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1. SUMMARY 
In this paper the ability of the Particle Swarm Optimization technique to cope with 
noisy functions is discussed. Results of experiments performed for particle 
identification by light scattering as well as on well-known test functions are presented 
and conclusions are derived. 
 
2. INTRODUCTION 
In most engineering applications optimization problems of continuous or discrete 
nature arise very often, making thus optimization techniques of undisputed 
importance in science and technology. Applications of them can be met in many 
scientific fields. Indeed, many recent advances in science, economics and engineering 
rely on numerical techniques for computing globally optimal solutions to 
corresponding optimization problems [10]. Usually, due to the existence of multiple 
local and global optima, these problems cannot be solved by classical nonlinear 
programming techniques. 
 

Most Global Optimization (GO) techniques consist of a “local” and a “global” 
component. The “local” component is usually a “traditional” (gradient descent) local 
optimization technique, while the “global” component is used to search globally the 
search space in a complete, “exhaustive” fashion. These remarks indicate the inherent 
computational demand of the GO algorithms, which increases non-polynomially, as a 
function of problem-size, even in the simplest cases. 
 

In practice, most of the above-mentioned techniques detect just sub-optimal solutions 
of the objective function and not global solutions that, in many applications, are not 
only desirable but also indispensable. Moreover, in many applications there are 
imprecise values for the input data as well as for the function values. Therefore, the 
development of robust and efficient GO methods for noisy environments, such as the 
aforementioned is a subject of considerable ongoing research [7, 18, 23, 25]. 
 

The Particle Swarm Optimization (PSO) technique has been developed by Eberhart 
and Kennedy in 1995 [11] and it is a simple evolutionary algorithm which differs 
from other evolutionary computation techniques in that it is motivated from the 
simulation of social behavior. PSO exhibits good performance in finding solutions to 
static optimization problems [15, 16, 17]. In [18] a first study of the performance of 



PSO in noisy and continuously changing environments has been presented. In the 
following paragraphs this study is extended and further experiments on well-known 
test functions as well as for particle identification by light scattering are presented. 
 

The remaining of the paper is organized as follows: in Section 3 a general discussion 
of the optimization problem for noisy functions as well as a simulation of the 
influence of noise (proportional to a normally distributed random number with zero 
mean and various values of variance) is given. The PSO method and the particle 
identification by light scattering problem are briefly presented in Sections 4 and 5 
respectively. In Section 6, numerical results are exhibited and in Section 7 concluding 
remarks are given. 
 
3. OPTIMIZATION OF NOISY FUNCTIONS 
Several methods for finding the extrema of a function f : CL(S) ⊂  ℝn → ℝ, where 
CL(S) is the closure of an open and bounded set S, have been proposed. There are 
many applications in different scientific fields such as mathematics, physics, 
engineering, computer science etc. Most of them require precise function and gradient 
values. In many applications though, precise values are either impossible or time 
consuming to obtain. For example, when the function and gradient values depend on 
the results of numerical simulations, then it may be difficult or impossible to get very 
precise values. Or in other cases, it may be necessary to integrate numerically a 
system of differential equations in order to obtain a function value, so that the 
precision of the computed value is limited. Furthermore, in many problems the 
accurate values of the function to be minimized are computationally expensive. Such 
problems are common in real life applications as in the optimization of parameters in 
chemical experiments or finite element calculations. With such applications in mind, 
robust methods are needed, which make good progress with the fewest possible 
number of function evaluations. 
 

The theory of local optimization provides a large variety of efficient and effective 
methods for the computation of an optimizer of a smooth function f. For example, 
Newton-type and quasi-Newton methods exhibit superlinear convergence in the 
vicinity of a non-degenerate optimizer. However, these methods require the Hessian 
or the gradient, respectively, in contrast to other optimization procedures, like the 
simplex method [14], the direction set method of Powell [8], or some other recently 
proposed methods [6, 7, 25]. 
 

In some applications, however, the function to be minimized is only known within 
some (often unknown and low) precision. This might be due to the fact that evaluation 
of the function means measuring some physical or chemical quantity or performing a 
finite element calculation in order to solve partial differential equations. The function 
values obtained are corrupted by noise, namely stochastic measurement errors or 
discretization errors. This means that, although the underlying function is smooth, the 
function values available show a discontinuous behavior. Moreover, no gradient 
information is available. For small variances in a neighborhood of a point the 
corresponding function values reflect the local behavior of the noise rather than that 
of the function. Thus, a finite-difference procedure to estimate the gradient fails [6]. 
 

The traditional method for optimizing noisy functions is the simplex or polytope 
method by Nelder and Mead [8, 14]. This method surpasses other well-known 
optimization methods when dealing with the large noise case. However, this is not 
valid in the noiseless case. The ability of this method to cope with noise is due to the 



fact that it proceeds solely by comparing the relative size of the function values, as the 
proposed method does. The Simplex method does not use a local model of the 
function f and works without the assumption of continuity. Although this method has 
poor convergence properties (for a convergence proof of a modified version see [23]), 
it has been a useful method in many sequential applications, although it is difficult 
and inefficient to implement in parallel. The method can be deficient when the current 
simplex is very “flat”. This can be avoided by suitable variants (see for example [23]). 
More sophisticated methods in this direction are discussed in [21]. 
 

To study the influence of the imprecise information (regarding the values of the 
objective function), we simulate imprecision with the following approach. 
Information about f(x) is obtained in the form of fσ(x), where fσ(x) is an approxi-
mation to the true function value f(x), contaminated by a small amount of noise η. 
Specifically, the function values are obtained as in [7]: 
 

(1)          f σ(x) = f(x)(1 + η),   η ∼  N(0, σ2), 
 
where η ∼  N(0, σ2) denotes a Gaussian-distributed random variable with zero mean 
and variance σ2, i.e., relative stochastic errors are used for the test problems. To obtain 
η, we apply the method of Box and Muller [2], using various values of the variance. 
 
4. THE PARTICLE SWARM OPTIMIZATION TECHNIQUE 
As in all evolutionary techniques, in PSO a population of potential solutions is used to 
search the search space, too. However, PSO differs from other evolutionary 
algorithms in that there are no DNA inspired operators in order to manipulate the 
population. Instead, in PSO the population dynamics resembles the movement of a 
“birds’ flock” while searching for food, where social sharing of information takes 
place and individuals can profit from the discoveries and previous experience of all 
other companions. Thus, each companion, called particle, in the population, which is 
called swarm, is assumed to “fly” over the search space in order to find promising 
regions of the landscape. In the function minimization case, such regions possess 
lower function values than other visited previously. In this context, each particle is 
treated as a point in a D-dimensional space which adjusts its own “flying” according 
to its flying experience as well as the flying experience of other particles 
(companions). There are many variants of the PSO proposed so far, after Eberhart and 
Kennedy introduced this technique [5, 11]. In our experiments a version of this 
algorithm that is derived by adding an inertia weight to the original PSO dynamics 
was used [4]. This version is described in the following paragraphs. 
 

First let us define the notation adopted in this paper: the i-th particle of the swarm is 
represented by the D-dimensional vector Xi = (xi1, xi2,…, xiD) and the best particle of 
the swarm, i.e., the particle with the smallest function value, is denoted by the index 
g. The best previous position (the position giving the best function value) of the i-th 
particle is recorded and represented as Pi = (pi1, pi2,…, piD), and the position change 
(velocity) of the i-th particle is Vi=(vi1, vi2,…, viD). The particles are then manipulated 
according to the equations 
 

(2) vid = χ [w vid + c1 r1 (pid – xid) + c2 r2 (pgd – xid)], 
(3) xid = xid + vid, 

 



where d = 1, 2,…, D; i = 1, 2,…, N and N is the size of the swarm; w is the inertia 
weight and its role is discussed below; c1 and c2 are two positive constants; r1 and r2 
are two random values into the range [0, 1]; χ is a constriction factor which is used in 
constrained optimization problems in order to control the magnitude of the velocity 
(in unconstrained optimization problems it is usually set equal to 1.0). 
 

The first equation is used to calculate the i-th particle’s new velocity by taking into 
consideration three terms: the particle’s previous velocity, the distance between the 
particle’s best previous and its current position, and, finally, the distance between the 
swarm’s best experience (the position of the best particle in the swarm) and the i-th 
particle’s current position. Then, following the second equation, the i-th particle flies 
toward a new position. In general, the performance of each particle is measured 
according to a predefined fitness function, which is problem-dependent. The role of 
the inertia weight w is considered very important in PSO convergence behavior. The 
inertia weight is employed to control the impact of the previous history of velocities 
on the current velocity, regulating the trade-off between the global and local 
exploration abilities of the swarm. A large inertia weight facilitates global exploration 
(searching new areas), while a small one tends to facilitate local exploration, i.e., fine-
tuning the current search area. A general rule of thumb suggests that it is better to 
initially set the inertia to a large value, in order to make better global exploration of 
the search space, and gradually decrease it to get more refined solutions, thus a 
linearly decreasing inertia weight value is used. The initial population can be 
generated either randomly or by using a Sobol sequence generator [20] which ensures 
that the generated points will be uniformly distributed into the search space. 
 

From the above discussion it is obvious that PSO, to some extent, resembles the 
evolutionary algorithms. However, in PSO, instead of using genetic operators 
(crossover and mutation), each particle updates its own position based on its own 
search experience and other particles’ experience and discoveries. Adding the velocity 
term to the current position, in order to generate the next position, resembles the 
mutation operation in evolutionary algorithms. Note that in PSO, however, the 
mutation operator is guided by the particle’s own “flying” experience and benefits by 
the swarm’s “flying” experience. In another words, PSO is considered as performing 
mutation with a “conscience”, as pointed out by Eberhart and Shi [4]. 
 
5. PARTICLE IDENTIFICATION BY LIGHT SCATTERING 
Astronomy, Meteorology, Medicine and Bioengineering are just some of the fields 
where the laser light scattering measurements have become an important tool in the 
determination of the size and optical characteristics of small particles. There are 
actually two techniques for the determination of particle size using light scattering: 
Dynamic Light Scattering (DLS) and Static Light Scattering (SLS). In DLS a laser is 
focused into a small volume of solution containing the colloidal particles and the 
scattered light is collected over a small solid angle. The phase and polarization of the 
light scattered by any given molecule is determined by its size, shape, and 
composition. Random Brownian motion causes the total intensity at the detector to 
fluctuate at time. Autocorrelation functions are generated from these fluctuations and 
then inverted to obtain the distribution of particle sizes [3, 9]. On the other hand, in 
SLS the total intensity of the scattered light is measured as a function of angle and this 
information is used to determine the particle size distributions. For spheres the 
angular dependence of the scattered light is described by the Mie scattering function 



[1], which depends on the refractive indices of the particle, the surrounding medium, 
and the size of the particles present [9]. 
 

A fundamental problem in inverse light scattering is the determination of the 
refractive index and the radius of homogeneous spherical particles suspended in a 
known medium. In order to solve that problem, plane polarized light of known 
wavelength is scattered from these particles and the intensity I is measured at a series 
of angles. The standard Lorenz-Mie theory [1] is used to describe the process and the 
one-dimensional scattering pattern observed is used to characterize both single 
particles and particle distributions. Thus, having experimental measures Is(θ1), Is(θ2), 
..., Is(θm) of the scattered light intensity for several angles, we wish to determine the 
corresponding values of the index of refraction n and the particle radius r. The value 
of n can be either real or complex. The intensity values vary widely relatively to the 
angle and thus it is better to work with the logarithm of the intensities. The objective 
function that is used is: 
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where is=log(Is) and the z(.) function is the logarithm of the theoretically computed 
intensity. If n∈ ℝ then the problem of minimizing E1 is three-dimensional, otherwise, 
if n∈ ℂ, it is two-dimensional. Several techniques have been used to solve the 
aforementioned problem. For real values of n, random search and multilevel single-
linkage clustering have been applied. However, the function E1 has many local 
minima and thus the initial guess of the solution is of crucial importance. Since 
evolutionary techniques do not depend on the initial guess, they appear as a good 
alternative to cope with the problem [9]. In our study the PSO technique is applied to 
solve it and the results are very promising as it will be exhibited in the next section. 
 
6. EXPERIMENTAL RESULTS 
First an experiment for particle identification by light scattering has been performed. 
A brief description of the problem has been given in the previous section. The 
simulated intensity functions I(θ) were generated using the BHMIE routine of Bohren 
and Huffman [1]. To these values, random amount of noise with several variance 
values was added to the function values. In the initial test problem n*=1.40 and 
r*=1.55 μm were used (these values constituted the global minimum) and the values 
of n and r were bounded by 1 ≤ n, r ≤ 2. The angular range was between 0o and 180o 
with data points taken at 9o increments. The wavelength was set equal to 0.5145 μm 
and the refractive index of the surrounding medium (water) was set equal to 1.336. 
The swarm’s size was 30, the inertia weight w was gradually decreased from 1.2 
toward 0.4 and c1 = c2 = 0.5. The maximum number of PSO iterations was 150 and 
the desired accuracy for all 30 runs was 10-5. The results are given in Table 1. The 
results presented in the tables are the success rate, the mean value of the Frobenius 
norm of the difference between the obtained and the actual global minimizer, the 
mean number of iterations and the mean number of function evaluations done. 
  

Variance Succ. Rate Mean Dist. Mean Iter. Mean Func. Ev. 
0 (noiseless) 90% 0.0793 99.9 3027.0 

0.01 95% 0.0369 101.6 3078.0 
0.03 95% 0.0216 119.5 3615.0 
0.05 65% 0.1627 130.3 3939.0 

Table 1.  Results for n*=1.40, r*=1.55. 



 
As can be seen, the addition of noise with small variance value increased the success 
rate of PSO by helping the alleviation of local minima, while the addition of noise 
with variance value around 0.5 decreased the overall performance of the algorithm. 
Similar are the results for n*=1.65 and r*=4.0 which is an area of the search space 
with much more local minima than the one in the previous experiment. The 
parameters were bounded by 1 ≤ n ≤ 2 and 3 ≤ r ≤ 5 and the swarm size was increased 
to 50 while the accuracy was set to 10-3. The results are exhibited in Table 2. 
 

 
Variance 

Success 
Rate 

Mean 
Distance 

Mean 
Iterations 

Mean  
Func. Eval. 

0 (noiseless) 90% 0.1237 111.33 3370.0 
0.01 95% 0.1601 70 2130.0 
0.03 83% 0.4886 136.2 4530.0 
0.05 94% 0.0008 89 2700.0 

Table 2.  Results for n*=1.65, r*=4. 
 
Furthermore, six well known two-dimensional optimization test problems were 
considered in order to check the performance of the PSO technique: De Jong [22], 
Six-Hump Camel [12], Banana Valley [19], Freudstein-Roth [13], Goldstein-Price 
[12] and Rastrigin [22]. At each function evaluation, noise was added to the actual 
function value according to Relation (1) for different values of the variance and for 
each one of the variance values, 100 runs of the PSO algorithm were performed. In all 
experiments the values of the parameters for the PSO algorithm were the same as in 
the previous experiments except the swarm’s size that was set equal to 20. 
 

The interval inside which the initial swarm was taken, the desired accuracy and the 
results obtained for the different values of variance for each test problem, are 
exhibited in Tables 3-8. For all experiments the maximum allowed number of PSO 
iterations was 5000. 
 

Variance Succ. Rate Mean Dist. Mean Iter. Mean Func. Ev. 
0.01 100% 0.000004 1694 33900 
0.02 100% 0.000026 1687.56 33771.2 
0.04 100% 0.0038 1683.8 33696 
0.07 100% 0.00007 1690.56 33831.2 
0.09 100% 0.000008 1691.52 33850.4 

Table 3.  Results for the DeJong function. Initial interval: [-5, 5]2, desired 
accuracy: 10-6. 

 
Variance Succ. Rate Mean Dist. Mean Iter. Mean Func. Ev. 

0.01 100% 0.02784 1668.88 33397.6 
0.02 100% 0.02411 1719.56 34411.2 
0.04 100% 0.09616 1757.08 35161.6 
0.07 100% 0.02526 1875.72 37534.4 
0.09 100% 0.13648 1839.72 36814.4 

Table 4.  Results for the Six-Hump Camel function. Initial interval: [-1, 
1]2, desired accuracy: 10-3. 

 
Variance Succ. Rate Mean Dist. Mean Iter. Mean Func. Ev. 

0.01 100% 0.014606 1950.52 39030.4 
0.02 96% 0.034635 2057.76 41175.2 
0.04 92% 0.015245 2108.32 42186.4 
0.07 92% 0.016156 2111.6 42252 
0.09 88% 0.020198 2272.56 45471.2 

Table 5.  Results for the Banana Valley function. Initial interval: [-3, 3]2, 
desired accuracy: 10-6. 



 
Variance Succ. Rate Mean Dist. Mean Iter. Mean Func. Ev. 

0.01 100% 0.000271 1729.84 34616.8 
0.02 100% 0.000021 1741 34840 
0.04 100% 0.000041 1742.08 34861.6 
0.07 92% 0.487113 1988.16 39783.2 
0.09 100% 0.039007 1723.68 34493.6 

Table 6.  Results for the Freudstein-Roth function. Initial interval: [0, 
10]2, desired accuracy: 10-6. 

 
Variance Succ. Rate Mean Dist. Mean Iter. Mean Func. Ev. 

0.01 100% 0.158967 1628.52 32590.4 
0.02 100% 0.058264 1637.68 32773.6 
0.04 100% 0.070651 1637.84 32776.8 
0.07 100% 0.213214 1661.4 33248 
0.09 100% 0.033704 1658.08 33181.6 

Table 7.  Results for the Goldstein-Price function. Initial interval: [-1, 1]2, 
desired accuracy: 10-3. 

 
Variance Succ. Rate Mean Dist. Mean Iter. Mean Func. Ev. 

0.01 100% 0.131205 1650.2 32121.4 
0.02 100% 0.153097 1654.92 33118.4 
0.04 100% 0.129110 1672.36 33467.2 
0.07 100% 0.095561 1691.44 33848.8 
0.09 100% 0.128160 1697.16 33963.2 

Table 8.  Results for the Rastrigin function. Initial interval: [-1, 1]2, 
desired accuracy: 10-3. 

 
It is clear that noise addition caused no crucial instability to the PSO algorithm. 
Furthermore, the success rates remained high (not smaller than 90% except one case), 
even when the value of noise’s variance was high. The mean number of iterations 
done by the PSO did not change significantly even when the variance increased from 
0.01 to 0.09. The same behavior was noticed for the mean number of function 
evaluations.  
 

Results for all experiments indicate that PSO is a very noise-tolerant technique and 
quite proper for minimization of noisy functions. 
 
7. CONCLUSIONS 
A study of the ability of the Particle Swarm Optimization method to minimize 
effectively noisy functions has been given. The experimental results indicate that in 
the presence of noise the PSO method is very stable and efficient. In fact, in many 
cases, the presence of noise seems to help PSO to avoid local minima of the objective 
function and locate the global one. Even in the cases where the standard deviation of 
the noise is large, PSO is able to move closely to the global minimizer’s position. 
Thus, PSO has the ability to cope with noisy environments effectively and in a stable 
manner. Further work shall be done to check the performance of PSO in other 
dynamic environments and especially in other real-life applications. 
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