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1. SUMMARY
In Mechanics applications, nonsmooth/nonconvex functions that need to be minimized, are
frequently encountered. These functions are not differentiable, and consequently cannot be
directly addressed through classical optimization algorithms. A very common approach for
solving such problems is the implementation of convex optimization methods applied on piece-
wise linear approximations of the objective function. However, most techniques in this category
incorporate assumptions on the Lipschitz continuity of theobjective function. Recently, Evolu-
tionary Algorithms (EAs) have been applied on nonsmooth/nonconvex problems, and exhibited
very promising results. A study of the performance of the Particle Swarm Optimization (PSO)
method for solving nonsmooth/nonconvex problems forms thecore of this paper. Several well–
known and widely used test problems are considered and experimental results are reported.
Ideas for further work and applications of PSO on Mechanics problems are discussed.

2. INTRODUCTION
We consider the following nonsmooth/nonconvex optimization problemminx f(x); x 2 S � Rn ; (1)

where the objective function,f : Rn ! R, is nonsmooth and nonconvex. Problems like this,
arise very often in Mechanics. Consider, for example, the inverse problem in flaw identification
in elastomechanics. This problem is formulated as a minimization problem of a nonsmooth
and in general nonconvex objective function [26]. Moreover, the solution of a Hemivariational
inequality, has proved to be a substationary point of a nonsmooth/nonconvex functional [13].
Since the objective function is not differentiable, these problems cannot be addressed directly
using deterministic optimization methods. The most commonapproach is the implementation
of convex minimization algorithms on convex approximations of the objective function [17],
[27]. Bundle methods are considered as the most promising approach for solving nonsmooth
problems [13]. Their origin is the classical cutting plane method [3], [7], and they are based
on a piecewise linear approximation of the objective function. Numerical experiments indicate
that Bundle methods are effective [11], [14], [20]. However, some assumptions on the objective
function are still needed. Specifically,f(x) needs to be locally Lipschitz continuous [13].

Evolutionary and Swarm Intelligence algorithms are stochastic methods for global optimiza-
tion. They draw from natural evolution and insects’ social behavior, exploiting a population of



points to probe different areas of the search space simultaneously. They do not require deriva-
tives information, but only function values. In EAs, each individual of the population is encoded
either in real (Evolution Strategies [22], [23]) or binary (Genetic Algorithms [6], [15]) format,
and operators inspired by natural evolution are applied on it. Thus, the population evolves
through time towards the global minimum of the objective function. A fitness function is used
for the evaluation of individuals. In unconstrained globaloptimization problems, the objective
function under consideration is used as fitness function. EAs have been successfully applied on
numerous, diverse, scientific fields, including Mathematics, Computer Science, Physics, Com-
putational Biology, etc. PSO is a Swarm Intelligence algorithm, rooted in a simulation of social
behavior [5], [10]. As in EAs, a population of potential solutions is used in PSO. However, each
individual shares information with the rest, and can thus profit from the discoveries of all other
companions.

The performance of PSO on widely used nonsmooth/nonconvex test problems is investigated
in this paper. In the next section, the PSO algorithm is described. In Section 4, the test prob-
lems and the experimental results are reported. The paper closes with a discussion for further
application of PSO on Mechanics problems.

3. THE PARTICLE SWARM OPTIMIZATION METHOD
PSO’s predecessor was a simulator of social behavior, that was used to visualize the movement
of a birds’ flock. Several versions of the simulation model were developed, incorporating con-
cepts such as nearest–neighbor velocity matching and acceleration by distance [5], [9]. When it
was realized that the simulation could be used as an optimizer, several parameters were omitted,
through a trial and error process, resulting in the first simple version of PSO [5].

In PSO, each individual of the population has anadaptable velocity(position change), which
dictates its motion in the search space. Moreover, each individual is characterized by amemory,
which stores the best position of the search space it has evervisited [5]. Thus, its movement
is an aggregated acceleration towards its best previously visited position and towards the best
individual of a topological neighborhood. Since the “acceleration” term was mainly used for
particle systems in Particle Physics [19], the developers of this technique decided to use the term
particle for each individual, and the nameswarmfor the population as a whole, thus, coming
up with the nameParticle Swarmfor their algorithm [9].

Two variants of the PSO algorithm were developed. One with a global neighborhood, and one
with a local neighborhood. According to the global variant,each particle moves towards its best
previous position and towards the best particle in the wholeswarm. On the other hand, in the
local variant, each particle moves towards its best previous position and towards the best particle
in its restricted neighborhood [5]. Since the global variant performs better in most cases, it was
selected for the experiments conducted in this paper.

Suppose that the search space isD–dimensional, then thei–th particle of the swarm can be rep-
resented by aD–dimensional vector,Xi = (xi1; xi2; : : : ; xiD)>. Thevelocity(position change)
of this particle, can be represented by anotherD–dimensional vectorVi = (vi1; vi2; : : : ; viD)>.
The best previously visited position of thei–th particle is denoted asPi = (pi1; pi2; : : : ; piD)>.
Definingg as the index of the best particle in the swarm (i.e. theg–th particle is the best), and
letting the superscripts denote the iteration number, thenthe swarm is manipulated according to
the following two equations [5]:vn+1id = � �wvnid + c1rn1 (pnid � xnid) + c2rn2 (pngd � xnid)� ; (2)xn+1id = xnid + vn+1id ; (3)



whered = 1; 2; : : : ; D; i = 1; 2; : : : ; N , andN is the size of the swarm;w is calledinertia
weight; c1, c2 are two positive constants, calledcognitiveandsocialparameter respectively;�
is aconstriction factor, which is used to limit velocity;r1, r2 are random numbers, uniformly
distributed in[0; 1]; andn = 1; 2; : : :, determines the iteration number. The role of these param-
eters is discussed in the next section.

In the early versions of PSO, neither an inertia weight nor a constriction factor was used. Thus,
no actual mechanism controlled the velocity of a particle. This lack of a control mechanism
resulted in low efficiency for PSO, compared to EAs [1]. This problem was initially addressed
by using a maximum valueVmax for the velocity. If the velocity exceeded this threshold, it was
set equal toVmax. This parameter proved to be crucial, because large values could result in par-
ticles moving past good solutions, while small values couldresult in insufficient exploration of
the search space. Specifically, PSO located the area of the optimum faster than EA techniques,
but once in the region of the optimum, it was unable to adjust its velocity stepsize to continue
the search at a finer grain. The aforementioned problem was addressed by incorporating either
an inertia weight or a constriction factor (in some cases both parameters are included).

The role of theinertia weightw, in Eq. (2), is considered very important for PSO’s conver-
gence behavior. The inertia weight is employed to control the impact of the previous history
of velocities on the current one. Accordingly, the parameter w regulates the trade–off between
the global (wide–ranging) and local (nearby) exploration abilities of the swarm. A large inertia
weight facilitates global exploration (searching new areas), while a small one tends to facilitate
local exploration, i.e. fine–tuning the current search area. A suitable value for the inertia weightw usually provides balance between global and local exploration abilities and consequently re-
sults in a reduction of the number of iterations required to locate the optimum solution. Initially,
the inertia weight was set to a constant. However, experimental results indicated that it is better
to initially set the inertia to a large value, in order to promote global exploration of the search
space, and gradually decrease it to get more refined solutions [24], [25]. Thus, an initial value
around1:2 and a gradual decline towards0 can be considered as a good choice forw .

The parametersc1 andc2, in Eq. (2), are not critical for PSO’s convergence. However, proper
fine–tuning may result in faster convergence and alleviation of local minima. An extended study
of the acceleration parameter in the first version of PSO, is given in [8]. As default values,c1 = c2 = 2 were proposed. Experimental results indicate thatc1 = c2 = 0:5 also consist
a good choice. Recent work reports that it might be even better to choose a larger cognitive
parameter,c1, than a social parameter,c2, but withc1 + c2 6 4 [2].

The parametersr1 and r2 are used to maintain the diversity of the population, and they are
uniformly distributed in the range[0; 1]. The constriction factor� controls the magnitude of
the velocities, in a manner similar to theVmax parameter, applied in the first versions of PSO.
In general, the variants of PSO that incorporate a constriction factor are usually faster, but do
not exhibit the same good global convergence rates, compared to the versions using an inertia
weight.

The PSO method appears to adhere to the five basic principles of swarm intelligence, as defined
in [5], [16]:

(a) Proximity, i.e. the swarm must be able to perform simple space and time computations;

(b) Quality, i.e. the swarm should be a able to respond to quality factorsin the environment;

(c) Diverse response, i.e. the swarm should not commit its activities along excessively narrow
channels;



(d) Stability, i.e. the swarm should not alter its behavior every time the environment changes;
and finally

(e) Adaptability, i.e. the swarm must be able to change its behavior, when the computational
cost is not prohibitive.

Indeed, the swarm in PSO performs space calculations for several time steps. It responds to
the quality factors implied by each particle’s best position and the best particle in the swarm,
allocating the responses in a manner that ensures diversity. Moreover, the swarm alters its
behavior (state) only when the best particle in the swarm (orin the neighborhood, in the local
variant of PSO) changes, thus, it is both adaptive and stable[5].

In EAs, three main operators are involved. Therecombination, themutationand theselection
operator. PSO does not have a direct recombination operator. However, the stochastic acceler-
ation of a particle towards its previous best position, as well as towards the best particle of the
swarm (or towards the best in its neighborhood in the local version), resembles the recombina-
tion procedure in Evolution Strategies [4], [18], [21], [23]. In PSO the information exchange
takes place only among the particle’s own experience and theexperience of the best particle in
the swarm, instead of being carried from fitness dependent selected “parents” to descendants as
in EAs.

Moreover, PSO’s directional position updating operation resembles the mutation in EAs, with
a kind of memory built in. This mutation–like procedure is multidirectional both in PSO and
EAs, and it includes control of the mutation’s severity, utilizing factors such as theVmax and�.

PSO is actually the only evolutionary algorithm that does not incorporate the “survival of the
fittest” concept. It does not utilize a direct selection function. Thus, particles with lower fitness
value can survive during the optimization and potentially visit any point of the search space [4].

4. EXPERIMENTAL RESULTS
The following well–known and widely used test problems of various dimensions were consid-
ered and they are defined as:

TEST PROBLEM 1 [12], [14]: Crescent function (2–dimensional)F1(x) = maxfx21 + (x2 � 1)2 + x2 � 1;�x21 � (x2 � 1)2 + x2 + 1g;
with optimum valueF �1 = 0.

TEST PROBLEM 2 [12], [14]: CB2 function (2–dimensional)F2(x) = maxfx21 + x42; (2� x1)2 + (2� x2)2; 2e�x1+x2g;
with optimum valueF �2 = 1:9522245.

TEST PROBLEM 3 [12], [14]: Rosen–Suzuki function (4–dimensional)F3(x) = maxff1(x); f1(x) + 10f2(x); f1(x) + 10f3(x); f1(x) + 10f4(x)g;f1(x) = x21 + x22 + 2x23 + x24 � 5x1 � 5x2 � 21x3 + 7x4;f2(x) = x21 + x22 + x23 + x24 + x1 � x2 + x3 � x4 � 8;f3(x) = x21 + 2x22 + x23 + 2x24 � x1 � x4 � 10;f4(x) = x21 + x22 + x23 + 2x1 � x2 � x4 � 5;



with optimum valueF �3 = �44.

TEST PROBLEM 4 [12], [14]: Shor function (5–dimensional)F4(x) = max16i610(bi 5Xj=1(xj � �ij)2) ;
A =

0BBBBBBBBBBBBBB@
0 0 0 0 02 1 1 1 31 2 1 1 21 4 1 2 23 2 1 0 10 2 1 0 11 1 1 1 11 0 1 2 10 0 2 1 01 1 2 0 0

1CCCCCCCCCCCCCCA ; b =
0BBBBBBBBBBBBBB@

15102431:72:563:5
1CCCCCCCCCCCCCCA ;

with optimum valueF �4 = 22:600152.

TEST PROBLEM 5 [12]: El–Attar function (6–dimensional)F5(x) = 50Xi=1 ��x1e�x2ti cos(x3ti + x4) + x5e�x6ti � yi�� ;yi = 0:5e�ti � e�2ti + 0:5e�3ti + 1:5e�1:5ti sin 7ti + e�2:5ti sin 5ti;ti = 0:1(i� 1); 1 6 i 6 50;
with optimum valueF �5 = 0:5598131.

TEST PROBLEM 6 [12]: Steiner 2 function (12–dimensional)F6(x) = qx21 + x21+m +q(��21 � xm)2 + (��22 � x2m)2 ++ mXj=1 pjq(�j1 � xj)2 + (�j2 � xj+m)2 ++m�1Xj=1 ~pjq(xj � xj+1)2 + (xj+m � xj+m+1)2;m = 6; ��21 = 5:5; ��22 = �1;
A = [�ij] = 0BBBBBB@ 0:0 2:02:0 3:03:0 �1:04:0 �0:55:0 2:06:0 2:0

1CCCCCCA ; p = 0BBBBBB@ 211511
1CCCCCCA ; ~p = 0BBBB@ 11232

1CCCCA ;
with optimum valueF �6 = 16:703838.

TEST PROBLEM 7 [12], [14]: Maxq (20–dimensional)F7(x) = max16i620 x2i ;



with optimum valueF �7 = 0.

TEST PROBLEM 8 [12], [14]: Maxl (20–dimensional)F8(x) = max16i620 jxij ;
with optimum valueF �8 = 0.

TEST PROBLEM 9 [12], [14]: Goffin (30–dimensional)F9(x) = 30 max16i630xi � 30Xi=1 xi;
with optimum valueF �9 = 0.

Two variants of PSO were used. One utilizes an inertia weightonly, and the other utilizes only
the constriction factor, denoted as Pso-In and Pso-Co respectively. For all experiments, the
initial swarm and the initial velocities were randomly distributed within the range[�10; 10]D,
whereD is the corresponding problem dimension. For the parametersof PSO, values which are
considered as default, were used:c1 = c2 = 2; � = 0:73 in Pso-Co;w was gradually decreased
from 1 toward0:1, in Pso-In; the maximum allowed number of function evaluations was105;Vmax = 4; the size of the swarm was problem dependent. In any case, PSOwas not allowed to
exceed105 function evaluations. A function tolerance of10�4 was used as stopping criterion.
For each test problem,20 experiments were performed for both variants of PSO. The success
rate, the mean, the standard deviation and the median of the required function evaluations were
recorded and they are reported in Table 1.

Test Problem Algorithm Success Rate Mean Func. Eval. St.D. Func. Eval. Median Func. Eval.

1 Pso-Co 100% 51.60 4.52 51
(2-dim.) Pso-In 100% 793.20 59.32 780

2 Pso-Co 100% 141.00 71.56 123
(2-dim.) Pso-In 100% 948.20 111.60 1007

3 Pso-Co 95% 377.00 560.37 79.5
(4-dim.) Pso-In 95% 766.60 430.75 612

4 Pso-Co 95% 104.40 135.04 65.5
(5-dim.) Pso-In 90% 281.10 137.12 232

5 Pso-Co 95% 224.75 148.95 192.5
(6-dim.) Pso-In 74% 385.20 135.59 310

6 Pso-Co 100% 147.50 13.02 148.5
(12-dim.) Pso-In 100% 443.75 15.45 439.5

7 Pso-Co 100% 255.20 32.65 246
(20-dim.) Pso-In 100% 662.30 57.37 646

8 Pso-Co 100% 265.60 29.89 260.5
(20-dim.) Pso-In 100% 702.15 75.65 686

9 Pso-Co 100% 499.35 30.86 501.5
(30-dim.) Pso-In 100% 857.90 57.58 855

Table 1: The success rate, the mean, the standard deviation and the median of the required
function evaluations for all experiments.

The experimental results indicate that PSO is effective in solving nonsmooth/nonconvex opti-
mization problems. The success rates are high in all test problems, with the constriction factor
variant always outperforming the inertia weight variant. The success rates are high even in
high–dimensional test problems, although only default values for the PSO’s parameters were
used. Proper fine tuning may result in even faster convergence.



5. CONCLUSIONS
The performance of two variants of the PSO algorithm, in solving nonsmooth/nonconvex op-
timization problems, was investigated. Nonsmooth/nonconvex optimization problems are fre-
quently encountered in Mechanics applications and they areusually addressed through deter-
ministic techniques for convex optimization, applied on piecewise convex approximations of
the objective function. However, this approach is indirectand the computational cost is heavy.
Moreover, an assumption on the Lipschitz condition of the objective function needs to be made.

Evolutionary and Swarm Intelligence algorithms, can be applied on discontinuous test func-
tions and disjoint search spaces. Thus, they appear to be a good alternative for solving nons-
mooth/nonconvex problems. They require only function values, they are easily implemented,
and they are noise tolerant. Since they are stochastic optimization algorithms, several parame-
ters have to be defined. On the other hand, our experimental results on well–known and widely
used problems indicate that high success rates can be achieved even by using the default param-
eters values of PSO. Of course, fine–tuning may result in faster convergence.

In future work, the performance of PSO directly on Mechanicsapplications will be investigated
and compared with results reported in relative literature,obtained through different EAs.
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