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Abstract. The optimization of a Fuzzy Cognitive Map model for the su-
pervision and monitoring of the radiotherapy process is proposed. This is
performed through the minimization of the corresponding objective func-
tion by using the Particle Swarm Optimization and the Differential Evo-
lution algorithms. The proposed approach determines the cause–effect
relationships among the concepts of the supervisor–Fuzzy Cognitive Map
by computing its optimal weight matrix, through extensive experiments.
Results are reported and discussed.

1 Introduction

Several pathological illness cases can be addressed by eliminating the infected
cells through the application of ionizing radiation to the patient. This procedure
is widely known as radiotherapy. In the case of cancer cells, the radiation consists
mainly of photons or electrons. Healthy cells are also affected by the radiation.
Clearly, the determination of the dosage distribution of radiation, as well as
information regarding the affection of the tumor by irradiation and the affection
of the healthy tissues, are of major importance [1].

Radiotherapists–doctors must take into consideration many different (com-
plementary, similar or conflicting) factors that influence the selection of the ra-
diation dose and, consequently, the final result of the therapy. All these factors
are usually incorporated in an optimization process, where the main objectives
are to minimize the total amount of radiation at which the patient is exposed,
maximize the minimum final radiation dose received by the tumor, minimize the
radiation to critical structure(s) and healthy tissues, and produce acceptable
dosage distributions with the smallest computational effort [1].

Several algorithms have been proposed and used for the optimization of ra-
diation therapy treatment plans [2,3]. Dose calculation algorithms [4,5], dose–
volume feasibility search algorithms [6], and biological objective algorithms [7]
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have been employed for the determination of dosage distributions in treatment
planning systems under multiple criteria and dose–volume constraints [3]. Dif-
ferent algorithms have been proposed for the optimization of beam weights and
beam directions [8]. Gradient–descent methods have been used to optimize the
objective functions as well as the intensity distributions [9]. Moreover, methods
related to knowledge–based expert systems and neural networks, have been pro-
posed for the optimization of treatment variables and the support of decisions
during radiotherapy planning [10,11].

The kind, the nature, as well as, the number of the parameters–factors that
are taken into consideration for the determination of the radiation therapy tre-
atment, give rise to a highly complex, uncertain and fuzzy overall model. Fuzzy
Cognitive Maps (FCMs) have been applied for the modeling of the decision–
making process of radiation therapy, with promising results [12]. FCMs can mo-
del complex systems that involve different factors, states, variables, and events,
integrating the influence of several controversial factors in a decision–making
process [13]. In FCMs, the causal effects among different factors are taken into
consideration in the calculation of the values of all causal concepts that de-
termine the radiation dose, so as to keep the dose at a minimum level, while
destroying the tumor and inflicting the minimum injuries to healthy tissues and
organs [1].

In this paper, two different algorithms, Particle Swarm Optimization (PSO)
and Differential Evolution (DE), coming from the fields of Swarm Intelligence
and Evolutionary Computation, respectively, are employed for the optimization
of the supervisor–FCM used in an established radiation therapy treatment plan-
ning system. Both methods have proved to be very efficient in a plethora of
applications in science and engineering. Also, PSO has recently proved to be
very efficient algorithm for FCMs learning in an industrial problem [14].

The rest of this article is organized as follows: the PSO and DE algorithms
are briefly presented in Sections 2 and 3, respectively. A review of the basic
concepts and notion of FCMs, as well as a description of the FCM model for
the supervision of the radiation therapy process, are given in Section 4. The
proposed approach and experimental results are analyzed in Section 5. The paper
concludes in Section 6.

2 The Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a stochastic optimization algorithm. It
belongs to the class of Swarm Intelligence algorithms, which are inspired from,
and based on the social dynamics and emergent behavior in socially organized
colonies [15,16,17]. PSO is a population based algorithm, i.e. it exploits a po-
pulation of individuals to synchronously probe promising regions of the search
space. In this context, the population is called a swarm and the individuals (i.e.
the search points) are called particles. Each particle moves with an adaptable ve-
locity within the search space, and retains a memory of the best position it ever
encountered. In the global variant of PSO, the best position ever attained by all
individuals of the swarm is communicated to all the particles at each iteration.
In the local variant, each particle is assigned to a neighborhood consisting of a
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prespecified number of particles. In this case, the best position ever attained by
the particles that comprise a neighborhood is communicated among them [16,
18].

Assume a D–dimensional search space, S ⊂ R
D, and a swarm consisting

of N particles. Let Xi = (xi1, xi2, . . . , xiD)� ∈ S, be the i–th particle and
Vi = (vi1, vi2, . . . , viD)� ∈ S, be its velocity. Let also the best previous position
encountered by the i–th particle in S be denoted by Pi = (pi1, pi2, . . . , piD)�.
Assume gi to be the index of the particle that attained the best previous position
among all the particles in the neighborhood of the i–th particle, and G to be the
iteration counter. Then, the swarm is manipulated by the equations [19]:

Vi(G + 1) = χ
[
Vi(G) + c1 r1

(
Pi(G) − Xi(G)

)
+ c2 r2

(
Pgi

(G) − Xi(G)
)]

,(1)

Xi(G + 1) = Xi(G) + Vi(G + 1), (2)

where i = 1, . . . , N ; χ is a parameter called constriction factor ; c1 and c2 are
two parameters called cognitive and social parameters, respectively; and r1, r2,
are random numbers uniformly distributed within [0, 1].

Alternatively, a different version of the velocity’s update equation, which
incorporates a parameter called inertia weight , has been proposed [20,21]:

Vi(G + 1) = wVi(G) + c1 r1
(
Pi(G) − Xi(G)

)
+ c2 r2

(
Pgi(G) − Xi(G)

)
, (3)

where w is the inertia weight.
Both the constriction factor and the inertia weight are mechanisms for con-

trolling the magnitude of velocities. However, there are some major differences
regarding the way these two are computed and applied. The constriction factor
is derived analytically through the formula [19],

χ =
2κ

|2 − φ −
√

φ2 − 4φ| , (4)

for φ > 4, where φ = c1 + c2, and κ = 1. Different configurations of χ, as well as
a thorough theoretical analysis of the derivation of (4), can be found in [19,22].
On the other hand, experimental results suggest that it is preferable to initialize
the inertia weight w to a large value, giving priority to global exploration of the
search space, and gradually decrease it, so as to obtain refined solutions [20,21].
This finding is intuitively very appealing. In conclusion, an initial value of w
around 1.0 and a gradual decline towards 0 is considered a proper choice for w.

Regarding the social and cognitive parameter, although the default values
c1 = c2 = 2 have been proposed and usually used, experimental results indicate
that alternative configurations, depending on the problem at hand, may produce
superior performance [17,19,23]. The initialization of the swarm and the veloci-
ties, is usually performed randomly and uniformly in the search space, although
more sophisticated initialization techniques can enhance the overall performance
of the algorithm [24].
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3 The Differential Evolution Algorithm

The Differential Evolution (DE) algorithm has been developed by Storn and
Price [25]. It utilizes N , D–dimensional vectors Xi = (xi1, xi2, . . . , xiD)�, i =
1, . . . , N , as a population for each iteration (generation), G, of the algorithm.
The initial population is taken to be uniformly distributed in the search space.
At each generation, the mutation and crossover (recombination) operators are
applied on the individuals, and a new population arises. Then, the selection phase
starts, where the two populations compete each other, and the next generation
is formed [25].

According to the mutation operator, for each vector Xi(G), i = 1, . . . , N ,
a mutant vector , Vi(G + 1) = (vi1, vi2, . . . , viD)�, is determined through the
equation:

Vi(G + 1) = Xr1(G) + F (Xr2(G) − Xr3(G)) , (5)

where r1, r2, r3 ∈ {1, . . . , N}, are mutually different random indexes, and,
F ∈ (0, 2]. The indexes r1, r2, r3, also need to differ from the current index, i.
Consequently, N must be greater than or equal to 4, in order to apply mutation.

Following the mutation phase, the crossover operator is applied on the po-
pulation. Thus, a trial vector , Ui(G + 1) = (ui1, ui2, . . . , uiD)�, is generated,
where,

uij =
{

vij , if (randb(j) � CR) or j = rnbr(i),
xij , if (randb(j) > CR) and j �= rnbr(i), (6)

where, j = 1, 2, . . . , D; randb(j), is the j–th evaluation of a uniform random
number generator in the range [0, 1]; CR is the (user specified) crossover con-
stant in the range [0, 1]; and, rnbr(i) is a randomly chosen index from the set
{1, 2, . . . , D}.

To decide whether or not the vector Ui(G + 1) should be a member of the
population comprising the next generation, it is compared to the initial vector
Xi(G). Thus,

Xi(G + 1) =
{

Ui(G + 1), if f (Ui(G + 1)) < f (Xi(G)) ,
Xi(G), otherwise.

The procedure described above is considered as the standard variant of the
DE algorithm. Different mutation and crossover operators have been applied
with promising results [25]. In order to describe the different variants, the scheme
DE/x/y/z, is used, where x specifies the mutated vector (“rand” for randomly
selected individual or “best” for selection of the best individual); y is the number
of difference vectors used; and, z denotes the crossover scheme (the scheme de-
scribed here is due to independent binomial experiments, and thus, it is denoted
as “bin”) [25]. According to this description scheme, the DE variant described
above is denoted as DE/rand/1/bin. One highly beneficial scheme that deserves
special attention is the DE/best/2/bin scheme, where,

Vi(G + 1) = Xbest(G) + F (Xr1(G) + Xr2(G) − Xr3(G) − Xr4(G)) . (7)
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The usage of two difference vectors seems to improve the diversity of the popu-
lation, if N is high enough. A parallel implementation of DE is reported in [26].

4 A Fuzzy Cognitive Map Model for Supervision of the
Radiation Therapy Process

Fuzzy Cognitive Maps (FCMs) have been introduced by Kosko [27] to describe
a cognitive map model with the following characteristics:

1. Causal relationships between nodes are fuzzified, i.e. instead of using only
signs to indicate positive or negative causality, a number is associated with
each relationship to express the degree of causality between two concepts.

2. The system is dynamic and has feedback, i.e. the effect of change in a concept
node also affects other nodes, which in turn can affect the node initiating the
change. The presence of feedback introduces temporality to the operation of
FCMs.

The concepts reflect attributes, characteristics, and qualities of the system. The
interconnections among the concepts signify the cause and effect relationships
among the concepts. Let us denote by Ci, i = 1, . . . , M , the nodes–concepts of an
FCM. Each concept represents one of the key–factors of the system, and it takes
a value Ai ∈ [0, 1], i = 1, . . . , M . Each interconnection between two concepts
Ci and Cj , has a weight wij ∈ [−1, 1], which is analogous to the strength of the
causal link between Ci and Cj . The sign of wij indicates whether the relation
between the two concepts is direct or inverse. There are three types of causal
relationships among concepts: positive causality (wij > 0), negative causality
(wij < 0), and no relation (wij = 0). So the FCM provides qualitative as well as
quantitative information regarding the relationships among concepts [11].

In general, the value of each concept is calculated by aggregating the influence
of the other concepts to the specific one [10], by applying the following rule:

A
(t)
i = f


A

(t−1)
i +

M∑
j=1
j �=i

wjiA
(t)
j


 , (8)

where A
(t)
i is the value of Ci at time t, and f is a sigmoid threshold function.

The methodology for developing FCMs primarily draws on a group of experts
who are asked to define the concepts and describe the relationships among them.
IF–THEN rules are used to describe the cause and effect relationships among the
concepts, and infer a linguistic weight for each interconnection [10]. Each expert
describes independently every interconnection with a fuzzy rule; the inference of
the rule is a linguistic variable, which describes the relationship and determines
the grade of causality between the corresponding concepts. Subsequently, the
inferred fuzzy weights suggested by the experts, are aggregated to a single lin-
guistic weight, which is transformed to a numerical weight, wij ∈ [−1, 1], using
the Center of Area (CoA) defuzzification method [13]. This weight represents
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the aggregated suggestion of the whole experts’ group. Thus, an initial weight
matrix, W initial = [wij ], with wii = 0, i = 1, . . . , M , is obtained. Using the
initial concept values, Ai, which are also provided by the experts, the matrix
W initial is used for the determination of the steady state of the FCM, through
the application of the rule defined in (8).

The most significant weaknesses of FCMs are the critical dependence on
the experts’ opinions, and the potential convergence to undesired steady states.
Learning procedures constitute means to increase the efficiency and robustness
of FCMs, by updating the weight matrix so as to avoid convergence to undesired
steady states. The desired steady state is characterized by values of the FCM’s
output concepts that are accepted by the experts [14].

Radiation therapy is a complex process involving a large number of treatment
variables. The objective of radiotherapy is to deliver the highest radiation dose to
the smallest possible volume that encloses the tumor, while retaining at a mini-
mum the exposure of healthy tissues and critical organs to radiation. Treatment
planning is another complex process that takes place before the final treatment
execution. The performance criteria for this process include the maximization
of the final dose received by the target volume (tumor), the maximization of
the dose derived from the treatment planning within the target region, and dose
minimization for the surrounding critical organs and normal tissues. To achieve
these goals, several factors need to be taken into consideration [12,13].

In [12], an FCM with 33 concepts (factor–concepts, selector–concepts and
output–concepts) has been developed, to model the aforementioned treatment
planning and determine the dose distribution for the target volume, the healthy
tissues and the critical organs. A different, more abstract FCM model is needed
to supervise the whole radiotherapy process. This model must consist of more
abstract concepts that represent the final parameters before the treatment execu-
tion, simulating, thus, the doctor’s decision–making. In the proposed model [12],
the supervision process is modeled with another FCM (supervisor–FCM) that
models, monitors, and evaluates the whole process of radiation therapy. The
supervisor–FCM is based on the knowledge of experts that supervise the actual
process, and it consists of the following six concepts:

1. C1–Tumor localization: It depends on the patient’s contour, sensitive critical
organs and tumor volume. It embodies the values and influences among these
factor–concepts.

2. C2–Dose prescribed from the treatment planning : This concept describes the
prescribed dose and it depends on the concepts of the delivered dose to the
target volume, normal tissues and critical organs, which are determined by
the treatment planning model of the first level’s FCM.

3. C3–Machine factors: This concept describes the equipment characteristics.
4. C4–Human factors: This is a general concept describing the experience and

knowledge of the medical staff.
5. C5–Patient positioning and immobilization: This concept describes the coo-

peration of the patient with the doctors and his willingness to follow their
instructions.
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6. C6–Final dose received by the target volume: A measurement of the radiation
dose received by the target tumor.

The supervisor–FCM has been developed following the methodology described
previously in this section. Three oncologists were independently asked to describe
the relationships among the concepts C1, . . . , C6, using IF–THEN rules, and
infer a linguistic weight for each interconnection [28]. The degree of influence is
represented by a member of the fuzzy set,

{
positive very high, positive high, positive medium, positive weak,

zero, negative weak, negative medium, negative low, negative very low
}
.

The following connections among the concepts of the supervisor–FCM were sug-
gested:

1. Linkage 1 : Connects C1 with C6. It relates the tumor localization with the
delivered final dose.

2. Linkage 2 : Relates C2 with C1; when the dose derived from treatment plan-
ning is high, the value of tumor localization increases by a small amount.

3. Linkage 3 : Connects C2 with C6; when the dose from treatment planning is
high, the final dose given to the patient will be also high.

4. Linkage 4 : Relates C3 with C2; when the machine parameters increase, the
dose from treatment planning decreases.

5. Linkage 5 : Connects C3 with C6; any change to machine parameters influ-
ences negatively the final dose given to the target volume.

6. Linkage 6 : Relates C4 with C6; the human factors cause decrease in the final
dose.

7. Linkage 7 : Connects C4 with C5; the presence of human factors causes a
decrease in the patient’s positioning.

8. Linkage 8 : Relates C5 with C4; any change on the patient positioning influ-
ences negatively the factors related to humans.

9. Linkage 9 : Connects C5 with C6; when the patient positioning increases, the
final dose also increases.

10. Linkage 10 : Connects C6 with C5; when the final dose reaches an upper
value, the patient positioning is influenced positively.

11. Linkage 11 : Connects C6 with C1; any change in final dose causes change in
tumor localization.

12. Linkage 12 : Connects C6 with C2; when the final dose increases to an ac-
ceptable value, the dose from treatment planning also increases to a desired
value.

After the determination of the linkages among concepts, experts suggested fuzzy
values for the weights of the linkages. The fuzzy values were defuzzified and
transformed in numerical weights, resulting in the following weight matrix:

W supervisor =




0.00 0.00 0.00 0.00 0.00 0.43
0.28 0.00 0.00 0.00 0.00 0.57
0.00 −0.30 0.00 0.00 0.00 −0.39
0.00 0.00 0.00 0.00 −0.32 −0.43
0.00 0.00 0.00 −0.37 0.00 0.68
0.22 0.67 0.00 0.00 0.54 0.00




.
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Fig. 1. The supervisor–FCM.

The final obtained supervisor–FCM is illustrated in Fig. 1.
The control objectives for the supervisor–FCM are to keep the amount of

the final dose, FD , which is delivered to the patient, as well as the dose, D,
prescribed by the treatment planning, within prespecified ranges:

FDmin � FD � FDmax, (9)
Dmin � D � Dmax. (10)

These objectives are defined by the related AAPM and ICRP protocols [1,10,
11], for the determination of accepted dose levels for each organ and part of the
human body. The supervisor–FCM evaluates the success or failure of the treat-
ment by monitoring the value of the “Final Dose” concept. Successful treatment
corresponds to values of the final dose that lie within the desired bounds. The
value of final dose identifies the supervisor model [29]. The supervisor–FCM has
been incorporated to an integrated two–level hierarchical decision making system
for the description and determination of the specific treatment outcome and for
scheduling the treatment process before its treatment execution [12]. Thus, op-
timizing the supervisor–FCM, i.e. detecting the weights that correspond to the
maximum values of the concepts FD and D, within their prespecified ranges,
results in an enhanced control system which models the radiotherapy procedure
more accurately and makes decision–making more reliable.

5 The Proposed Approach and Results

It has already been mentioned that the optimization of the supervisor–FCM de-
scribed in Section 4, enhances the simulation ability of the system, resulting in
more reliable decision–making. For this purpose, the PSO and DE algorithms
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have been used for the optimization of the supervisor–FCM, through the mini-
mization of an appropriate objective function. The selection of these algorithms
was based solely on their superior performance on a diverse field of applications,
as well as due to the minimum effort required for their implementation.

The objective function can be straightforwardly defined as:

f(W ) = −FD(W ) − D(W ), (11)

where FD(W ) and D(W ) are the values of the final dose and the dose prescribed
from the treatment planning, respectively, that correspond to the weight matrix
W . The minus signs are used to transform the maximization problem to its
equivalent minimization problem. Thus, the main optimization problem under
consideration is the minimization of the objective function f , such that the
constraints (9) and (10) hold.

The weight matrix W can, in general, be represented by a vector which
consists of the rows of W in turn, excluding the elements of its main diagonal,
w11, w22, . . . , wMM , which are by definition equal to zero. In the supervisor–
FCM, the experts determined only 12 linkages, as described in Section 4, and
thus, the corresponding minimization problem is 12–dimensional. Moreover, the
bounds determined for the parameters FD and D, have been determined by the
three radiotherapy oncologists (experts) in the following ranges:

0.90 � FD � 0.95, (12)
0.80 � D � 0.95. (13)

Taking into consideration the fuzzy linguistic variables that describe the cause–
effect relationships among the concepts, as they were suggested by the three
experts, the following ranges for the weight values were determined:

0.3 � w16 � 0.5, −0.4 � w36 � −0.1, 0.5 � w56 � 0.8,
0.2 � w21 � 0.4, −0.5 � w45 � −0.2, 0.2 � w61 � 0.4,
0.5 � w26 � 0.7, −0.5 � w46 � −0.2, 0.6 � w62 � 0.9,

−0.4 � w32 � −0.2, −0.6 � w54 � −0.1, 0.5 � w65 � 0.9.

(14)

These ranges were incorporated as constraints on the parameter vector in the
experiments conducted.

The two most common variants of PSO and DE were used in the experiments.
Specifically, the local versions of both the constriction factor and the inertia
weight PSO variant, as well as the DE/rand/1/bin and DE/best/2/bin DE va-
riants were used. Default values of the PSO parameters were used: χ = 0.729,
c1 = c2 = 2.05, and w decreasing from 1.2 to 0.1 [19,22]. Regarding the DE
parameters, the values F = 0.5 and CR = 0.5 were selected after a trial and
error process. The swarm (or population) size was always equal to 50. For each
algorithm variant, 100 independent experiments were performed, to enforce the
reliability of the results. Each algorithm was allowed to perform 1000 iterations
(generations) per experiment.
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The same solution was obtained by all algorithms in every experiment:

W ∗ =




0.0 0.0 0.0 0.0 0.0 0.5
0.4 0.0 0.0 0.0 0.0 0.7
0.0 −0.2 0.0 0.0 0.0 −0.1
0.0 0.0 0.0 0.0 −0.2 −0.2
0.0 0.0 0.0 −0.6 0.0 0.8
0.4 0.9 0.0 0.0 0.9 0.0




,

which corresponds to the following final state of the concepts after the conver-
gence of the FCM:

C∗
1 = 0.819643, C∗

2 = 0.819398, C∗
3 = 0.659046,

C∗
4 = 0.501709, C∗

5 = 0.824788, C∗
6 = 0.916315.

Obviously, the values of C2 and C6 lie within the desired regions defined by the
relations (12) and (13), while the weights fulfill the constraints (14) posed by
the experts. This result supports the claim that the obtained solution seems to
be the true optimal solution.

An interesting remark is the high positive influence of the concept C6 (final
dose) to the concept C2 (dose prescribed from the treatment planning) as well as
to the concept C5 (patient positioning). This means that if we succeed to deliver
the maximum dose to the target volume, then the initial calculated dose from
treatment planning is the desired and the same happens with patient positioning.
Another interesting fact is that the estimated weights assume their optimum
values at the edges of the suggested fuzzy sets. This behavior has been also
identified by other researchers [30,31].

The optimal values of “Final Dose” and “Dose Prescribed from the Treatment
Planning” are acceptable according to the ICRU protocols [32,33], optimizing the
whole treatment process. This supports the claim that the proposed approach is
efficient and useful for the FCM–controlled radiation therapy process.

6 Conclusions

A Fuzzy Cognitive Map model, which supervises and monitors the radiotherapy
process, resulting in a sophisticated decision support system, is optimized using
the Particle Swarm Optimization and the Differential Evolution algorithms. The
objective of the radiation treatment procedure is to give the acceptable–optimum
amount of delivered dose to the target volume. The proposed methods determine
the cause–effect relationships among concepts, determining the optimal weight
matrix for the supervisor–FCM model.

Extensive experiments were performed, using different variants of the two
stochastic optimization algorithms, always resulting in the same solution, which
satisfies all optimality criteria and constraints imposed by the experts. This nu-
merical evidence supports the claim that the obtained solution can be considered
as an optimal by the user. The results contribute towards the direction of more
reliable decision support system for radiation therapy.
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Future work will focus on the optimization of the generic hierarchical system
in all levels of radiation therapy, taking also into consideration the treatment
planning (low–level) model of the system.
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