104 × n function evaluations was allowed to
be performed. The desired accuracy was 10−5 for all test
problems. The parameters of the DE algorithm were set equal
to F = CR = 0.5. The PSO parameters were also set
to their default values χ = 0.729, c1 = c2 = 2.05 [19].
For CMA–ES, λ = 2 and μ = 20 × n were used. All
algorithms were initialized with the same initial population,
which was randomly (uniformly distributed) selected within
S = [−2, 2]n for all test problems.

The behavior of each algorithm in a single run can be
illustrated through the proposed visualization technique, as

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 1697

Authorized licensed use limited to: University of Patras. Downloaded on October 13, 2008 at 09:22 from IEEE Xplore.  Restrictions apply.



−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

DE − MEAN OF POPULATION

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

PSO − MEAN OF SWARM

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

ES − MEAN OF POPULATION

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

PSO − MEAN OF BEST POSITIONS

Fig. 3. The trajectory of the population’s mean while optimizing F2 in S,
projected in the vector space E2.
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Fig. 4. The trajectory of the population’s best while optimizing F2 in S,
projected in the vector space E2.

follows: for each algorithm, the mean and the best individ-
ual (i.e., the individual with the lowest function value) of
the population were recorded at each iteration (generation).
Also, the extremal eigenvectors of the Hessian matrix at the
global minimizer were determined for each test problem. The
recorded data were then projected on the 2–dimensional vec-
tor space E2, which is spanned by the extremal eigenvectors
as described in Section II, and the corresponding (projected)
trajectories for the mean and best individual are depicted in
the contour plots of Figs. 1 and 2 for Test Problem 1, in
Figs. 3 and 4 for Test Problem 2, and in Figs. 5 and 6 for
Test Problem 3, respectively. The black star at the origin
of each figure denotes the global minimizer of the objective
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Fig. 5. The trajectory of the population’s mean while optimizing F3 in S,
projected in the vector space E2.
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Fig. 6. The trajectory of the population’s best while optimizing F3 in S,
projected in the vector space E2.

function (which is always projected at the origin of E2). PSO
employs actually two populations, the swarm for the current
iteration and the best positions to store the best position ever
visited by each particle. For this reason, the mean and best
individual of both populations are reported in the figures.

As we observe in Figs. 1 and 2, for all algorithms, both
the mean and the best individual spent more time rather on
horizontal than vertical moves. This effect can be attributed
to the highest variation of f along the vertical axis, which
corresponds to eigenvector emax of the largest eigenvalue,
while, on the other hand, the horizontal axis corresponds to
the least sensitive direction of change. Thus, the algorithms
were able to detect rapidly the most promising region of
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Fig. 7. The trajectory of the population’s mean while optimizing F1 directly
in E2.
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Fig. 8. The trajectory of the population’s best while optimizing F1 directly
in E2.

the search space along the steepest direction and spent the
rest iterations for approaching gradually the global minimizer
from the flatter direction. This is an indication that the
employed algorithms were able to identify the shape of the
objective function locally.

Also, we can observe that the trajectory of the mean and
best particle of the PSO’s swarm is characterized by more
intensive fluctuations than that of its best positions as well as
the rest of the algorithms. This is an expected observation,
since the swarm does not incorporate any form of selection,
in contrast to the best positions of PSO as well as the
populations of DE and CMA–ES.

Similar conclusions can be derived for Test Problems 2 and
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Fig. 9. The trajectory of the population’s mean while optimizing F2 directly
in E2.
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Fig. 10. The trajectory of the population’s best while optimizing F2 directly
in E2.

3 from Figs. 3–6. Moreover, we can clearly observe that the
trajectories of DE and PSO are more similar than CMA–ES.
This could be attributed to the nature of the algorithms. While
DE and PSO are based on difference vectors of the current
populations to produce the points for the next generation,
CMA–ES employ a rather probabilistic approach, drawing
points from adaptive probability densities. Therefore, the
proposed approach can be also used to roughly identify
algorithms of similar dynamics.

Besides the aforementioned investigation of the algo-
rithms’ trajectories projected in the space E2, we performed
a second round of experiments, however, this time the
optimization was performed directly in E2. More specifically,
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Fig. 11. The trajectory of the population’s mean while optimizing F3

directly in E2.

instead of having individuals defined and updated in the
original search space S and then projected in E2 to obtain
the corresponding figures, we assumed individuals defined
directly in E2. Thus, each individual was a 2–dimensional
vector defined and updated in E2, consisting of a pair
of coordinates, while, for its evaluation with the objective
function f , it was transformed to the corresponding n–
dimensional vector through Eq. (1).

Following this approach, each problem was transformed to
a 2–dimensional problem, thus, only small populations of 20
individuals were employed for each algorithm. The rest of the
algorithms’ parameters remained the same as in the previous
experiments. The initial populations were always uniformly
distributed in [−3, 3]2. The same data were recorded as
for the n–dimensional case. The obtained trajectories are
depicted in Figs. 7–12.

It is clear that the figures obtained through the second
round of experiments reveal similar behavior of the algo-
rithms as with the case of Figs. 1–6. This is an indication
that there was no crucial loss of information regarding the
algorithm’s dynamics by applying it directly on E2. Since the
experiments in E2 are 2–dimensional using small population
sizes, thereby requiring significantly less time and resources,
this approach could be very useful in cases where the
objective function is high–dimensional and each function
evaluation requires significant time.

Regarding the algorithms performance, it worths noting
that PSO approaches the minimizer in a different manner
than DE and CMA–ES. Specifically, in most cases, PSO’s
swarm “encircles” the minimizer and approaches it from all
directions, in contrast to DE and CMA–ES, which capture
the shape of the contour lines and distribute the population in
narrow channels parallel to the axis that corresponds to the
eigenvector emin. This is also a direct implication of the lack
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Fig. 12. The trajectory of the population’s best while optimizing F3 directly
in E2.

of selection in PSO’s swarm, which retains high diversity
during optimization, since the best positions of the particles
are stored in a separate population.

V. CONCLUSIONS

A technique for the visualization of stochastic population–
based optimization algorithms in any dimension has been
introduced. The proposed technique uses the 2–dimensional
vector space spanned by the extremal eigenvectors of the
Hessian matrix of the objective function at a global mini-
mizer to project the n–dimensional search points. This vector
space captures all information regarding the shape of the
objective function at this region. A population–based algo-
rithm can either be applied on the original n–dimensional test
problem and project its population on the subspace or it can
be directly applied on the subspace and visualized, revealing
almost the same information, yet reducing significantly the
expected computational cost.

The proposed approach enables the user to obtain intuition
about the performance of an algorithm on high–dimensional
spaces. It also provides a unified visualization framework in
any dimension, which alleviates the drawbacks of common
projection methods that can result in false conclusions due
to their heavy dependence on the selection of the projection
subspace. Thus, it contributes towards the directions of
developing more efficient algorithms and selecting the most
proper algorithm for specific classes of similar test problems.

The proposed technique has been illustrated for three
well–known population–based algorithms, DE, CMA–ES
and PSO, on 2, 12 and 20–dimensional test problems. The
reported results support the claim that it can be a very useful
tool for visualization in any dimension.

Further research is needed to fully reveal the potential
of the proposed technique in visualizing population–based
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algorithms as well as to investigate specific characteristics
of the underlying algorithms.
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