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Abstract- In this paper a new algorithm for Fuzzy Cog-
nitive Maps learning is introduced. The proposed ap-
proach is based on the Particle Swarm Optimization
method and it is used for the detection of proper weight
matrices that lead the Fuzzy Cognitive Map to desired
steady states. For this purpose a properly defined ob-
jective function that incorporates experts’ knowledge
is constructed and minimized. The application of the
proposed methodology to an industrial control problem
supports the claim that the proposed technique is effi-
cient and robust.

1 Introduction

Fuzzy Cognitive Maps(FCMs) are a soft computing
methodology developed by Kosko as an expansion of cog-
nitive maps which are widely used to represent social sci-
entific knowledge [4, 20]. They belong to the class of
neuro–fuzzy systems, which are able to incorporate human
knowledge and adapt it through learning procedures [22].
FCMs are designed by experts through an interactive pro-
cedure of knowledge acquisition [15], and they have a wide
field of application, including modelling of complex and in-
telligent systems [16], decision analysis [19], and extend
graph behavior analysis [15]. They have also been used
for planning and decision–making in the fields of interna-
tional relations and social systems modelling [43, 44], as
well as in management science, operations research and or-
ganizational behavior [9]. Dicherson and Kosko have used
FCMs to construct virtual worlds [10]. Furthermore, FCMs
have been proposed for modelling supervisory systems [14]
and for decision–making in radiation therapy planning sys-
tems [30, 31].

The wide recognition of FCMs as a promising modelling
and simulation methodology for complex systems, charac-
terized by abstraction, flexibility and fuzzy reasoning, pro-
moted the research on new concepts in this area. How-

ever, the established developments still require enhance-
ment, stronger mathematical justification, and further test-
ing on systems of higher complexity. Moreover, the elimi-
nation of deficiencies, such as the abstract estimation of the
initial weight matrix and the dependence on the subjective
reasoning of experts’ knowledge, will significantly improve
FCMs’ functionality. In this context, the development of
learning algorithms is a stimulating research topic.

A few algorithms have been proposed for FCM learn-
ing [22, 29]. The main task of the learning procedure is to
find a setting of the FCM’s weights, that leads the FCM to a
desired steady state. This is achieved through the minimiza-
tion of a properly defined objective function. Established al-
gorithms are heavily dependent on the initial weight matrix
approximation, which is provided by the experts. Recently,
preliminary results on a different approach, based on Evo-
lution Strategies, have been reported [23].

This paper proposes, a new approach for FCM learning,
which is based on the Particle Swarm Optimization (PSO)
method. PSO is used for the determination of proper weight
matrices for the system, through the minimization of a prop-
erly defined objective function. PSO is selected due to its
efficiency and effectiveness on a plethora of applications
in science and engineering [1, 2, 7, 13, 24, 25, 27, 28, 32,
34, 35, 36, 37, 38, 45], and its straightforward applicabil-
ity. The proposed approach is illustrated on an industrial
process control problem, with promising results.

The rest of the paper is organized as follows: in Sec-
tion 2 the main principles underlying FCMs are described.
In Section 3, the PSO algorithm is briefly presented; Sec-
tion 4 is devoted to the description and analysis of the pro-
posed learning algorithm. The process control problem, on
which the proposed algorithm is tested, is described in Sec-
tion 5, while the obtained results are reported and discussed
in Section 6. Section 7 closes the paper, with conclusions
and ideas for future research.
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Figure 1: A simple Fuzzy Cognitive Map.

2 Overview of Fuzzy Cognitive Maps

FCMs have been introduced by Kosko in1986 [20] as
signed directed graphs for representing causal reasoning
and computational inference processing, exploiting a sym-
bolic representation for the description and modelling of a
system. Concepts are utilized to represent different aspects
of the system, as well as, their behavior. The dynamics of
the system are implied by the interaction of concepts. FCM
structures are used to represent both qualitative and quanti-
tative data. The construction of an FCM requires the input
of human experience and knowledge on the system under
consideration. Thus, FCMs integrate the accumulated ex-
perience and knowledge concerning the underlying causal
relationships amongst factors, characteristics, and compo-
nents that constitute the system.

An FCM consists of nodes–concepts,Ci, i =
1, . . . , N , where N is the total number of concepts.
Each node–concept, represents one of the key–factors of
the system, and it is characterized by a valueAi ∈
[0, 1], i = 1, . . . , N . The concepts are interconnected
through weighted arcs, which imply the relations among
them. A simple FCM with five nodes and ten weighted arcs
is illustrated in Fig. 1. Each interconnection between two
conceptsCi and Cj , has a weightWij , which is propor-
tional to the strength of the causal link betweenCi andCj .
The sign ofWij indicates whether the relation between the
two concepts is direct or inverse. The direction of causality
indicates whether the conceptCi causes the conceptCj or
vice versa. Thus, there are three types of weights:





Wij > 0, expresses positive causality,
Wij < 0, expresses negative causality,
Wij = 0, expresses no relation.

Human knowledge and experience on the system deter-
mines the type and the number of nodes, as well as the ini-
tial weights of the FCM. The valueAi, of a conceptCi, ex-
presses the quantity of its corresponding physical value and
is derived by the transformation of the fuzzy values assigned
by the experts, to numerical values. Having assigned values
to the concepts and the weights, the FCM converges to a
steady state, through the interaction process subsequently
described.

At each step, the valueAi of a concept is influenced by
the values of concepts–nodes connected to it, and is updated

according to the scheme [22]:

Ai(k + 1) = f


Ai(k) +

n∑
j=1
j 6=i

WjiAj(k)


 , (1)

wherek stands for the iteration counter; andWji is the
weight of the arc connecting conceptCj to conceptCi. The
functionf is the sigmoid function:

f(x) =
1

1 + e−λx
, (2)

whereλ > 0 is a parameter that determines its steepness in
the area around zero. In our approach, the valueλ = 1 has
been used. This function is selected since the valuesAi of
the concepts, by definition, must lie within[0, 1]. The inter-
action of the FCM results after a few iterations in a steady
state, i.e. the values of the concepts are not modified further.
Desired values of the output concepts of the FCM guarantee
the proper operation of the simulated system.

The design of an FCM is a process that heavily relies on
the input from experts [42]. At the beginning, experts are
pooled to determine the relevant factors that will be repre-
sented in the map as concepts. Then, each expert describes
the causal relationships among the concepts using a linguis-
tic notion. First, experts determine the influence of a con-
cept on another, as “negative”, “positive” or “no influence”.
Then, linguistic weights, such as “strong”, “weak”, etc, are
assigned to each arc. The linguistic variables that describe
each arc, for each expert, are defined in [8]. The linguistic
variables are combined, and the aggregated linguistic vari-
able is transformed to a single linguistic weight, through
the SUM technique [26]. Finally, the Center of Area (CoA)
defuzzification method [21, 26], is used for the transforma-
tion of the linguistic weight to a numerical value within the
range[−1, 1]. This methodology has the advantage that ex-
perts are not required to assign directly numerical values to
causality relationships, but rather to describe qualitatively
the degree of causality among the concepts. Thus, an initial
matrix W initial = [Wij ], i, j = 1, . . . , N , with Wii = 0,
i = 1, . . . , N , is obtained. Using the initial concept val-
ues,Ai, which are also provided by the experts, the matrix
W initial is used for the determination of the steady state of
the FCM, through the application of the rule of Eq. (1).

The critical dependence on the opinions of the experts
and the potential convergence to undesired steady states,
are the two most significant weaknesses of FCMs. Learn-
ing procedures constitute means to increase the efficiency
and robustness of FCMs, by updating the weight matrix so
as to avoid convergence to undesired steady states. Up–to–
date, there are just a few FCM learning algorithms and they
are mostly based on ideas coming from the field of artificial
neural networks training [3, 10, 29]. Such algorithms start
from an initial state and an initial weight matrix,W initial ,
of the FCM, and adapt the weights, in order to compute a
weight matrix that leads the FCM to a desired steady state.
The desired steady state is characterized by values of the
FCM’s output concepts accepted by the experts,ex post.



The main drawback of this approach is the heavy depen-
dence of the final weights on the initial weight matrix.

A novel learning procedure that alleviates the problem
of the potential convergence to an undesired steady state, is
proposed in this paper. This approach is based on a swarm
intelligence algorithm which is briefly presented in the next
section.

3 The Particle Swarm Optimization Method

Particle Swarm Optimization (PSO) is a stochastic opti-
mization algorithm. More specifically, it belongs to the
class ofSwarm Intelligencealgorithms, which are inspired
from the social dynamics and emergent behavior that arise
in socially organized colonies [5, 17, 18, 35].

PSO is a population based algorithm, i.e., it exploits a
population of individuals to probe promising regions of the
search space. In this context, the population is calledswarm
and the individuals (i.e., the search points) are calledparti-
cles. Each particle moves with an adaptable velocity within
the search space, and retains a memory of the best posi-
tion it ever encountered. In theglobal variant of PSO, the
best position ever attained by all individuals of the swarm is
communicated to all the particles. In thelocal variant, each
particle is assigned to a topological neighborhood consist-
ing of a prespecified number of particles. In this case, the
best position ever attained by the particles that comprise the
neighborhood is communicated among them [12, 18].

Assume aD–dimensional search space,S ⊂ RD, and a
swarm consisting ofN particles. Thei–th particle is in ef-
fect aD–dimensional vectorXi = (xi1, xi2, . . . , xiD)> ∈
S. The velocity of this particle is also aD–dimensional
vector,Vi = (vi1, vi2, . . . , viD)> ∈ S. The best previous
position encountered by thei–th particle is a point inS, de-
noted byPi = (pi1, pi2, . . . , piD)> ∈ S. Assumegi to be
the index of the particle that attained the best previous posi-
tion among all the particles in the neighborhood of thei–th
particle, andt to be the iteration counter. Then, the swarm
is manipulated by the equations [6, 11, 39, 40]:

Vi(t + 1) = χ
[
wVi(t) + c1 r1

(
Pi(t)−Xi(t)

)
+

+ c2 r2

(
Pgi(t)−Xi(t)

)]
, (3)

Xi(t + 1) = Xi(t) + Vi(t + 1), (4)

wherei = 1, . . . , N ; c1 andc2 are two parameters called
cognitiveandsocialparameters respectively;r1, r2, are ran-
dom numbers uniformly distributed within[0, 1]; andgi is
the index of the particle that attained either the best position
of the whole swarm (global version), or the best position in
the neighborhood of thei–th particle (local version). The
parametersχ andw are calledconstriction factorand in-
ertia weightrespectively, and they are used as mechanisms
for the control of the velocity’s magnitude, corresponding
to the two main PSO versions.

The value of the constriction factor is derived analyti-
cally [6, 46]. On the other hand, the inertia weight,w, is
computed empirically, taking into consideration that large
values encourage global exploration, while small values

promote local exploration. According to a rule of thumb, an
initial value ofw around1.0 and a gradual decline towards
0 is considered a proper choice [39, 40].

In general, the constriction factor version of PSO is faster
than the one with the inertia weight, although in some ap-
plications its global variant suffers from premature conver-
gence. Regarding the social and cognitive parameter, the
default valuesc1 = c2 = 2 have been proposed. The initial-
ization of the swarm and the velocities, is usually performed
randomly and uniformly in the search space, although more
sophisticated initialization techniques can enhance the over-
all performance of the algorithm [33].

4 The Proposed Approach

The present work focuses on the development of an FCM
learning procedure based on PSO. The purpose is to deter-
mine the values of the cause–effect relationships among the
concepts, i.e. the values of the weights of the FCM, that pro-
duce a desired behavior of the system. The determination
of the weights is of major significance and it contributes to-
wards the establishment of FCMs as a robust methodology.
The desired behavior of the system is characterized by out-
put concept values that lie within desired bounds prespec-
ified by the experts. These bounds are in general problem
dependent.

The learning procedure is, to some extent, similar to that
of neural networks training. LetC1, . . . , CN , be the con-
cepts of an FCM, and letCout1 , . . . , Coutm , 1 6 m 6 N ,
be the output concepts, while the remaining concepts are
considered input, or interior, concepts. The user is inter-
ested in restricting the values of the output concepts in strict
bounds:

Amin
outi 6 Aouti 6 Amax

outi , i = 1, . . . , m,

predetermined by the experts, which are crucial for the
proper operation of the modelled system. Thus, the main
goal is to detect a weight matrix,W = [Wij ], i, j =
1, . . . , N , that leads the FCM to a steady state at which, the
output concepts lie in their corresponding bounds, while the
weights retain their physical meaning. The latter is attained
by imposing constraints on the potential values assumed by
weights. To do this, we consider the following objective
function:

F (W ) =
m∑

i=1

H
(
Amin

outi −Aouti

) ∣∣Amin
outi −Aouti

∣∣ +

+
m∑

i=1

H
(
Aouti −Amax

outi

) ∣∣Amax
outi −Aouti

∣∣ ,(5)

whereH is the well–known Heaviside function

H(x) =
{

0, x < 0,
1, x > 0,

andAouti , i = 1, . . . ,m, are the steady state values of the
output concepts, that are obtained through the application of
the procedure of Eq. (1), using the weight matrixW . Ob-
viously, the global minimizers of the objective functionF ,
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Figure 2: Flowchart of the proposed learning procedure.

are weight matrices that lead the FCM to a desired steady
state, i.e. all output concepts are bounded within the de-
sired regions. The objective functionF suits straightfor-
wardly the problem, however, it is non–differentiable and,
thus, gradient–based methods are not applicable for its min-
imization. On the other hand, in the proposed approach,
PSO is used for the minimization of the objective function
defined by Eq. (5). The non–differentiability ofF poses no
problems in our approach since PSO, like all evolutionary
algorithms, requires function values solely, and can be ap-
plied even on discontinuous functions. The weight matrix
W is represented by a vector which consists of the rows
of W in turn, excluding the elements of its main diagonal,
W11,W22, . . . , WNN , which are by definition equal to zero:

X =
h

W12, . . . , W1N| {z }
row 1

, W21, . . . , W2N| {z }
row 2

, . . . , WN1, . . . , WN,N−1| {z }
row N

i
.

Thus, an FCM withN fully interconnected concepts (i.e.
each concept interacts with all other concepts), corresponds
to a N(N − 1)–dimensional minimization problem. If
some interconnections are missing, then their correspond-
ing weights are zero and they can be omitted, reducing the
dimensionality of the problem. This is most often the case,
since the FCMs provided by experts are rarely fully con-
nected.

Each interconnection of an FCM has a specific physical
meaning, and, thus, several constraints are posed by the ex-
perts on the values of the weights. Constraints are provided
in the form of negative or positive relations between two
concepts. So, if two conceptsCi andCj are negatively re-
lated, then the weightWij ∈ [−1, 0], while if they are pos-
itively related, it takes values within[0, 1]. More strict con-
straints may be additionally posed on some weights, either
by the experts, or by taking into consideration the conver-

Figure 3: Illustration of a process control problem from in-
dustry.

gence regions obtained through the application of the learn-
ing algorithm, as illustrated in Section 6. Such constraints
may enhance the overall performance of the algorithm.

The application of PSO for the minimization of the ob-
jective functionF , starts with an initialization phase, where
a swarm,S = {X1, . . . , XM}, of sizeM , is generated ran-
domly, and it is evaluated usingF . Then, the Eqs. (3) and
(4) are used to evolve the swarm. As soon as a weight con-
figuration that globally minimizesF is reached, the algo-
rithm is terminated. A flowchart of this procedure is de-
picted in Fig. 2.

There is, in general, a plethora of weight matrices that
lead to convergence of the FCM to the desired regions of
the output concepts. PSO is a stochastic algorithm, and,
thus, it is quite natural to obtain such suboptimal matrices
which differ in subsequent experiments. All these matri-
ces are proper for the design of the FCM and follow the
constraints of the problem, though, each matrix may have
different physical meaning for the system. Statistical anal-
ysis of the obtained weight matrices may help in the better
understanding of the system’s dynamic, as it is implied by
the weights, as well as in the selection of the most appro-
priate suboptimal matrix. Any information availablea pri-
ori, may be incorporated to enhance the procedure, either
by modifying the objective function in order to exploit the
available information, or by imposing further constraints on
the weights. The proposed approach has proved to be very
efficient in practice. In the following section, its operation
on an industrial process control problem, is illustrated.

5 An Industrial Process Control Problem

A simple process control problem encountered in chemical
industry, is selected to illustrate the workings of the pro-
posed learning algorithm [41]. The process control prob-
lem, illustrated in Fig. 3, consists of one tank and three
valves that influence the amount of a liquid in the tank.
Valve1 and Valve2 pour two different liquids into the tank.
During the mixing of the two liquids, a chemical reaction
takes place in the tank, and a new liquid is produced. Valve
3 empties the tank when the new liquid produced reaches a
specific level. A sensor is placed inside the tank to measure
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the specific gravity of the produced liquid. When the value,
G, of the specific gravity lies in a range[Gmin, Gmax], the
desired liquid has been produced. There is also a limit on
the height,T , of the liquid in the tank, i.e. it cannot exceed
a lower limit Tmin and an upper limitTmax. The control
target is to keep the two variables,T andG, within their
bounds:

Tmin 6 T 6 Tmax,

Gmin 6 G 6 Gmax.

A group of experts constructs the FCM for the simula-
tion of this system, following the procedure described in
Section 2. The FCM that models and controls the specific
system is depicted in Fig. 4. It consists of five concepts
which are defined as:

• Concept1 – the amount of the liquid in the tank. It
depends on the operational state of Valves1, 2 and3;

• Concept2 – the state of Valve1 (closed, open or par-
tially opened);

• Concept3 – the state of Valve2 (closed, open or par-
tially opened);

• Concept4 – the state of Valve3 (closed, open or par-
tially opened);

• Concept5 – the specific gravity of the produced liquid
in the tank.

There is a consensus among the experts regarding the di-
rection of the arcs among the concepts. For each weight,
the overall linguistic variable and its corresponding fuzzy
set, are also determined by the experts. The ranges of the
weights implied by the fuzzy regions, are:

−0.50 6 W12 6 −0.30, (6)

−0.40 6 W13 6 −0.20, (7)

0.20 6 W15 6 0.40, (8)

0.30 6 W21 6 0.40, (9)

0.40 6 W31 6 0.50, (10)

−1.0 6 W41 6 −0.80, (11)

0.50 6 W52 6 0.70, (12)

0.20 6 W54 6 0.40, (13)

and the initial weight matrix, derived through the CoA de-
fuzzification method, is:

W initial =




0 −0.4 −0.25 0 0.3
0.36 0 0 0 0
0.45 0 0 0 0

−0.90 0 0 0 0
0 0.6 0 0.3 0




.

All experts agreed on the same range for the weightsW21,
W31, andW41, and most of them agreed on the same range
for the weightsW12 andW13. However, there was no such
agreement on the cases of the weightsW15, W52, andW54,
where their opinions varied significantly.

PSO is applied to update the eight nonzero weight values
of the FCM. To avoid physically meaningless weights, the
bounds[−1, 0] or [0, 1], implied by the directions of the cor-
responding arcs of the FCM, are imposed on each weight.

The output concepts for this problem are the conceptsC1

andC5. The desired regions for the two output concepts,
which are crucial for the proper operation of the modelled
system, have been defined by the experts:

0.68 6 C1 6 0.70, (14)

0.78 6 C5 6 0.85. (15)

In the next section, the simulation results are reported and
analyzed.

6 Simulation Results

The behavior of the system accepting all the weights’ con-
straints imposed by the experts has been investigated. The
obtained results are very interesting and provide insight re-
garding the appropriateness of the experts’ suggestions as
well as suboptimal weight matrices that lead the FCM to
the desired steady state.

A total of 100 independent experiments have been per-
formed using the local variant of the constriction factor PSO
version, with neighborhood size equal to3. This version
was selected due to its fast convergence rates and efficiency.
Swarm size has been set equal to20 for all experiments,
since it proved sufficient to detect global minimizers of the
objective function effectively and efficiently. Moreover, fur-
ther experiments with larger swarms and different PSO ver-
sions did not result in significantly different convergence
rates, in terms of the required number of function evalua-
tions. The constriction factor as well as the cognitive and
the social parameters have been set to their optimal values,
χ = 0.729, c1 = c2 = 2.05 [6, 46]. The accuracy for
the determination of the global minimizer of the objective
function, has been equal to10−8.

Regarding the weights, the constraints defined by
Eqs. (6)–(13), which are derived by the fuzzy regions pro-
posed by the experts, have been initially used. However, no



W12 W13 W15 W21 W31 W41 W52 W54

Mean -0.4027 -0.2016 0.8991 0.3999 0.5000 -0.8000 0.9659 0.1043
Median -0.4329 -0.2000 0.9050 0.4000 0.5000 -0.8000 0.9837 0.1000
St.Dev. 0.0487 0.0056 0.0909 0.0011 0.0003 0.0002 0.0420 0.0090

Min -0.4500 -0.2291 0.7156 0.3889 0.4971 -0.8014 0.8685 0.1000
Max -0.3500 -0.2000 1.0000 0.4000 0.5000 -0.8000 1.0000 0.1363

Table 1: Statistical analysis of the results for the first scenario.

solution was detected, indicating that the suggested ranges
for the weights, as well as the initial weight matrix,W initial ,
provided by the experts are not proper and do not lead the
FCM to the desired steady state. The best weight matrix
detected in these regions, in terms of its objective function
value (i.e. the matrix that corresponds to the smallest objec-
tive function value) is:

W =




0 −0.35 −0.20 0 0.40
0.40 0 0 0 0
0.50 0 0 0 0

−0.80 0 0 0 0
0 0.75 0 0.20 0




,

which led the FCM to the steady state:

C1 = 0.6723, C2 = 0.7417, C3 = 0.6188,
C4 = 0.6997, C5 = 0.7311,

that clearly violates the constraints for bothC1 andC5, de-
fined in Eqs. (14) and (15).

Since the consideration of all eight constraints on the
weights prohibits the detection of a suboptimal matrix,
some of the constraints were omitted. Specifically, the
constraints for the three weightsW15, W52, andW54, for
which the experts’ suggestions regarding their values var-
ied widely, were omitted, one by one at the beginning, and
subsequently in pairs. The corresponding weights were al-
lowed to assume values in the range[−1, 0] or [0, 1], in or-
der to avoid physically meaningless weight matrices. De-
spite this, no solutions were detected in these cases. How-
ever, suboptimal matrices were detected after omitting all
three constraints. The statistics of the weights’ values for
this case are reported in Table 1 and depicted in the box-
plot of Fig. 5. As shown in the figure, the weightsW21,
W31, andW41, converged to almost the same value in each
experiment; a value which is close to the bounds defined
by the experts. The weightsW13 andW54 converged also
in very small ranges, while the remaining weights assumed
values in wider regions. Moreover, the three unconstrained
weightsW15, W52, andW54, converged in regions signifi-
cantly different than those determined by the experts. The
mean number of PSO iterations required in the experiments
was40.

The ranges of the output concepts’ values for the ob-
tained suboptimal matrices are depicted in Fig. 6. The out-
put conceptC1 converges to almost the same value for each
suboptimal matrix, whileC5 takes a wide range of values,
always within the desired bounds. Regarding the remain-
ing concepts,C3 andC4, they converge to almost the same
values, while the values ofC2 vary slightly. The obtained
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Figure 5: Boxplot of the obtained results for the weights for
the first scenario.
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Figure 6: Boxplot of the obtained results for the concepts
for the first scenario.

values for these three concepts are physically meaningful
and appropriate for the operation of the system.

One of the obtained suboptimal matrices is the follow-
ing:

W =




0 −0.45 −0.20 0 0.84
0.40 0 0 0 0
0.50 0 0 0 0

−0.80 0 0 0 0
0 0.99 0 0.10 0




,

which leads the FCM to the desired steady state:

C1 = 0.6805, C2 = 0.7798, C3 = 0.6176,
C4 = 0.6816, C5 = 0.7967.

It is clear from the obtained results that there is a sig-
nificant divergence of some weights from the initial weight



values suggested by the experts. The weightsW21, W31,
andW41, take almost identical values in every experiment,
near the initial bounds suggested by the experts. Finally, the
weightW12 deviates slightly from its initial region. Thus,
the proposed learning algorithm is able to provide proper
weight matrices for the design of the FCM, efficiently and
effectively, alleviating deficiencies caused by deviation in
the experts’ suggestions. Exploiting a priori information,
such as constraints posed by the experts on weights, en-
hances its performance. Moreover, a primitive statistical
study of the obtained results provides an intuition on the
operation and the dynamics of the modelled system.

7 Conclusions

Fuzzy Cognitive Maps (FCMs) are widely used to success-
fully model and analyze complex systems. The need to im-
prove the functional representation of FCMs has been out-
lined. A new learning algorithm for determining subopti-
mal weight matrices for Fuzzy Cognitive Maps with fixed
structures, in order to reach a desired steady state, is intro-
duced. The proposed approach is based on the minimization
of a properly defined objective function through the Particle
Swarm Optimization algorithm. The new learning approach
for the determination of the FCM’s weight matrix is formu-
lated and explained.

An industrial process control problem is used for the il-
lustration of the proposed learning algorithm. The results
appear to be very promising, verifying the effectiveness of
the learning procedure. The physical meaning of the ob-
tained results is retained. The proposed approach also pro-
vides a robust solution in the event of divergent opinions of
the experts concerning the system.

Future work will consider further investigation of the
proposed approach considering different scenarios of the
employed industrial problem as well as applications on sys-
tems of higher complexity.
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