ICNAAM-2004 Extended Abstracts 1 -4

Analysis of Particle Swarm Optimization Using Computatioral
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We propose a new methodology for the experimental analyggautionary optimization algorithms. The
proposed technique employs computational statistic nasthio investigate the interactions among opti-
mization problems, algorithms, and environments. Thertiegle is applied for the parameterization of
the Particle Swarm Optimization algorithm. An elevator ewyisory group control system is introduced
as a test case to provide intuition regarding the performariche proposed approach in highly complex
real-world problems.

1 Introduction

Modern search heuristics have proved to be very useful feirgpcomplex real-world optimization prob-
lems that cannot be tackled through classical optimizagchniques [1]. Many of these search heuristics
involve a set of exogenous parameters that affect theirexgence properties. An optimal parameter set-
ting depends on the problem at hand as well as on the restrictiosed by the environment (i.e., time and
hardware constraints).

Particle Swarm Optimization (PSO) is a swarm intelligenpg@mization algorithm [2]. The main in-
spiration behind PSO was the flocking behavior of swarms atdsithools. PSO has proved to be very
efficient in numerous applications in science and engingd8, 4, 5, 6]. PSO’s convergence is controlled
by a set of parameters that are usually either determinedrieally or set equal to widely used default
values.

We suggest an approach for determining the PSO parametitosedl for the optimization problem at
hand (we consider only minimization cases, although thbriggie can be straightforwardly applied in
maximization problems). The proposed approach employmtques from computational statistics and
statistical experimental design, and it is applicable drP&lO variants. It can be also applied to any
parameterizable search algorithm, such as evolutiongorithms (EA) or other direct search methods.
To justify the usefulness of our approach, we analyze thpgnaes of PSO from the viewpoint of an
optimization practitioner in the context of a real-worldtiogization problems. More specifically, we
consider the optimization of an elevator group controllenall as well-known test functions, extending
the approaches proposed in [7] and [8].
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2 Problem, Algorithm and Environment

Almost all new office buildings in modern cities are high rizéldings and require efficient elevator sys-
tems. The elevator group controller assigns elevatorssmoter service calls, based on a specific policy.
This policy should be optimal with respect to different ggalch as the overall throughput, waiting times,
energy consumption etc. Different building types and tcadftuations make controllers and the related
policies incomparable. This was the main motivation for degelopment of a simplified elevator group
control model, which is called th8equential RingS—ring). The state of the system at timis mapped to

a binary vector. Since the S—ring has only a few parameteranibe used as a test problem generator for
benchmark testing of algorithrhf9, 10]. The S—ring constitutes also a well suited model tousate and
analyze bunching problems [11].

PSO belongs to the class of stochastic, population—bad@dingtion algorithms [12]. It exploits a
population of individuals to probe the search space. In ¢bistext, the population is called ssvarm
and the individuals are callgzarticles Each particle moves with an adaptable velocity within tbareh
space, and it retains the best position it has ever visit&D B a stochastic algorithm, and, therefore, it
requires random number seeds. An optimization practitigriaterested in robust solutions, i.e., solutions
independent from the random seeds that are used to gerferatsmtiom numbers. The proposed statistical
methodology provides guidelines to design robust PSO #kgos under restrictions, such as a limited
number of function evaluations and processing units. Thesteictions can be modeled by considering the
performance of the algorithm in terms of the (expected) hggttion value for a limited number of fithess
function evaluations. A discussion on different problesskes for real-world optimization problems is
provided in [13].

3 Computational Statistics

Statistical methods, such as experimental design techsaigind regression analysis, can be used to analyze
the experimental setting introduced in the previous sactiBreimanet al. introduced regression trees as
a “flexible non—parametric tool to the data analyst’s arBdthd]. Regression trees are used for screening
variables and checking the adequacy of regression modg]s [he construction of classification and
regression trees (CART) can be seen as a type of variabletiselewhich is similar to the stepwise
regression techniques in classical regression analy8js Compared to linear models, tree—based models
are easier to interpret when qualitative and quantitatregligtors appear in the model.

A fractional factorial design was considered to performrégression tree based screening experiments
with PSO [17]. We considered a sequential approach that cealexisting as well as new results, and
enables a step—wise increase in the regression model catgpttarting with a simple linear model, the
final model can be analyzed with response surface methoddR&irthermore, design and analysis of
computer experiments (DACE) methods for the analysis ahdpation algorithms, as proposed in [18],
have been used. Santredral.[19] presented a heuristic algorithm for unconstrainedgl@ptimization
problems, which is based on the expected improvement [2@].dIscussion in [19] leads to the conclusion
that new designs are attractive if either there is a highb@dity that their predicted output is below the
current observed minimum and/or there is a large unceytainthe predicted output. This result comes
in line with the experimenters’ intention to avoid sitesttjaarantee worse results, and constituted the
motivation for the following heuristic [18]:

1. Choose an initial desigh,, with n points.
2. Run the algorithm a; € D,,,i = 1,...,n, to obtain the vector of output valugéz).

3. Check the termination criterion.

1 Areference implementation of S—ring model can be requéstedthe authorst hormas. bart z- bei el st ei n@do. edu.
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Table 1 Tuning of the PSO parameters on the S—ring with DACE. Fiestpad and third design with corresponding

fitness valued’.

Y P ¢ C2 Wmax WScale WiterScale  Vmax
1.74419 2.11749 0.842983 0.444293 0.951067 34.756

2.4626 8
24237 6 2.24586 2.44838 0.897144 0.606148 0.812619 118.05
24167 6 2.2722 1.71572 0.937604 0.561817 0.64614  138.371

WMax < 0.85
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Fig.2 Regression tree showing the parameterization

Fig. 1 DACE fit. PSO optimizing the S—ring model.
of the PSO optimizing the S—ring model.

4. Select a new point,,;1 that maximizes the expected improvement (cf. [20]).
5. Run the algorithm af,, ; to obtain the outpu§(Z,,+1).

6. SetDp+1 =D, U{Z,4y1},n=n+1,and goto 3.

4 Experimental Results

We first investigated simple well-known test functions [81pain an intuition regarding the workings of
the proposed technique. For example, for thedimensional Rosenbrock function and the parameteriza-
tions provided in [21], we obtained an improved PSO pararizztigon that consists of a population size
P =44,c¢; =1.60379, c2 = 2.19376, Wmax = 0.825048, wgcale = 0.312031, wrgerscale = 0.932467, and
Vimax = 102.235. The mean best function value wa$118 (with a minimum value equal t0.0037649),
while, in [21], the mean best function value was equdl@d 715.

In the next step of our analysis, the S—ring model was corsitleThe improved parameterization
using DACEwas? = 6, ¢; = 2.2722,¢3 = 1.71572, Wmax = 0.937604, wscale = 0.561817, wigerscale =
0.64614, andVi,.x = 138.371, and the best function value wasgt167. Furthermore, small swarms proved
to perform better than large ones. The DACE and CART teclasguovided similar configurations of the

PSO parameters, as depicted in Figs. 1 and 2.

5 Synopsis

CART and DACE provide effective and efficient means to imgr&50 performance, significantly. Only
a few tree growing phases and DACE iterations (less #)amere needed to find better PSO parame-
terizations. Regression trees have shown their ability ¢dehthe dependencies between different PSO
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parameterizations in a very intuitive manner. Althouglythee more conservative than the classical re-
gression techniques, their results are reliable and girtdléhe results obtained from classical regression
analysis and DACE. Moreover, classical regression modaiish are much more complicated and require
assumptions on the underlying distribution, can be altedaOn the other hand, DACE are restricted to
quantitative factors, but provide a more detailed insigta the influence of different factors on the algo-
rithm’s performance. A drawback of the proposed approadii;imis common to all statistical methods in
this field, is the determination of a good starting design.

Acknowledgements T. Bartz—Beielstein’s research was supported by the DFQoasta@f the collaborative research
center “Computational Intelligence” (531). We acknowledbe partial support of the “Pythagoras” research grant
awarded by the Greek Ministry of Education and Religiousa&ff and the European Union.

References

[1] H.-P. Schwefel, I. Wegener, and K. Weinert, editorAdvances in Computational Intelligence — Theory and
Practice Natural Computing Series. Springer, Berlin, 2003.

[2] J. Kennedy and R. C. Eberhart. Particle swarm optimiratin Proceedings IEEE International Conference on
Neural Networksvolume 1V, pages 1942—-1948, Piscataway, NJ, 1995. IEEH&e€enter.

[3] K. E. Parsopoulos and M. N. Vrahatis. On the computatibalbglobal minimizers through particle swarm
optimization.|EEE Transactions on Evolutionary Computatj@%le—Z%, 2004.

[4] K. E. Parsopoulos and M. N. Vrahatis. Recent approach al optimization problems through particle
swarm optimizationNatural Computing1(2—3):235-306, 2002.

[5] K. E.Parsopoulos, E. |. Papageorgiou, P. P. GroumpakiVaN. Vrahatis. Evolutionary computation techniques
for optimizing fuzzy cognitive maps in radiation therapystms. Lecture Notes in Computer Science (LNCS)
3102:402-413, 2004.

[6] N. G. Pavlidis, K. E. Parsopoulos, and M. N. Vrahatis. Quting Nash equilibria through computational
intelligence methodsJournal of Computational and Applied Mathematiz804. in press.

[7] T.Beielstein, K. E. Parsopoulos, and M. N. Vrahatis. ihgnPSO parameters through sensitivity analysis. Tech.
Report Cl 124/02, Department of Computer Science, UnityeciDortmund, Dortmund, Germany, 2002.

[8] T. Bartz-Beielstein, M. de Vegt, K.E. Parsopoulos, and\NMVrahatis. Designing particle swarm algorithms
with regression trees. Technical Report of the CollabeeaResearch Center 53lomputational Intelligence
Cl1-173/04, University of Dortmund, December 2001.

[9] S. Markon, D.V. Arnold, T. Back, T. Beielstein, and H.-Beyer. Thresholding — a selection operator for noisy
ES. In J.-H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu, edité®c. 2001 Congress on Evolutionary Computa-
tion (CEC’01) pages 465-472, Seoul, Korea, May 27-30, 2001. IEEE Presst&way NJ.

[10] T. Beielstein, S. Markon, and M. Preuf3. Algorithm basefidation of a simplified elevator group controller
model. In T. Ibaraki, editorProc. 5th Metaheuristics Int’l Conf. (MIC’03)pages 06/1-06/13 (CD—ROM),
Kyoto, Japan, 2003.

[11] G. Barney.Elevator Traffic Analysis, Design and Contr@ambridge U.P., 1986.

[12] J. Kennedy and R. C. EberhaBwarm IntelligenceMorgan Kaufmann Publishers, 2001.

[13] A.E. Eiben and J.E. Smithntroduction to Evolutionary Computingspringer, 2003.

[14] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. StoGtassification and Regression Treed/adsworth,
1984.

[15] T. M. Therneau and E. J. Atkinson. An introduction touesive partitioning using the rpart routines. Technical
Report 61, Department of Health Science Research, MaydacCRochester, 1997.

[16] J. M. Chambers and T. H. Hastie, editoiStatistical Models in SWadsworth & Brooks/Cole, Pacific Grove,
California, 1992.

[17] G.E.P.Boxand J. S. Hunter. TB&~? fractional factorial designs, part Technometrics3:311-352, 1961.

[18] T. Bartz-Beielstein. Tuning search algorithms forlrearld applications: A regression tree based approach. In
Proceedings of the 2004 Congress on Evolutionary Commuta@EC20042004. accepted for publication.

[19] T.J. Santner, B.J. Williams, and W.I. NotEhe Design and Analysis of Computer Experime8ginger, 2003.

[20] M. Schonlau, W.J. Welch, and R.D. Jones. Global versaallsearch in constrained optimization of computer
models. In N. Flournoy, W.F. Rosenberger, and W.K. WongtoesliNew developments and applications in
experimental desigrvolume 34, pages 11-25. Institute of Mathematical Stesis1998.

[21] Y. Shi and R.C. Eberhart. Empirical study of particleasm optimization. In P.J. Angeline, Z. Michalewicz,
M. Schoenauer, X. Yao, and A. Zalzala, editoPspceedings of the Congress of Evolutionary Computation
volume 3, pages 1945-1950, 1999.



