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Abstract- The existence of roots of functions is a topic ~ (b) the casd < K/(20) < 4 is still an open problem;
of major significance in Nonlinear Analysis, and it is di-
rectly related to the problem of detection of extrema of a
function. The topological degree of a function is a math-
ematical tool of great importance for invesFigating the A worst—case lower bound,

existence and the number of roots of a function with cer-

tainty. For the computation of the topological degree ac- n—1

cording to Stenger’s theorem, a sufficient refinement of m* =~ 2n {%J ’

the boundary of the polyhedron under consideration is

needed. The sufficient refinement can be computed us- on the number of function evaluations required to compute
ing the optimal complexity algorithm of Boult and Siko-  the topological degree of any function in the cléBshas

rski. However, the application of this algorithm requires  also been established [39].

the computation of the infinity norm on the boundary of In numerous cases the parametessid K are not a pri-

the polyhedron under consideration as well as an esti- ori known. Usually, an underestimation ®aind an overes-
mation of the Lipschitz constant of the function. In this  timation of K are sufficient for the computation of the topo-
paper a new technique for the computation of the infin- logical degree, but the computation of these estimations is a
ity norm on the polyhedron’s boundary as well as for the  hard task and in cases where this is possible, it is performed
estimation of the Lipschitz constant is introduced. The analytically.

(c) if K/(26) < 1, then the function does not have any
zeros inC.

proposed approach is illustrated on several test prob- In this paper, a new approach based on the Particle
lems and the results are reported and discussed. Swarm Optimization (PSO) algorithm is proposed. Specifi-

cally, PSO is employed to compute efficiently the parameter
1 Introduction 0 and an estimation of the Lipschitz constafit, Then, by

applying Boult and Sikorski's algorithm, a sufficient refine-
Topological degreés a concept of great importance in Non-ment of the boundary, which is required for the application
linear Analysis, because, under certain conditions, its valuef Stenger’s theorem to compute the topological degree, is
computed on an open and bounded redidnis equal to obtained.
the number of zeros of a function within the interior®f PSO is a population—based stochastic optimization
This information can be exploited for the computation of almethod, that requires function values solely. Thus, there
roots of the function withirD with certainty, by computing is no need for derivatives or for analytic representation of
sequences of domains with nonzero degree and decreasihg functions. The selection of PSO was based on its ability
diameter, that contain at least one zero of the function. An solving efficiently a plethora of problems in science and
sufficient refinement of the boundary of the considered reengineering [2, 3, 8, 13, 18, 19, 20, 22, 25, 26, 30, 31, 32,
gion is a prerequisite for the computation of the topologicad5, 36, 44].
degree using the well known methods of Stenger [40] and Although the2—dimensional case is mainly considered
Kearfott [14]. Consider the clasg of Lipschitz functions in this article, a generalization to higher dimensional prob-
with constanti’, defined on the unit cub@, lems is straightforward. The rest of the paper is organized
as follows: in Section 2 some main concepts of the topo-

fiC—=RY, logical degree theory are briefly described and analyzed. In
such that for every € F we have Section 3 the PSO algorithm is described and in Section 4
experimental results are reported. The paper concludes with

”f(I)Hoo >d6>0, Vrxedl, Section 5.

where ¢¥C is the boundary ofC. Then the following
holds [39, p. 211]:

(a) if K/(85) > 1, then the function may have zeros in
C;
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Numerous problems in different areas of science and teCh'hereA» is defined b (3
nology can be reduced to the study of a set of solutions of ' y

an equation of the forn#’(z) = p, within an appropriate , _ (—1)n6=D) dethF OF,  OF, 09F,  9F, !
space. Topological degree theory has been developed as " Oz1 Ori—1 OTit1 Oryn
means of examining this solution set and obtaining infor- 4)
mation on the existence of solutions, their number and theffhere.

nature. Degree theory is widely used in the study of nonlin- OFy - (8301, %7 o afn) ,

ear differential (ordinary and partial) equations. It is useful, Oz Ozg Oxk Iz

for example, in bifurcation theory and in providing informa-is the k—th column of the determinant Jr, of the Jaco-
tion about the existence and stability of periodic solutions dfian matrix.J, .

ordinary differential equations, as well as, the existence of Sincedeg[F,,, D,,, 6,,] is equal to the number of zeros of
solutions of certain partial differential equations. Severak,, (z) = 6, that give positive determinant of the Jacobian
of these applications involve the use of various fixed poinhatrix minus the number of zeros that give negative deter-
theorems which can be provided by means of topologicahinant of the Jacobian matrix, the total numWér of zeros

degree [21, 47, 48, 49, 51]. of F,,(z) = 6,, can be obtained by the valuedfg[F,,, D,,
Let the function 6,,] if all these zeros have the same sign of the determinant
_ of the Jacobian matrix. Note that, by assumption, all the ze-
Fo=(f1,f25-- s fn): D CR" = R", ros of F,,(z) = O, are simple. To this end, Picard [33, 34]

. . . ) considered the following extension of the functiéh and
be twice continuously differentiable on the closure of e domairD. -

open and bounded domai®,, of the n—dimensional Eu-
clidean spac®™, with boundary}D,,. Suppose further that o1 =(f1,- o fas fas1): Dns1 C R ROHL
the solutions of the equation (5)

wheref, 11 =y det Jg,, andD,, 14 is the direct product of
the domainD,, with an arbitrary interval of the reat-axis
containing the poiny = 0. Then the zeros of the following
system of equations:

Fn(x) =D pean

wherep is a given vector, are not located d®,,, and that

they are simple, i.e., the determinadtt J5, , of the Jaco-
bian matrix ofF, at these solutions is non—zero. fi(zr, 2,0 20) = 0,
Definition 2.1 Thetopological degree of;, at p relative : : (©)
to D,, is denoted byleg[F),, D,,, p] and it is defined by the Falz1, 22, . ) - 0,
equation y det Jp, (z1,22,...,2,) = O,
deg[Fy, Dy, p| = Z sgn(det Jp, (z)), (1) arethe same as the zeroskf(z) = O, provided thaty =
zeF; Y (p)ND,, 0. On the other hand, it is easily seen that the determinant

. . of the Jacobian matrix of Eq. (6) is equal [ttt Jp, ()]
wheresgn(v) defines the well known three valued sign funcwhich is always nonnegative (positive at the simple zeros).

tion: _ Thus we may conclude the following:
-1, if ¥ <0,
sgn(y) = 0, if ¢=0, (2) Theorem 2.1 [33, 34] The total numbeN" of zeros of
1, if ¥ >0. F,(z) = 6, is given by
The topological degree is invariant under changes of the NT = deg[Fyt1, Dnt1; Ont1l, (7

vectorp in the sense that, if € R™ is any vector, then it L _ :

" . f y under the hypotheses thay, is twice continuously differen-
holds that [24, p.157]: _ . Y .

tiable and that all the zeros are simple and lie in the strict
deg[Fy, Dp,p] = deg[F, — ¢, Dy, p — gl interior of D1

For the case of complex zeros the following theorem

Thus, for simplicity, we consider the case where the topBtates that the total number of complex zeros can be ob-
logical degree is defined at the origi, = (0, ...,0) in tained by the value of the topological degree without Pi-
R T card’s extension:

where F,, — ¢ denotes the mapping,,(xz) — ¢, x € D,

The topological degredeg|F;,, Dy, ©,] can be repre- naq0m 2 2 [52]. LetD, C C be an open bounded region
sented by the Kronecker integral which is defined as fo'é\nd letf : D, — C be analytic. Suppose thathas no

lows: roots onyD, and assume that all roots gf that lie in D,
deg[Fru Dna Qn] =



are simple. Then the total numh&f” of roots off is equal (b) for each regionQ?‘l, there exists at least one com-
to deg[F», Da, O3], Wwhere ponent ofF,,, (for examplef,,), that does not vanish

Fy(z1,m2) = (f1(w1,22), fo(21,22)) = .On & » L N .
(%(f(fm +im), S(f (e +ix2))),(8) (c) if fr, #00nQ7 ™, thenvQ} ™" is sufficiently refined

relative tosgn F,., where:
andR(z), 3(z), are the real and the imaginary part efe —_—
(C, respectively_ Fn—l - (fla f27 ey fm—la fv"q,+17 ey fn)

Since Stenger's remarkable and pioneering work [40], . . .
many approaches have been developed and studied to ¢ :NeXt we wil conc_entrate on t_he—dlm_ensmnal_ cas,e.
pute the topological degree of a function (see e.g., [1, 5, 6. is case is also very interesting since using the Picard’s ap-
14, 15, 41, 42, 43, 50, 52, 53]). Stenger's method express@Pach we are able to compute the exact number of roots of
the topological degree of a continuous mapping 1—d|menS|qnaI funct|on52|n a given m:nerval, by computing
the topological degree iR“ on a Picard’s extension [9, 10].
F,=(f1,---,fn): Dy CR" - R™, Furthermore, as we have already mentioned, the exact num-

' L . ber of complex zeros within a specific region can be ob-
defined on a bounded domih, in R™ as a constant times tained by the value of the topological degreeRA [52].

a sum of deter_mlnants of variousx n mat_rlces. The value_ Thus, we can state the following:
of the topological degree gives information about the exis-

tence of a solution of the equatidf, (z) = ©,, within D,,.  Definition 2.3 A segmentp;, p;] is defined to be a@losed
In particular, Kronecker's theorem [24] states that the equ@ounterclockwise oriented portionf 9D, with endpoints
tion F;, (z) = ©, has at least one zero™, ifthe degreeis ;, and p; and interior (p;,p;). A partition P of ¥D; is
not zero relative td,,. Although, the value of the topologi- ejther the empty set or a séb, }7_, of counterclockwise
cal degree gives qualitative information about the existencgdered points fromD, such that
of solutions, it does not give quantitative information about
the solution values. On the other hand, using the nonzero J
value of topological degree we are able to obtain upper and ¥Dy = Z pi,pisals  Pg+1 = pr. ©)
lower bounds for solution values. To this end, by comput- =l
ing a sequence of bounded domains with nonzero value of
topological degree and decreasing diameter, we are ablel@mma 2.1 [23]. A nonempty partition? forms a suffi-
obtain a region with arbitrarily small diameter that contain§ient refinement of the bounda#{D, relative to the sign of
at least one solution of the equation [46, 48]. afunctionFy, = (f1, f2) if and only if

The accurate computation of the topological degree of a L,
mappingF,, at @, relative to the bounded domaid,, us- (pi; pis1) N Py, pj+1) =0, Vi#j,
ing Stenger’s, or other related methods [14, 41, 42], is heaynd on eactp;, p;1], there exists a component B, say
ily based on suitable assumptions, including the appropria}tja, that is of constant sign (i.e# 0) on [p;, pi+1], and the

representation of the oriented boundaryZdf. In partic-  yemaining component df, is nonzero ap; andp; 1.
ular, if the boundary of>,, can be subdivided in a certain

way (“sufficiently refinet) then Stenger’s method gives the  Stenger [40] proved that, given a sufficient refinement
exact value of topological degree. Otherwise, heuristic tepf the boundaryD, of D5, the topological degree can be
mination criteria have to be used and therefore one canneemputed as:

be sure that the value of the topological degree is given cor- deg[Fy, Dy, O5] =

rectly. 19
4 Z (_1)]i_1 deg [fjri-h [piapi+1]7 O] x Signfji (pi)7

Definition 2.2 [14, 40, 43]Let II"™ be ann—polyhedron. P
Suppose that (10)

Fp = (f1, fo fu): I" C R™ — R™ wherej; is the index of the component &% = (f1, f2) that

has constant sign dp;, pi+1], f5 = f1,
is continuous with,, ¢ F,,(VI1"). If n = 1, 911! is said
to besufficiently refined relative tegn Fy, if 0 ¢ Fy (911%).  deglfs, [pi pita], 0] = {signf;(pit1) — signf; (pi)}/2,
If n > 1, 9II™ is said to besufficiently refined relative to and
sgn F,,, if 9II"™ has been subdivided so that it may be writ- ) 1, if fi(p:) >0
ten as a union of a finite number of — 1)—dimensional re- signf;(pi) = { 1 fJ_ (ps) < 0
gions, Q"% Q3 !,...,Q"!, each consisting of a union _ _ ’ S _
of a finite number ofn — 1)—simplices with pairwise dis- Boult and Sikorski proposed an optimal complexity al-

joint (n—1)~dimensional interiors and having the following 9°"ithm, in their paper [6], for computing with certainty the
properties: topological degree for any function from a cla&s For the

o - o o 2—dimensional case, this class consists of functions
(a) the interiors of theQ); ™" are pairwise disjoint and
eachQ? ' is connected; Fy = (f1, f2) : B — R2,



defined on the unit squa®, which satisfy the Lipschitz social dynamics of flocking organisms, such as swarms and
condition with constant{ > 0 and whose infinity norm fish schools, which are governed by fundamental rules like
along the boundary d8 is at least > 0. Then the follow- nearest—neighbor velocity matching and acceleration by dis-
ing holds [39, p.194]: tance [18].
PSO is a population based algorithm, i.e., it exploits a
population of individuals to probe promising regions of the
B; search space. In this context, the population is caiearm
(b) the cas@.5 < K/(46) < 1 s still an open problem; and the individuals (i.e., the search points) are cgbladi-
cles Each particle moves with an adaptable velocity within
(c) if K/(46) < 0.5, then the function does not have anythe search space, and retains a memory of the best posi-
Zeros. tion it ever encountered. In thgdobal variant of PSO, the
best position ever attained by all individuals of the swarm
is communicated to all the particles. In thexal variant,
« | K each particle is assigned to a topological neighborhood con-
m =4 h(sJ’ sisting of a prespecified number of particles. In this case,
) _ _ the best position ever attained by the particles that comprise
on the number of function evaluations required to computg,o neighborhood is communicated among them [12, 18].
the topological degree of any function in the cl#ssusing A thorough investigation of the convergence properties of
Stenger's method [40]. . _ PSO can be found in [7, 45].
If the value of the Lipschitz constat” with respect Assume am—dimensional search space R”, and a
to D, and the infinity norms of F along the boundary gy arm consisting oV particles. The—th particle is in ef-
of D, are known and we choose equally spaced points GRct ann—dimensional VECOK; = (Ti1, iz, .-, i) | €
the boundary of D, separated by a distand¢ | K/(49)], g The velocity of this particle is also &—dimensional
in the infinity norm, then Boult and Sikorski have ShOW”vector,V,; = (vi1, 2, ...,vin) T € S. The best previous
that we are able to evaluate the topological degree with C&asition encountered by theth particle is a point ir, de-
tainty using.S.tenger’.s methoq [6]. This is so because, in thigyteq byP: = (i1, pizs- . pin)| € S. Assumey; to be
case, a sufficient refinement is obtained. Thus, the values @ index of the particle that attained the best previous posi-
main interest that have to be computed, are tion among all the particles in the neighborhood of thth
particle, andt to be the iteration counter. Then, the swarm

(a) if K/(46) > 1, then the function may have zeros in

They also established a worst—case lower bound,

0 zg%z I£2()] (11) is manipulated by the equations [7, 11, 37, 38]:
and
o) — Vit+1) = x|wVi(t) + e (P(t) — Xi(t)) +
K e [BEZRO g [ ( )
ceby 1T~ Yl + 23 Py, () = Xi(1))], (13)

Notice that the value of is always positive since the topo- X;(t+1)
logical degree is not defined in the case where a solution of
the equationfy (x) = O, lies on the boundary db,. This wherei = 1,...,N; ¢; andc, are two parameters called
is also true in the Boult and Sikorski approach, since in thisognitiveandsocialparameters respectively;, v, are ran-
case the value af is zero and an infinite number of pointsdom numbers uniformly distributed withiif, 1]; andg; is
has to be considered. the index of the particle that attained either the best position
In general, the computation ¢éfand K is a hard task. of the whole swarm (global version), or the best position in
In the present work, PSO has been employed to computehe neighborhood of thé-th particle (local version). The
of F, along the boundary dp,, through subsequent mini- parametersy andw are calledconstriction factorandin-
mizations on each side of the rectangle under consideratiartia weightrespectively, and they are used independently
Then, the smallest value obtained is considered as the vala® mechanisms for the control of the velocity’s magnitude,
of 6. Moreover, K is estimated by repeatedly computing,corresponding to two different PSO versions.
through PSO, the maximum of the fraction of Eq. (12y9n The value of the constriction factor is derived analyti-
keepingy fixed, for an arbitrary large number of differentcally [7, 45]. The inertia weightw, is computed empiri-
y € Day. cally, taking into account that it resolves the trade—off be-
tween the global (wide—-ranging) and local (nearby) explo-
3 The Particle Swarm Optimization algorithm ration ability of the swarm. A large inertia weight encour-
ages global exploration (moving to previously not encoun-
Particle Swarm Optimization (PSO) is a stochastic optitered areas of the search space), while a small one promotes
mization algorithm. More specifically, it belongs to thelocal exploration, i.e., fine—tuning the current search area. A
class ofSwarm Intelligencealgorithms, which are inspired suitable value forw provides the desired balance between
from the social dynamics and emergent behavior that arisiee global and local exploration ability of the swarm, and
in socially organized colonies [4, 17, 18, 31]. The ideas thatonsequently improves the effectiveness of the algorithm.
underlie PSO are not inspired by the evolutionary mech=xperimental results suggest that it is preferable to initialize
anisms encountered in natural selection, but rather by tliee inertia weight to a large value, giving priority to global

= X;(t)+Vi(t+1), (14)



Test Problem 0 Kest Kactual

(a1, b2) Sg (ag, bg) F1 0.4375 7.9568 8
Fy 0.5 3.89 4
I 0.8284 3.8174 4

Table 1: Experimental results.
S4 SQ

(a1,b1) Sy (az,b1)

Figure 1: The domain over which the topological degree is
computed. The sideSy,..., Sy, are considered counter-
clockwise.

exploration of the search space, and gradually decrease it,
S0 as to obtain refined solutions [37, 38]. This finding is
intuitively very appealing. In conclusion, an initial value of
w aroundl and a gradual decline towardss considered a
proper choice forw.

In general, the constriction factor version of PSO is fastafver the domaif—2, 2] x [-0.25,0.25], and it has one zero.
than the one with the inertia weight, although in some apfhe minimum of the infinity norm on the boundaryds=
plications its global variant suffers from premature converg 4375, and the estimation ok is 7.9568.

gence. Proper fine-tuning of the parametersand c,, The plot of|| F} () ||~ at each side of the region’s bound-
results in faster convergence and alleviation of local minary is illustrated in Figs. 2-5. The form of the func-
ima [16]. As default values;; = ¢ = 2 have been pro- tion is quite simple, although, not differentiable, support-
posed, but experimental results indicate that alternative cojmg the choice of PSO for the minimization of the infinity
figurations, depending on the problem at hand, can produggrm. To ensure that the global minimizer will be found
superior performance [7, 27, 28, 31]. in cases where a multitude of minimizers are involved in

The initialization of the swarm and the velocities, is usuthe computation of the minimum of the infinity norm, tech-

ally performed randomly and uniformly in the search spacgiques likeDeflectionandStretchingcan be combined with
although more sophisticated initialization techniques capso [27, 28, 31].
enhance the overall performance of the algorithm [29].

0 2

Figure 2: Plot of| F} (x) ||« ON the sideS;

TESTPROBLEM 2 [39]. This test problem is defined by

4 Experimental results o { 22 4+22-05 =0,
Y =

2x1290 — 0.5 =0, (16)

In this section, the operation of the proposed technique on

e e P20 e o e o B 1101 an thascnezeroof iy, T
o . Rinimum of the infinity norm on the boundary ds= 0.5,

rameters for each test problem were fixed: the size of the Lo .

. . and the estimation oK is 3.89.

swarm was set equal t), the maximum number of iter-

ations was200, and the accuracy for detecting a peak wagest ProsLEM 3 [39]. This test problem is defined by

10—%. Moreover, the default valueg = 0.729, ¢; = ¢y =

2.05 were used [7]. The particles have been constrained in Jo { ¥ — 2% =0,

the corresponding region for each test problem. For the esti- 5T 2z122 =0,

mation of the Lipschitz constai, a sample 02000 points

has been used. The minimum of the infinity norm, (i.e., thever[—1,1] x [—1,1], and it has two zeros. The minimum

value of$), the estimation of the Lipschitz constaft,, as  Of the infinity norm on the boundary &= 0.8284, and the

well as the actual value of the Lipschitz constaliif ., €Stimation ofK is 3.8174.

for each test problem are reported in Table 1. The sides of

. . . PSO was able to detect accurately the minimum of the
the search space are taken counterclockwise as illustrated n . . .
Fig. 1. Infinity norm on the boundary of the corresponding region

. . ' for each test problem, as well as to provide an acceptable
TESTPROBLEM 1 [39]. This test problem is defined by estimation of the Lipschitz constant of the function.
2 — =
P = { vy —dwy =0, (15)

l% 721’1 +4CE2 = 0,

(17)
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Figure 3: Plot of|| F; (x)]| .o ON the sideSsy

0 L
-2 0 2

Figure 4: Plot of| F} (z) ||« ON the sideSs

5 Conclusions

A technique for investigating the existence of function roots

(2]

3]

[4]

[5]

[6]

has been introduced. This technique exploits the PSO algo-

rithm to compute the infinity norm on the boundary of the

region, as well as to estimate the Lipschitz constant of thg7]
function under consideration. Then, a sufficient refinement

of the boundary is obtained by applying Boult and Siko-
rski's algorithm, and finally, Stenger’s theorem is used to
compute the topological degree with certainty. In the cas

of complex roots, the topological degree is equal to the tota 8]

number of the function’s zeros.

The technique has been illustrated on several test prob-

lems with satisfactory results. Further work will involve an

investigation of the theoretical properties and dynamics of[g]
the proposed technique as well as applications in higher di-

mensional problems.
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