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ABSTRACT: A self adaptive probabilistic neural network model is proposed. The model incorporates the Particle Swarm
Optimization algorithm to optimize the spread parameter of the probabilistic neural network, enhancing thus its perfor-
mance. The proposed approach is tested on two data sets from the field of bioinformatics, with promising results. The
performance of the proposed model is compared to probabilistic neural networks, as well as to four different feedfor-
ward neural networks. Different sampling techniques are used, and statistical tests are performed to justify the statistical
significance of the results.
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INTRODUCTION
The field of bioinformatics has rapidly developed during the last few years. A significant area of interest in this field
is the prediction of protein localization sites in cells. Numerous systems, including rule–based systems (decision trees,
decision rules), statistical learning systems (naive Bayes, Support Vector Machines) and neural networks, have been used
to perform prediction and classification tasks on this problem [1].

An effective approach for addressing such tasks is the Probabilistic Neural Network (PNN) (cf. [1]). PNNs were
introduced by Specht in 1990 [2]. They constitute a class of neural networks that combine some of the best attributes of
statistical pattern recognition and feedforward neural networks. PNNs are the neural network implementation of kernel
discriminant analysis. The classical PNN can be viewed as an “intelligent memory” since each training pattern is stored
as a neuron of the network [3]. PNNs require small training times and produce outputs with Bayes posterior probabilities.
These desirable features come at the expense of larger memory requirements and slower execution speed for the prediction
of unknown patterns [2].

The performance of a PNN is largely influenced by the spread parameter (see next Section). In this paper, we propose
a self adaptive probabilistic neural network model that incorporates the Particle Swarm Optimization (PSO) algorithm,
to optimize the spread parameter of the PNN. PSO is a swarm intelligence optimization algorithm, motivated by the
dynamics of socially organized colonies [4], which has proved to be very efficient on a plethora of applications in science
and engineering [5]. The proposed, self adaptive, model is applied on two data sets from the field of bioinformatics,
namely the E.coli and the Yeast data sets, using alternative sampling techniques. Further, its performance is compared to
that of four different Feedforward Neural Network (FNN) models.

The paper is organized as follows: in the following Section the basic concepts of PNNs and PSO are briefly described.
Next, the proposed approach is presented. Subsequently, the experimental setup, including descriptions of the data sets and
the sampling techniques used, as well as, a presentation of the obtained results and their statistical analysis are reported.
The paper ends with conclusions.

PROBABILISTIC NEURAL NETWORKS
The probabilistic neural network (PNN) was introduced by Specht [2]. It is a supervised neural network that is widely
used in the area of pattern recognition, nonlinear mapping, and estimation of the probability of class membership and
likelihood ratios [6]. It is closely related to Bayes classification rule, and Parzen nonparametric probability density
function estimation theory [2], [7]. The fact that PNNs offer a way to interpret the network’s structure in terms of
probability density functions [3] is an important merit of this type of networks. The standard training procedure for PNNs



requires a single pass over all the patterns of the training set [2]. This characteristic renders PNNs faster to train compared
to feedforward neural networks.

The structure of a PNN is similar to that of FNNs, although the architecture of a PNN is limited to four layers;
the input layer, the pattern layer, the summation layer, and the output layer, as illustrated in Fig. 1. An input vector
X = (x1, . . . , xn)> ∈ R

n, is applied to the n input neurons and is passed to the pattern layer. The neurons of the pattern
layer are divided into K groups, one for each class. The ith pattern neuron in the kth group computes its output using a
Gaussian kernel of the form,
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where Xk,i ∈ R
n is the center of the kernel, and σ, also known as the spread (smoothing) parameter, determines the size

of the receptive field of the kernel. The summation layer of the network computes the approximation of the conditional
class probability functions through a combination of the previously computed densities.

Gk(X) =

Mk
∑

i=1

wkiFk,i(X), k ∈ {1, . . . , K}, (2)

where Mk is the number of pattern neurons of class k, and wki are positive coefficients satisfying,
∑Mk

i=1
wki = 1. Pattern

vector X is classified to belong to the class that corresponds to the summation unit with the maximum output,

C(X) = arg max
16k6K

(Gk) . (3)
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Figure 1: A probabilistic neural network.

PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) is a stochastic, population–based optimization algorithm. It exploits a population of
individuals to synchronously probe promising regions of the search space. In this context, the population is called a swarm
and the individuals (i.e. the search points) are called particles. Each particle moves with an adaptable velocity within the
search space, and retains a memory of the best position it ever encountered. In the global variant of PSO, the best position
ever attained by all individuals of the swarm is communicated to all the particles at each iteration. In the local variant,
each particle is assigned to a neighborhood consisting of prespecified particles. In this case, the best position ever attained
by the particles that comprise the neighborhood is communicated among them [4].

Assume an d–dimensional search space, S ⊂ R
d, and a swarm consisting of NP particles. The i–th particle is

an d–dimensional vector, Zi = (zi1, zi2, . . . , zid)
> ∈ S. The velocity of this particle is also a d–dimensional vector,



Vi = (vi1, vi2, . . . , vid)
> ∈ S. The best previous position encountered by the i–th particle in S is denoted by, BPi =

(bpi1, bpi2, . . . , bpid)
> ∈ S. Assume gi to be the index of the particle that attained the best previous position among all

the particles in the neighborhood of the i–th particle, and t to be the iteration counter. Then, the swarm is manipulated by
the equations,

Vi(t + 1) = ω Vi(t) + c1 r1

(

BPi(t) − Zi(t)
)

+ c2 r2

(

BPgi
(t) − Zi(t)

)

, (4)
Zi(t + 1) = Zi(t) + Vi(t + 1), (5)

where i = 1, . . . , NP, ω is a parameter called inertia weight; c1 and c2 are two positive constants called cognitive and
social parameter, respectively; and r1, r2, are random variables uniformly distributed within [0, 1]. Alternatively, the
velocity update can be performed through the following equation [8],

Vi(t + 1) = χ
[

Vi(t) + c1 r1

(

BPi(t) − Zi(t)
)

+ c2 r2

(

BPgi
(t) − Zi(t)

)

]

, (6)

where χ is a parameter called constriction factor, giving rise to a different version of PSO. Although Eqs. (4) and (6)
are algebraically equivalent, there are significant differences regarding the selection of the corresponding parameters.
Specifically, the constriction factor is derived analytically through the formula [8]

χ =
2κ

|2 − φ −
√

φ2 − 4φ|
, (7)

for φ > 4, where φ = c1 + c2, and κ = 1, derived through the stability analysis of the constriction factor version of PSO
reported in [8],[9]. On the other hand, the inertia weight, ω, is usually determined empirically. An initial value close to 1
and gradually decline towards zero is considered a good configuration [10]. The initialization of swarm and velocities, is
usually performed randomly and uniformly in the search space, although more sophisticated initialization techniques can
enhance the overall performance of the algorithm [11].

THE PROPOSED APPROACH
As previously mentioned the spread parameter, σ, is critical for the classification accuracy of a PNN. In this work, the
determination of σ is performed through PSO. Specifically, the PSO algorithm is initialized randomly with a swarm of
values of σ, and optimization is performed for a specific sample taken from the data set. Thus, the obtained value of σ

is the best achieved value with respect to the specific sample. This procedure can be applied for each sample to provide
an appropriate σ with respect to classification accuracy. We call this model Self Adaptive Probabilistic Neural Network
(SA–PNN). A pseudocode of the proposed approach is given in Table I.

Table I: Pseudocode for the SA–PNN algorithm.

PNN input: Normalized training set Strain = {Xtrain

1
, . . . , Xtrain

Ntrain
} and test set Stest.

PSO input: Swarm size NP, χ, c1, c2, bounding box B = [0, 1]
Step 1 Train the PNN, using all the training set patterns in Strain.
Step 2 Set t = 0.
Step 3 Initialize a PSO swarm, σi(t) ∈ B, Vi(t) ∈ B, i = 1, . . . , NP.
Step 4 Initialize best positions, BPi(t), i = 1, . . . , NP, and the index g.

Do
Step 5 Update the velocities, Vi(t + 1), i = 1, . . . , NP, using Eq. (4), or Eq. (6).
Step 6 Update particles, σi(t + 1) = σi(t) + Vi(t + 1), i = 1, . . . , NP.
Step 7 Constrain each particle σi(t + 1) in B.
Step 8 Compute f(σi(t + 1)) by the leave–one–out misclassification proportion on Strain, i = 1, . . . , NP.
Step 9 Update best positions, BPi(t + 1), i = 1, . . . , NP, and the index g.
Step 10 Update iteration counter, t = t + 1.

While (the error goal or the maximum number of iterations is not reached)
Step 11 Write the optimal spread parameter σg , and the corresponding performance of the PNN on Stest.



EXPERIMENTAL RESULTS
The proposed model was evaluated on two data sets from the field of bioinformatics, namely the E.coli and the Yeast data
set [1]. To determine the spread parameter, a swarm of 20 particles was allowed to evolve for 100 generations. The global
variant of the algorithm was considered because it exhibited faster convergence compared to the local one. The particles
were constrained in the box [0, 1] in order to avoid possible velocities explosion. In the constriction factor version, the
values of the c1 and c2 parameters were set to 2.05, while χ was set to 0.729 [8]. An upper bound, Vmax, on the absolute
value of the velocities of the particles was used and set to 0.5. In the inertia weight version, the inertia weight, ω, was
initialized to 1.0 and it gradually declined towards zero for the 75% of the available iterations.

The performance of the SA–PNN for different sampling techniques was investigated using the Stratified Random
Sampling and the 10–Fold Cross–Validation sampling techniques, as well as, a Train–Validation–Test partitioning of
the data set. The mean, standard deviation, minimum and maximum of the obtained success rates are reported for all
sampling techniques. Statistical tests were performed to determine whether one of the considered sampling techniques
yields a superior performance. Further, the performance of the resulting SA–PNN was compared to that of four different
FNNs. The first three FNNs had a single hidden layer containing, 15, 20, and 25, neurons, respectively. The fourth FNN
had two hidden layers with 10 neurons each. All the FNNs were trained using R–PROP [12] for 500 epochs, with learning
rate equal to 0.01.

DESCRIPTION OF DATA SETS
A brief description of the considered data sets is provided below.

The E.coli Data Set
The goal for the E.coli data set is to predict the cellular localization sites of E.coli proteins [13]. There are 8 cellular
sites, namely the cytoplasm (cp); inner membrane without signal sequence (im); periplasm (pp); inner membrane with
uncleavable signal sequence (imU); outer membrane (om); outer membrane lipoprotein (omL); inner membrane lipopro-
tein (imL) and inner membrane with cleavable signal sequence (imS). The attributes are the McGeoch and Von Heijne
recognition techniques for the signal sequence, the presence of charge on N–terminus of predicted lipoproteins, and 3
different scoring functions on the amino acid contents, predicted either as an outer or an inner membrane, cleavable or
uncleavable sequence signal.

The Yeast Data Set
The objective is similar to the E.coli data, i.e. determine the cellular localization of the yeast proteins [13]. There are 10
sites: CYT (cytosolic or cytoskeletal); NUC (nuclear); MIT (mitochondrial); ME3 (membrane protein, no N–terminal
signal); ME2 (membrane protein, uncleaved signal); ME1 (membrane protein, cleaved signal); EXC (extracellular); VAC
(vacuolar); POX (peroxisomal) and ERL (endoplasmic reticulum lumen). The same attributes with the E.coli data set are
considered, including additionally the nuclear localization information.

SAMPLING TECHNIQUES
The sampling techniques which were considered are briefly exposed below:

Stratified Random Sampling
In Stratified Random Sampling, a data set of size N , is divided in K non–overlapping subpopulations of size Nk, k ∈
{1, . . . , K}, called strata, with

K
∑

k=1

Nk = N.

A random sample of size αk, is selected from each stratum independently. The final stratified random sample has size α,
where

α =
K

∑

k=1

αk,

and it is used as the training set, while the rest of the data form the test set. Proportionate allocation uses a sampling
fraction of each strata that is proportional to that of the total population. The PSO algorithm determines the spread
parameter by minimizing the leave–one–out misclassification proportion on the training set.

λ–Fold Cross–Validation
According to this technique, the initial set of data is divided into λ parts of approximately equal size. Subsequently, each



Table II: SA–PNN test set classification accuracy percentage for the E.coli data set.

Model Sampling Mean St.Dev. Min. Max.

SA–PNN(con) Stratif. Rand. Sampl. 86.02 6.17 62.27 91.26

SA–PNN(ine) Stratif. Rand. Sampl. 86.65 5.83 64.67 92.31

SA–PNN(con) 10-fold Cross–Valid. 75.67 1.51 72.60 78.46

SA–PNN(ine) 10-fold Cross–Valid. 75.72 1.45 71.71 78.67

SA–PNN(con) Train-Valid.-Test Set 82.50 5.02 64.54 90.00

SA–PNN(ine) Train-Valid.-Test Set 82.63 4.86 72.72 90.00

Table III: SA–PNN test set classification accuracy percentage for the Yeast data set.

Model Sampling Mean St.Dev. Min. Max.

SA–PNN(con) Stratif. Rand. Sampl. 58.71 7.90 40.50 76.33

SA–PNN(ine) Stratif. Rand. Sampl. 63.47 7.64 38.79 75.32

SA–PNN(con) 10-fold Cross–Valid. 48.58 1.34 43.88 50.74

SA–PNN(ine) 10-fold Cross–Valid. 48.65 1.37 43.87 50.75

SA–PNN(con) Train-Valid.-Test Set 54.00 5.79 34.96 61.96

SA–PNN(ine) Train-Valid.-Test Set 54.01 4.23 42.53 61.55

of the λ subsets is used as the test set while the other subsets form the training set. The average error across all λ trials
is computed. As in stratified random sampling, the PSO algorithm determines the spread parameter by minimizing the
leave–one–out misclassification proportion on the training set.

Train–Validation–Test Partitioning
The practice of partitioning the data set into three components is standard in the neural network literature [14]. In the
context of SA–PNN, we train the network using the patterns of the train set. The PSO algorithm, subsequently, determines
the spread parameter, σ, by minimizing the misclassification error on the validation set.

PRESENTATION OF THE RESULTS AND STATISTICAL ANALYSIS
In Table II, the mean (Mean), standard deviation (St.Dev.), as well as, the minimum (Min.) and maximum (Max.) success
rates (in percentage terms) for the E.coli data set, are reported for each sampling technique and for both the inertia weight
(ine), and the constriction factor (con), version of the PSO algorithm. The same information for the Yeast data set is
reported in Table III. With respect to the stratified random sampling technique, the size of the random sample for each
stratum was set to 50% of the size of the corresponding class. This practice was adopted in all the experiments with
stratified random sampling. As can be seen from Tables II and III, SA–PNNs that used the training sets obtained through
stratified random sampling, gave with the highest mean, and maximum, classification accuracy. For the E.coli data set
the sampling technique that corresponded to the highest minimum classification accuracy was the Train–Validation–Test
partitioning, while for the Yeast data set it was 10–fold cross validation. We would like to point out that the maximum
attained performance on the E.coli data set (92.31%) compares favorably with the results obtained through a data selection
method proposed in [15].

Applying a one–way ANOVA test on the mean performance of the different sampling techniques, for both data sets,
the statistical significance of the observed variations in performance was verified. The corresponding p–value was 0 up
to four decimal digits. Performing pair–wise t–tests, stratified random sampling was found to yield the best performance
(corresponding p–value equal to 0 up to four decimal digits for both data sets). It is important to note that stratified random
sampling produced smaller training sets compared to 10–fold cross–validation.

Despite the fact that the inertia weight version of the PSO algorithm appears to produce slightly superior mean classi-



Table IV: Test set classification accuracy (%) of FNNs on the E.coli data set with Stratified Random Sampling.

Topology Mean St.Dev. Min. Max.

7–15–8 85.86 2.40 78.91 89.75

7–20–8 85.93 1.94 79.51 90.36

7–25–8 84.90 2.55 78.31 89.75

7–10–10–8 85.03 2.13 80.72 90.36

Table V: Test set classification accuracy (%) of FNNs on the Yeast data set with Stratified Random Sampling.

Topology Mean St.Dev. Min. Max.

8–15–10 56.91 1.69 53.58 60.21

8–20–10 57.54 1.42 53.04 60.35

8–25–10 58.26 1.43 55.20 61.97

8–10–10–10 56.49 1.74 51.42 59.94

fication accuracy relative to the constriction factor version, the difference was not found to be statistically significant (the
corresponding t–test p–value was 0.5431). This was not the case for the Yeast data set were the inertia weight version of
the algorithm produced a statistically significant superior performance (the one–sided t–test p–value was 0.0083).

In Table IV, the mean, standard deviation, as well as, the minimum and maximum success rates (in percentage terms)
for the E.coli data set, are reported for all the FNNs considered using stratified random sampling. Respectively, Table V
illustrates this information for the Yeast data set. For both data sets, we performed t–tests to evaluate the statistical
significance of the difference of mean classification accuracy between the best performing FNN with that of the SA–PNN
obtained through stratified random sampling. For the E.coli data set the mean performance difference was not found to
be statistically significant (p–value equal to 0.5725). For the Yeast data set the SA–PNNs using the inertia weight version
of PSO were found to outperform the best performing FNNs (the corresponding p–value of the one–sided t–test was
3.74× 10−6).

CONCLUSIONS
A self adaptive model for probabilistic neural networks was proposed. The proposed approach incorporates the Particle
Swarm Optimization Algorithm to find an appropriate spread parameter for the probabilistic neural network with respect
to the resulting classification accuracy. The effectiveness of the proposed model is assessed on two data sets from the
field of bioinformatics (E.coli and Yeast), with encouraging results. Among the three sampling techniques considered,
stratified random sampling proved to yield the best classification performance despite the fact that the training sets it
produces are smaller in magnitude compared to 10–fold cross validation. To evaluate further the capabilities of this
model, comparisons with feedforward neural network models trained using the R–PROP algorithm were performed.
These comparisons showed that the self adaptive model proposed achieves statistically significant superior performance
on the Yeast data set, while on the E.coli data set the performance of the two models is not found to be statistically
different.

Future work will include the generalization of the proposed self adaptive scheme to determine the corresponding
matrix of spread parameters, to further optimize the performance of PNNs. We also intend to apply different evolutionary
computation techniques on this problem.
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