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1. SUMMARY

In Mechanics applications, nonsmooth/nonconvex funstitirat need to be minimized, are
frequently encountered. These functions are not diffeablg, and consequently cannot be
directly addressed through classical optimization athars. A very common approach for
solving such problems is the implementation of convex oj@tion methods applied on piece-
wise linear approximations of the objective function. Hee® most techniques in this category
incorporate assumptions on the Lipschitz continuity ofdhgective function. Recently, Evolu-
tionary Algorithms (EAs) have been applied on nonsmoothéonovex problems, and exhibited
very promising results. A study of the performance of thdiBlarSwarm Optimization (PSO)
method for solving nonsmooth/nonconvex problems formsérne of this paper. Several well—
known and widely used test problems are considered and iexg@tial results are reported.
Ideas for further work and applications of PSO on Mechanioblems are discussed.

2. INTRODUCTION
We consider the following nonsmooth/nonconvex optimaagproblem

mxinf(:zr), xr €S CR, (1)

where the objective functiory, : R* — R, is nonsmooth and nonconvex. Problems like this,
arise very often in Mechanics. Consider, for example, therge problem in flaw identification
in elastomechanics. This problem is formulated as a miration problem of a nonsmooth
and in general nonconvex objective function [26]. Moreotee solution of a Hemivariational
inequality, has proved to be a substationary point of a haegivinonconvex functional [13].
Since the objective function is not differentiable, theselyems cannot be addressed directly
using deterministic optimization methods. The most comm@goroach is the implementation
of convex minimization algorithms on convex approximasiaf the objective function [17],
[27]. Bundle methods are considered as the most promisipgpaph for solving nonsmooth
problems [13]. Their origin is the classical cutting planethod [3], [7], and they are based
on a piecewise linear approximation of the objective fumttiNumerical experiments indicate
that Bundle methods are effective [11], [14], [20]. Howewame assumptions on the objective
function are still needed. Specificallf(z) needs to be locally Lipschitz continuous [13].

Evolutionary and Swarm Intelligence algorithms are ststihamethods for global optimiza-
tion. They draw from natural evolution and insects’ socihévior, exploiting a population of



points to probe different areas of the search space sinadtesty. They do not require deriva-
tives information, but only function values. In EAs, eactiuidual of the population is encoded
either in real (Evolution Strategies [22], [23]) or binafgdnetic Algorithms [6], [15]) format,
and operators inspired by natural evolution are appliedtoriThus, the population evolves
through time towards the global minimum of the objectivediion. A fitness function is used
for the evaluation of individuals. In unconstrained globptimization problems, the objective
function under consideration is used as fitness functiors Eave been successfully applied on
numerous, diverse, scientific fields, including Mathensti@omputer Science, Physics, Com-
putational Biology, etc. PSO is a Swarm Intelligence alidponi, rooted in a simulation of social
behavior [5], [10]. Asin EAs, a population of potential stiduns is used in PSO. However, each
individual shares information with the rest, and can thudipfrom the discoveries of all other
companions.

The performance of PSO on widely used nonsmooth/noncomaptoblems is investigated
in this paper. In the next section, the PSO algorithm is desdr In Section 4, the test prob-
lems and the experimental results are reported. The papseivith a discussion for further
application of PSO on Mechanics problems.

3. THE PARTICLE SWARM OPTIMIZATION METHOD

PSO’s predecessor was a simulator of social behavior, tasiused to visualize the movement
of a birds’ flock. Several versions of the simulation modetevéeveloped, incorporating con-
cepts such as nearest—neighbor velocity matching andematieh by distance [5], [9]. When it
was realized that the simulation could be used as an optinsieeeral parameters were omitted,
through a trial and error process, resulting in the first $&wprsion of PSO [5].

In PSO, each individual of the population hasataptable velocityposition change), which
dictates its motion in the search space. Moreover, eachithdil is characterized byraemory
which stores the best position of the search space it hasvesrexd [5]. Thus, its movement
is an aggregated acceleration towards its best previousikgd position and towards the best
individual of a topological neighborhood. Since the “aecation” term was mainly used for
particle systems in Particle Physics [19], the developktilE®technique decided to use the term
particle for each individual, and the nanssvarmfor the population as a whole, thus, coming
up with the namdéarticle Swarnfor their algorithm [9].

Two variants of the PSO algorithm were developed. One witlobaj neighborhood, and one

with a local neighborhood. According to the global variagach particle moves towards its best
previous position and towards the best particle in the wealarm. On the other hand, in the

local variant, each particle moves towards its best premsition and towards the best particle
in its restricted neighborhood [5]. Since the global var@erforms better in most cases, it was
selected for the experiments conducted in this paper.

Suppose that the search spac®+slimensional, then the-th particle of the swarm can be rep-
resented by @—dimensional vectorX; = (z;1, i, - - ., ;p) ' . Thevelocity(position change)
of this particle, can be represented by anothedimensional vectoV; = (v, v, - .., vip) '
The best previously visited position of theth particle is denoted a& = (p;1, pia, - - ., Din) -
Defining g as the index of the best particle in the swarm (i.e.¢hth particle is the best), and
letting the superscripts denote the iteration number, theswarm is manipulated according to
the following two equations [5]:

n+1 —

Vi X (wojy + err} (pfy — o) + carg (g — 7)) (2)
n+1

it o= aly ot (3)



whered = 1,2,...,D; 1 =1,2,...,N, andN is the size of the swarmy is calledinertia
weight ¢, ¢, are two positive constants, calledgnitiveandsocial parameter respectively;

is aconstriction factor which is used to limit velocityr;, r, are random numbers, uniformly
distributed in[0, 1]; andn = 1, 2, ..., determines the iteration number. The role of these param-
eters is discussed in the next section.

In the early versions of PSO, neither an inertia weight nasrestriction factor was used. Thus,
no actual mechanism controlled the velocity of a particldisTack of a control mechanism
resulted in low efficiency for PSO, compared to EAs [1]. Thislgem was initially addressed
by using a maximum valug,,,.,. for the velocity. If the velocity exceeded this threshotdyas
set equal td/,,.,.. This parameter proved to be crucial, because large vatuéd cesult in par-
ticles moving past good solutions, while small values coaklilt in insufficient exploration of
the search space. Specifically, PSO located the area of timeuwp faster than EA techniques,
but once in the region of the optimum, it was unable to adpsstelocity stepsize to continue
the search at a finer grain. The aforementioned problem wédresskd by incorporating either
an inertia weight or a constriction factor (in some casehb parameters are included).

The role of theinertia weightw, in Eq. (2), is considered very important for PSO’s conver-
gence behavior. The inertia weight is employed to contrelithpact of the previous history
of velocities on the current one. Accordingly, the parameteegulates the trade—off between
the global (wide—ranging) and local (nearby) exploratibitites of the swarm. A large inertia
weight facilitates global exploration (searching new aje@hile a small one tends to facilitate
local exploration, i.e. fine—tuning the current search .afesuitable value for the inertia weight
w usually provides balance between global and local exptoratbilities and consequently re-
sults in a reduction of the number of iterations requireadt@ate the optimum solution. Initially,
the inertia weight was set to a constant. However, expetiahegsults indicated that it is better
to initially set the inertia to a large value, in order to pratm global exploration of the search
space, and gradually decrease it to get more refined sodudh, [25]. Thus, an initial value
aroundl1.2 and a gradual decline towarfdsan be considered as a good choiceufiar

The parameters, andc,, in Eq. (2), are not critical for PSO’s convergence. Howgpeoper
fine—tuning may result in faster convergence and allewviagidocal minima. An extended study
of the acceleration parameter in the first version of PSOjvengin [8]. As default values,
¢ = co = 2 were proposed. Experimental results indicate that ¢, = 0.5 also consist
a good choice. Recent work reports that it might be even b&ttehoose a larger cognitive
parameterg;, than a social parametes, but withe; 4+ ¢, < 4 [2].

The parameters;, andr, are used to maintain the diversity of the population, ang tre
uniformly distributed in the rangf, 1]. The constriction factog controls the magnitude of
the velocities, in a manner similar to thg,,, parameter, applied in the first versions of PSO.
In general, the variants of PSO that incorporate a constmid¢actor are usually faster, but do
not exhibit the same good global convergence rates, comparthe versions using an inertia
weight.

The PSO method appears to adhere to the five basic princifg@gom intelligence, as defined
in [5], [16]:

(a) Proximity, i.e. the swarm must be able to perform simple space and tomg@gtations;
(b) Quality, i.e. the swarm should be a able to respond to quality faatdiee environment;

(c) Diverse response.e. the swarm should not commit its activities along esoesty narrow
channels;



(d) Stability, i.e. the swarm should not alter its behavior every time therenment changes;
and finally

(e) Adaptability, i.e. the swarm must be able to change its behavior, wheroiin@gtational
cost is not prohibitive.

Indeed, the swarm in PSO performs space calculations faraktime steps. It responds to
the quality factors implied by each particle’s best positemd the best particle in the swarm,
allocating the responses in a manner that ensures diversioreover, the swarm alters its
behavior (state) only when the best particle in the swarmn(¢gine neighborhood, in the local
variant of PSO) changes, thus, it is both adaptive and sfaple

In EAs, three main operators are involved. Trheombinationthe mutationand theselection
operator. PSO does not have a direct recombination opetdbovever, the stochastic acceler-
ation of a particle towards its previous best position, ab agetowards the best particle of the
swarm (or towards the best in its neighborhood in the locediva), resembles the recombina-
tion procedure in Evolution Strategies [4], [18], [21], [23n PSO the information exchange
takes place only among the particle’s own experience andxperience of the best particle in
the swarm, instead of being carried from fitness dependéstited “parents” to descendants as
in EAs.

Moreover, PSO'’s directional position updating operatiesembles the mutation in EAs, with
a kind of memory built in. This mutation—like procedure isltidirectional both in PSO and
EAs, and it includes control of the mutation’s severitylizitng factors such as thg,,,, andy.

PSO is actually the only evolutionary algorithm that doesinoorporate the “survival of the
fittest” concept. It does not utilize a direct selection fiima. Thus, particles with lower fithess
value can survive during the optimization and potentiaigt\any point of the search space [4].

4. EXPERIMENTAL RESULTS
The following well-known and widely used test problems afi@as dimensions were consid-
ered and they are defined as:

TESTPROBLEM 1 [12], [14]: Crescent function (2—dimensional)
Fi(z) = max{z] + (2o — 1)> + 25 — 1, =27 — (2 — 1)® + 25 + 1},
with optimum valueF; = 0.
TESTPROBLEM 2 [12], [14]: CB2 function (2—dimensional)
Fy(r) = max{z? + 13, (2 — 21)? + (2 — 13)?, 27172}

with optimum valuefyy = 1.9522245.

TESTPROBLEM 3 [12], [14]: Rosen—Suzuki function (4—dimensional)

F3(x) max{ f1(x), fi(z) + 10fa(x), fi(x) + 10f3(x), fi(x) + 10 f4(x)},
fi(x) = a2} + 25+ 2205 + 27 — 53y — 5wy — 213 + Ty,

folx) = 2l +x+25+2]+7 — 29+ 73 — T4 — 8,

fa(z) = 234225+ 23 + 225 — 2 — 24 — 10,

fa(z)

2 2 2



with optimum valueF; = —44.
TESTPROBLEM 4 [12], [14]: Shor function (5—dimensional)

5

Fy(x) = max < b; E —ay)?p,
1<i<10 -
]:

0000O0O 1
2111 3 5
12112 10
1412 2 2
32101 4

A=lyo9101 | 2= 35 |
11111 1.7
101 21 2.5
00210 6
11200 3.5

with optimum valueF; = 22.600152.
TESTPROBLEM 5 [12]: El-Attar function (6—dimensional)

o) = 32 e s ) 42—

)

Y = 0.5e i e 4 0.5e 3 4+ 1.5¢ %% gin Tt; 4+ e 25 sin 5t;,
t; = 0.1(—1), 1<i<50,

with optimum valueFz = 0.5598131.
TESTPROBLEM 6 [12]: Steiner 2 function (12—dimensional)

\/ ot + 2], + \/(5421 — Tp)” + (A2 — Tom)” +

+ ZPJ \/(0431 )" + (g2 — Tj4m)” +

j=1
m—1
+ Z ~j\/(xj - xj+1)2 + (Tjm — $j+m+1)2,
7=1
m = 6, Q91 = 55, 9y = —]_,
0.0 2.0 2 1
2.0 3.0 1 1
3.0 —1.0 1 -
A= [al]] — 4.0 —-05 y D= 5 , Pp= 2 ,
5.0 2.0 1 g
6.0 2.0 1

with optimum valueFy = 16.703838.
TESTPROBLEM 7 [12], [14]: Maxq (20—dimensional)

Fy(z) = max z7,
1<i<20



with optimum valueFs = 0.
TESTPROBLEM 8 [12], [14]: MaxI| (20—dimensional)

Fy(r) = max |,

with optimum valueFy = 0.
TESTPROBLEM 9 [12], [14]: Goffin (30—dimensional)

Fy(x) =30 max z; — in,

1<i<30

with optimum valuefy = 0.

Two variants of PSO were used. One utilizes an inertia weaght, and the other utilizes only
the constriction factor, denoted as Pso-In and Pso-Co ctgply. For all experiments, the
initial swarm and the initial velocities were randomly distited within the rangé—10, 107,
whereD is the corresponding problem dimension. For the paramet&SO, values which are
considered as default, were used= ¢, = 2; Y = 0.73 in Pso-Co;w was gradually decreased
from 1 toward0.1, in Pso-In; the maximum allowed number of function evaloasi wasl1 0;
Vinaz = 4; the size of the swarm was problem dependent. In any casewRS@ot allowed to
exceedl0® function evaluations. A function tolerance tof * was used as stopping criterion.
For each test problen2p experiments were performed for both variants of PSO. Theeasc
rate, the mean, the standard deviation and the median oétjuéred function evaluations were
recorded and they are reported in Table 1.

Test Problem Algorithm Success Rate Mean Func. Eval. SubcFeval. Median Func. Eval.
1 Pso-Co 100% 51.60 4.52 51
(2-dim.) Pso-In 100% 793.20 59.32 780
2 Pso-Co 100% 141.00 71.56 123
(2-dim.) Pso-In 100% 948.20 111.60 1007
3 Pso-Co 95% 377.00 560.37 79.5
(4-dim.) Pso-In 95% 766.60 430.75 612
4 Pso-Co 95% 104.40 135.04 65.5
(5-dim.) Pso-In 90% 281.10 137.12 232
5 Pso-Co 95% 224.75 148.95 192.5
(6-dim.) Pso-In 74% 385.20 135.59 310
6 Pso-Co 100% 147.50 13.02 148.5
(12-dim.) Pso-In 100% 443.75 15.45 439.5
7 Pso-Co 100% 255.20 32.65 246
(20-dim.) Pso-In 100% 662.30 57.37 646
8 Pso-Co 100% 265.60 29.89 260.5
(20-dim.) Pso-In 100% 702.15 75.65 686
9 Pso-Co 100% 499.35 30.86 501.5
(30-dim.) Pso-In 100% 857.90 57.58 855

Table 1: The success rate, the mean, the standard deviatibtha median of the required
function evaluations for all experiments.

The experimental results indicate that PSO is effectiveolmisg honsmooth/nonconvex opti-
mization problems. The success rates are high in all teblgmres, with the constriction factor
variant always outperforming the inertia weight variantheTsuccess rates are high even in
high—dimensional test problems, although only defaulueslfor the PSO’s parameters were
used. Proper fine tuning may result in even faster convesgenc



5. CONCLUSIONS

The performance of two variants of the PSO algorithm, inisglnonsmooth/nonconvex op-

timization problems, was investigated. Nonsmooth/nomermptimization problems are fre-

guently encountered in Mechanics applications and theyiswally addressed through deter-
ministic techniques for convex optimization, applied oeqawise convex approximations of
the objective function. However, this approach is indiaat the computational cost is heavy.
Moreover, an assumption on the Lipschitz condition of thiectove function needs to be made.

Evolutionary and Swarm Intelligence algorithms, can beliadpon discontinuous test func-
tions and disjoint search spaces. Thus, they appear to bedhai@rnative for solving nons-
mooth/nonconvex problems. They require only function gajithey are easily implemented,
and they are noise tolerant. Since they are stochastic iatilon algorithms, several parame-
ters have to be defined. On the other hand, our experimestdisen well-known and widely
used problems indicate that high success rates can be edt@egn by using the default param-
eters values of PSO. Of course, fine—tuning may result iefastnvergence.

In future work, the performance of PSO directly on Mechaaijgglications will be investigated
and compared with results reported in relative literatab#ained through different EAs.
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