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Abstract- The existence of roots of functions is a topic
of major significance in Nonlinear Analysis, and it is di-
rectly related to the problem of detection of extrema of a
function. The topological degree of a function is a math-
ematical tool of great importance for investigating the
existence and the number of roots of a function with cer-
tainty. For the computation of the topological degree ac-
cording to Stenger’s theorem, a sufficient refinement of
the boundary of the polyhedron under consideration is
needed. The sufficient refinement can be computed us-
ing the optimal complexity algorithm of Boult and Siko-
rski. However, the application of this algorithm requires
the computation of the infinity norm on the boundary of
the polyhedron under consideration as well as an esti-
mation of the Lipschitz constant of the function. In this
paper a new technique for the computation of the infin-
ity norm on the polyhedron’s boundary as well as for the
estimation of the Lipschitz constant is introduced. The
proposed approach is illustrated on several test prob-
lems and the results are reported and discussed.

1 Introduction

Topological degreeis a concept of great importance in Non-
linear Analysis, because, under certain conditions, its value,
computed on an open and bounded regionD, is equal to
the number of zeros of a function within the interior ofD.
This information can be exploited for the computation of all
roots of the function withinD with certainty, by computing
sequences of domains with nonzero degree and decreasing
diameter, that contain at least one zero of the function. A
sufficient refinement of the boundary of the considered re-
gion is a prerequisite for the computation of the topological
degree using the well known methods of Stenger [40] and
Kearfott [14]. Consider the classF of Lipschitz functions
with constantK, defined on the unit cubeC,

f : C → Rn,

such that for everyf ∈ F we have

‖f(x)‖∞ > δ > 0, ∀x ∈ ϑC,
where ϑC is the boundary ofC. Then the following
holds [39, p. 211]:

(a) if K/(8δ) > 1, then the function may have zeros in
C;

(b) the case1 6 K/(2δ) < 4 is still an open problem;

(c) if K/(2δ) < 1, then the function does not have any
zeros inC.

A worst–case lower bound,

m∗ ' 2n

⌊
K

8δ

⌋n−1

,

on the number of function evaluations required to compute
the topological degree of any function in the classF , has
also been established [39].

In numerous cases the parametersδ andK are not a pri-
ori known. Usually, an underestimation ofδ and an overes-
timation ofK are sufficient for the computation of the topo-
logical degree, but the computation of these estimations is a
hard task and in cases where this is possible, it is performed
analytically.

In this paper, a new approach based on the Particle
Swarm Optimization (PSO) algorithm is proposed. Specifi-
cally, PSO is employed to compute efficiently the parameter
δ and an estimation of the Lipschitz constant,K. Then, by
applying Boult and Sikorski’s algorithm, a sufficient refine-
ment of the boundary, which is required for the application
of Stenger’s theorem to compute the topological degree, is
obtained.

PSO is a population–based stochastic optimization
method, that requires function values solely. Thus, there
is no need for derivatives or for analytic representation of
the functions. The selection of PSO was based on its ability
on solving efficiently a plethora of problems in science and
engineering [2, 3, 8, 13, 18, 19, 20, 22, 25, 26, 30, 31, 32,
35, 36, 44].

Although the2–dimensional case is mainly considered
in this article, a generalization to higher dimensional prob-
lems is straightforward. The rest of the paper is organized
as follows: in Section 2 some main concepts of the topo-
logical degree theory are briefly described and analyzed. In
Section 3 the PSO algorithm is described and in Section 4
experimental results are reported. The paper concludes with
Section 5.



2 Main Concepts of Topological Degree The-
ory

Numerous problems in different areas of science and tech-
nology can be reduced to the study of a set of solutions of
an equation of the formF (x) = p, within an appropriate
space. Topological degree theory has been developed as
means of examining this solution set and obtaining infor-
mation on the existence of solutions, their number and their
nature. Degree theory is widely used in the study of nonlin-
ear differential (ordinary and partial) equations. It is useful,
for example, in bifurcation theory and in providing informa-
tion about the existence and stability of periodic solutions of
ordinary differential equations, as well as, the existence of
solutions of certain partial differential equations. Several
of these applications involve the use of various fixed point
theorems which can be provided by means of topological
degree [21, 47, 48, 49, 51].

Let the function

Fn = (f1, f2, . . . , fn) : Dn ⊂ Rn → Rn,

be twice continuously differentiable on the closure of an
open and bounded domainDn of the n–dimensional Eu-
clidean spaceRn, with boundaryϑDn. Suppose further that
the solutions of the equation

Fn(x) = p, p ∈ Rn,

wherep is a given vector, are not located onϑDn, and that
they are simple, i.e., the determinant,det JFn , of the Jaco-
bian matrix ofFn at these solutions is non–zero.

Definition 2.1 The topological degree ofFn at p relative
toDn is denoted bydeg[Fn,Dn, p] and it is defined by the
equation

deg[Fn,Dn, p] =
∑

x∈F−1
n (p)∩Dn

sgn
(
detJFn

(x)
)
, (1)

wheresgn(ψ) defines the well known three valued sign func-
tion:

sgn(ψ) =




−1, if ψ < 0,

0, if ψ = 0,
1, if ψ > 0.

(2)

The topological degree is invariant under changes of the
vectorp in the sense that, ifq ∈ Rn is any vector, then it
holds that [24, p.157]:

deg[Fn,Dn, p] ≡ deg[Fn − q,Dn, p− q],

whereFn − q denotes the mappingFn(x) − q, x ∈ Dn.
Thus, for simplicity, we consider the case where the topo-
logical degree is defined at the originΘn = (0, . . . , 0) in
Rn.

The topological degreedeg[Fn,Dn, Θn] can be repre-
sented by the Kronecker integral which is defined as fol-
lows:

deg[Fn,Dn, Θn] =

Γ(n/2)
2πn/2

∫ ∫

ϑDn

· · ·
∫ ∑n

i=1 Aidx1 . . . dxi−1dxi+1 . . . dxn(
f1

2 + f2
2 + · · ·+ fn

2
)n/2

,

(3)
whereAi is defined by

Ai = (−1)n(i−1) det
h
Fn

∂Fn

∂x1
· · · ∂Fn

∂xi−1

∂Fn

∂xi+1
· · · ∂Fn

∂xn

i
,

(4)
where,

∂Fn

∂xk
=

(
∂f1

∂xk
,
∂f2

∂xk
, . . . ,

∂fn

∂xk

)
,

is thek–th column of the determinantdetJFn
of the Jaco-

bian matrixJFn
.

Sincedeg[Fn,Dn, Θn] is equal to the number of zeros of
Fn(x) = Θn that give positive determinant of the Jacobian
matrix minus the number of zeros that give negative deter-
minant of the Jacobian matrix, the total numberN r of zeros
of Fn(x) = Θn can be obtained by the value ofdeg[Fn,Dn,
Θn] if all these zeros have the same sign of the determinant
of the Jacobian matrix. Note that, by assumption, all the ze-
ros ofFn(x) = Θn are simple. To this end, Picard [33, 34]
considered the following extension of the functionFn and
the domainDn:

Fn+1 = (f1, . . . , fn, fn+1) : Dn+1 ⊂ Rn+1 → Rn+1,
(5)

wherefn+1 = y det JFn , andDn+1 is the direct product of
the domainDn with an arbitrary interval of the realy–axis
containing the pointy = 0. Then the zeros of the following
system of equations:





f1(x1, x2, . . . , xn) = 0,
...

...
fn(x1, x2, . . . , xn) = 0,
y det JFn(x1, x2, . . . , xn) = 0,

(6)

are the same as the zeros ofFn(x) = Θn provided thaty =
0. On the other hand, it is easily seen that the determinant
of the Jacobian matrix of Eq. (6) is equal to[det JFn(x)]2

which is always nonnegative (positive at the simple zeros).
Thus we may conclude the following:

Theorem 2.1 [33, 34]. The total numberN r of zeros of
Fn(x) = Θn is given by

N r = deg[Fn+1,Dn+1,Θn+1], (7)

under the hypotheses thatFn is twice continuously differen-
tiable and that all the zeros are simple and lie in the strict
interior ofDn+1.

For the case of complex zeros the following theorem
states that the total number of complex zeros can be ob-
tained by the value of the topological degree without Pi-
card’s extension:

Theorem 2.2 [52]. LetD2 ⊂ C be an open bounded region
and letf : D2 → C be analytic. Suppose thatf has no
roots onϑD2 and assume that all roots off that lie inD2



are simple. Then the total numberN r of roots off is equal
to deg[F2,D2,Θ2], where

F2(x1, x2) = (f1(x1, x2), f2(x1, x2)) =

=
(
<(f(x1 + ix2)),=(f(x1 + ix2))

)
, (8)

and<(z), =(z), are the real and the imaginary part ofz ∈
C, respectively.

Since Stenger’s remarkable and pioneering work [40],
many approaches have been developed and studied to com-
pute the topological degree of a function (see e.g., [1, 5, 6,
14, 15, 41, 42, 43, 50, 52, 53]). Stenger’s method expresses
the topological degree of a continuous mapping

Fn = (f1, . . . , fn) : Dn ⊂ Rn → Rn,

defined on a bounded domainDn in Rn as a constant times
a sum of determinants of variousn× n matrices. The value
of the topological degree gives information about the exis-
tence of a solution of the equationFn(x) = Θn within Dn.
In particular, Kronecker’s theorem [24] states that the equa-
tion Fn(x) = Θn has at least one zero inDn if the degree is
not zero relative toDn. Although, the value of the topologi-
cal degree gives qualitative information about the existence
of solutions, it does not give quantitative information about
the solution values. On the other hand, using the nonzero
value of topological degree we are able to obtain upper and
lower bounds for solution values. To this end, by comput-
ing a sequence of bounded domains with nonzero value of
topological degree and decreasing diameter, we are able to
obtain a region with arbitrarily small diameter that contains
at least one solution of the equation [46, 48].

The accurate computation of the topological degree of a
mappingFn at Θn relative to the bounded domainDn us-
ing Stenger’s, or other related methods [14, 41, 42], is heav-
ily based on suitable assumptions, including the appropriate
representation of the oriented boundary ofDn. In partic-
ular, if the boundary ofDn can be subdivided in a certain
way (“sufficiently refined”) then Stenger’s method gives the
exact value of topological degree. Otherwise, heuristic ter-
mination criteria have to be used and therefore one cannot
be sure that the value of the topological degree is given cor-
rectly.

Definition 2.2 [14, 40, 43]Let Π n be ann–polyhedron.
Suppose that

Fn = (f1, f2, . . . , fn) : Π n ⊂ Rn → Rn,

is continuous withΘn /∈ Fn(ϑΠ n). If n = 1, ϑΠ 1 is said
to besufficiently refined relative tosgn F1, if 0 /∈ F1(ϑΠ 1).
If n > 1, ϑΠ n is said to besufficiently refined relative to
sgnFn, if ϑΠ n has been subdivided so that it may be writ-
ten as a union of a finite number of(n−1)–dimensional re-
gions,Qn−1

1 , Qn−1
2 , . . . , Qn−1

m , each consisting of a union
of a finite number of(n − 1)–simplices with pairwise dis-
joint (n−1)–dimensional interiors and having the following
properties:

(a) the interiors of theQn−1
i are pairwise disjoint and

eachQn−1
i is connected;

(b) for each regionQn−1
i , there exists at least one com-

ponent ofFn, (for examplefri
), that does not vanish

on it;

(c) if fri
6= 0 onQn−1

i , thenϑQn−1
i is sufficiently refined

relative tosgnFri where:

F ri
n−1 = (f1, f2, . . . , fri−1, fri+1, . . . , fn).

Next we will concentrate on the2–dimensional case.
This case is also very interesting since using the Picard’s ap-
proach we are able to compute the exact number of roots of
1–dimensional functions in a given interval, by computing
the topological degree inR2 on a Picard’s extension [9, 10].
Furthermore, as we have already mentioned, the exact num-
ber of complex zeros within a specific region can be ob-
tained by the value of the topological degree inR2 [52].
Thus, we can state the following:

Definition 2.3 A segment[pi, pj ] is defined to be aclosed
counterclockwise oriented portionof ϑD2 with endpoints
pi and pj and interior (pi, pj). A partition P of ϑD2 is
either the empty set or a set{pi}g

i=1 of counterclockwise
ordered points fromϑD2 such that

ϑD2 =
g∑

i=1

[pi, pi+1], pg+1 = p1. (9)

Lemma 2.1 [23]. A nonempty partitionP forms a suffi-
cient refinement of the boundaryϑD2 relative to the sign of
a functionF2 = (f1, f2) if and only if

(pi, pi+1) ∩ (pj , pj+1) = ∅, ∀i 6= j,

and on each[pi, pi+1], there exists a component ofF2, say
fj , that is of constant sign (i.e.,6= 0) on [pi, pi+1], and the
remaining component ofF2 is nonzero atpi andpi+1.

Stenger [40] proved that, given a sufficient refinement
of the boundaryϑD2 of D2, the topological degree can be
computed as:

deg[F2,D2,Θ2] =

1
4

g∑

i=1

(−1)ji−1 deg [fji+1, [pi, pi+1], 0]× signfji(pi),

(10)
whereji is the index of the component ofF2 = (f1, f2) that
has constant sign on[pi, pi+1], f3 = f1,

deg[fj , [pi, pi+1], 0] = {signfj(pi+1)− signfj(pi)}/2,

and

signfj(pi) =
{

1, if fj(pi) > 0,
−1, if fj(pi) < 0.

Boult and Sikorski proposed an optimal complexity al-
gorithm, in their paper [6], for computing with certainty the
topological degree for any function from a classF . For the
2–dimensional case, this class consists of functions

F2 = (f1, f2) : B → R2,



defined on the unit squareB, which satisfy the Lipschitz
condition with constantK > 0 and whose infinity norm
along the boundary ofB is at leastδ > 0. Then the follow-
ing holds [39, p.194]:

(a) if K/(4δ) > 1, then the function may have zeros in
B;

(b) the case0.5 6 K/(4δ) < 1 is still an open problem;

(c) if K/(4δ) < 0.5, then the function does not have any
zeros.

They also established a worst–case lower bound,

m∗ = 4
⌊

K

4δ

⌋
,

on the number of function evaluations required to compute
the topological degree of any function in the classF , using
Stenger’s method [40].

If the value of the Lipschitz constantK with respect
to D2 and the infinity normδ of F2 along the boundary
of D2 are known and we choose equally spaced points on
the boundary ofD2 separated by a distance1/bK/(4δ)c,
in the infinity norm, then Boult and Sikorski have shown
that we are able to evaluate the topological degree with cer-
tainty using Stenger’s method [6]. This is so because, in this
case, a sufficient refinement is obtained. Thus, the values of
main interest that have to be computed, are

δ = min
x∈ϑD2

‖F2(x)‖∞, (11)

and

K = max
x6=y

x,y∈D2

‖F2(x)− F2(y)‖∞
‖x− y‖∞ . (12)

Notice that the value ofδ is always positive since the topo-
logical degree is not defined in the case where a solution of
the equationF2(x) = Θ2 lies on the boundary ofD2. This
is also true in the Boult and Sikorski approach, since in this
case the value ofδ is zero and an infinite number of points
has to be considered.

In general, the computation ofδ andK is a hard task.
In the present work, PSO has been employed to computeδ
of F2 along the boundary ofD2, through subsequent mini-
mizations on each side of the rectangle under consideration.
Then, the smallest value obtained is considered as the value
of δ. Moreover,K is estimated by repeatedly computing,
through PSO, the maximum of the fraction of Eq. (12) onx,
keepingy fixed, for an arbitrary large number of different
y ∈ D2.

3 The Particle Swarm Optimization algorithm

Particle Swarm Optimization (PSO) is a stochastic opti-
mization algorithm. More specifically, it belongs to the
class ofSwarm Intelligencealgorithms, which are inspired
from the social dynamics and emergent behavior that arise
in socially organized colonies [4, 17, 18, 31]. The ideas that
underlie PSO are not inspired by the evolutionary mech-
anisms encountered in natural selection, but rather by the

social dynamics of flocking organisms, such as swarms and
fish schools, which are governed by fundamental rules like
nearest–neighbor velocity matching and acceleration by dis-
tance [18].

PSO is a population based algorithm, i.e., it exploits a
population of individuals to probe promising regions of the
search space. In this context, the population is calledswarm
and the individuals (i.e., the search points) are calledparti-
cles. Each particle moves with an adaptable velocity within
the search space, and retains a memory of the best posi-
tion it ever encountered. In theglobal variant of PSO, the
best position ever attained by all individuals of the swarm
is communicated to all the particles. In thelocal variant,
each particle is assigned to a topological neighborhood con-
sisting of a prespecified number of particles. In this case,
the best position ever attained by the particles that comprise
the neighborhood is communicated among them [12, 18].
A thorough investigation of the convergence properties of
PSO can be found in [7, 45].

Assume ann–dimensional search space,S ⊂ Rn, and a
swarm consisting ofN particles. Thei–th particle is in ef-
fect ann–dimensional vectorXi = (xi1, xi2, . . . , xin)> ∈
S. The velocity of this particle is also aD–dimensional
vector,Vi = (vi1, vi2, . . . , vin)> ∈ S. The best previous
position encountered by thei–th particle is a point inS, de-
noted byPi = (pi1, pi2, . . . , pin)> ∈ S. Assumegi to be
the index of the particle that attained the best previous posi-
tion among all the particles in the neighborhood of thei–th
particle, andt to be the iteration counter. Then, the swarm
is manipulated by the equations [7, 11, 37, 38]:

Vi(t + 1) = χ
[
wVi(t) + c1 r1

(
Pi(t)−Xi(t)

)
+

+ c2 r2

(
Pgi(t)−Xi(t)

)]
, (13)

Xi(t + 1) = Xi(t) + Vi(t + 1), (14)

wherei = 1, . . . , N ; c1 andc2 are two parameters called
cognitiveandsocialparameters respectively;r1, r2, are ran-
dom numbers uniformly distributed within[0, 1]; andgi is
the index of the particle that attained either the best position
of the whole swarm (global version), or the best position in
the neighborhood of thei–th particle (local version). The
parametersχ andw are calledconstriction factorand in-
ertia weightrespectively, and they are used independently
as mechanisms for the control of the velocity’s magnitude,
corresponding to two different PSO versions.

The value of the constriction factor is derived analyti-
cally [7, 45]. The inertia weight,w, is computed empiri-
cally, taking into account that it resolves the trade–off be-
tween the global (wide–ranging) and local (nearby) explo-
ration ability of the swarm. A large inertia weight encour-
ages global exploration (moving to previously not encoun-
tered areas of the search space), while a small one promotes
local exploration, i.e., fine–tuning the current search area. A
suitable value forw provides the desired balance between
the global and local exploration ability of the swarm, and
consequently improves the effectiveness of the algorithm.
Experimental results suggest that it is preferable to initialize
the inertia weight to a large value, giving priority to global
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Figure 1: The domain over which the topological degree is
computed. The sidesS1, . . . , S4, are considered counter-
clockwise.

exploration of the search space, and gradually decrease it,
so as to obtain refined solutions [37, 38]. This finding is
intuitively very appealing. In conclusion, an initial value of
w around1 and a gradual decline towards0 is considered a
proper choice forw.

In general, the constriction factor version of PSO is faster
than the one with the inertia weight, although in some ap-
plications its global variant suffers from premature conver-
gence. Proper fine–tuning of the parametersc1 and c2,
results in faster convergence and alleviation of local min-
ima [16]. As default values,c1 = c2 = 2 have been pro-
posed, but experimental results indicate that alternative con-
figurations, depending on the problem at hand, can produce
superior performance [7, 27, 28, 31].

The initialization of the swarm and the velocities, is usu-
ally performed randomly and uniformly in the search space,
although more sophisticated initialization techniques can
enhance the overall performance of the algorithm [29].

4 Experimental results

In this section, the operation of the proposed technique on
different test problems, is illustrated. The global version of
the constriction factor PSO variant has been used. The pa-
rameters for each test problem were fixed: the size of the
swarm was set equal to10, the maximum number of iter-
ations was200, and the accuracy for detecting a peak was
10−4. Moreover, the default valuesχ = 0.729, c1 = c2 =
2.05 were used [7]. The particles have been constrained in
the corresponding region for each test problem. For the esti-
mation of the Lipschitz constantK, a sample of2000 points
has been used. The minimum of the infinity norm, (i.e., the
value ofδ), the estimation of the Lipschitz constant,Kest, as
well as the actual value of the Lipschitz constant,Kactual,
for each test problem are reported in Table 1. The sides of
the search space are taken counterclockwise as illustrated in
Fig. 1.
TEST PROBLEM 1 [39]. This test problem is defined by

F1 =
{

x2
1 − 4x2 = 0,

x2
2 − 2x1 + 4x2 = 0,

(15)

Test Problem δ Kest Kactual

F1 0.4375 7.9568 8
F2 0.5 3.89 4
F3 0.8284 3.8174 4

Table 1: Experimental results.

−2 0 2
1

3

5

Figure 2: Plot of‖F1(x)‖∞ on the sideS1

over the domain[−2, 2]× [−0.25, 0.25], and it has one zero.
The minimum of the infinity norm on the boundary isδ =
0.4375, and the estimation ofK is 7.9568.

The plot of‖F1(x)‖∞ at each side of the region’s bound-
ary is illustrated in Figs. 2–5. The form of the func-
tion is quite simple, although, not differentiable, support-
ing the choice of PSO for the minimization of the infinity
norm. To ensure that the global minimizer will be found
in cases where a multitude of minimizers are involved in
the computation of the minimum of the infinity norm, tech-
niques likeDeflectionandStretchingcan be combined with
PSO [27, 28, 31].

TEST PROBLEM 2 [39]. This test problem is defined by

F2 =
{

x2
1 + x2

2 − 0.5 = 0,
2x1x2 − 0.5 = 0,

(16)

over[0, 1]× [0, 1], and it has one zero of multiplicity2. The
minimum of the infinity norm on the boundary isδ = 0.5,
and the estimation ofK is 3.89.

TEST PROBLEM 3 [39]. This test problem is defined by

F3 =
{

x2
1 − x2

2 = 0,
2x1x2 = 0,

(17)

over [−1, 1] × [−1, 1], and it has two zeros. The minimum
of the infinity norm on the boundary isδ = 0.8284, and the
estimation ofK is 3.8174.

PSO was able to detect accurately the minimum of the
infinity norm on the boundary of the corresponding region
for each test problem, as well as to provide an acceptable
estimation of the Lipschitz constant of the function.
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Figure 3: Plot of‖F1(x)‖∞ on the sideS2

−2 0 2
0

3
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Figure 4: Plot of‖F1(x)‖∞ on the sideS3

5 Conclusions

A technique for investigating the existence of function roots
has been introduced. This technique exploits the PSO algo-
rithm to compute the infinity norm on the boundary of the
region, as well as to estimate the Lipschitz constant of the
function under consideration. Then, a sufficient refinement
of the boundary is obtained by applying Boult and Siko-
rski’s algorithm, and finally, Stenger’s theorem is used to
compute the topological degree with certainty. In the case
of complex roots, the topological degree is equal to the total
number of the function’s zeros.

The technique has been illustrated on several test prob-
lems with satisfactory results. Further work will involve an
investigation of the theoretical properties and dynamics of
the proposed technique as well as applications in higher di-
mensional problems.
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