
SOLVING l1 NORM ERRORS–IN–VARIABLES PROBLEMS
USING PARTICLE SWARM OPTIMIZATION

K.E. PARSOPOULOS
Department of Mathematics,

UPAIRC, University of Patras,
GR–261.10 Patras, Greece.

email: kostasp@math.upatras.gr

E.C. LASKARI
Department of Mathematics,

UPAIRC, University of Patras,
GR–261.10 Patras, Greece.

email: elena@master.math.upatras.gr

M.N. VRAHATIS
Department of Mathematics,

UPAIRC, University of Patras,
GR–261.10 Patras, Greece.

email: vrahatis@math.upatras.gr

ABSTRACT
In this paper we deal with the solution ofl1 norm data fit-
ting problems, which have errors in all variables. These
problems can be solved using the well–known Trust Re-
gion methods [14, 16]. Alternatively, we tackle these prob-
lems by applying the Particle Swarm Optimization (PSO)
technique [3, 6, 7]. The ability to work within high dimen-
sional search spaces as well as on non–differentiable objec-
tive functions, makes PSO a good choice for such problems
and results in good solutions, better than the solutions ob-
tained from the traditional Trust Region methods.
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1. INTRODUCTION

Data fitting is a central problem in Approximation Theory
and can be met in many engineering applications. A funda-
mental issue in such problems is the choice of the measure
of quality of the fit which should be used. Of course, this
choice depends on the underlying problem but, in general,
the lp norms are used. Given anm–dimensional vector,x 2 Rm , thelp norm ofx is defined askxkp = � mXi=1 jxijp�1=p; 1 6 p <1;kxk1 = max16i6m jxij:
The two most commonly used norms are thel1 and l2
norms, which are defined askxk1 = mXi=1 jxij;kxk2 = � mXi=1 jxij2�1=2:

Thel1 norm plays an important role in data fitting, es-
pecially when there are large errors or “wild” points in the
data. This is due to the assignment of smaller weights to
these points than the weights assigned by other more popu-
lar measures, such as thel2 norm (least squares) [15]. The

case considered here is the one where all variables have
errors and the explicit or implicit models, which are used
for fitting the data, are in general nonlinear. In the case
of implicit models, constraints appear and a common tech-
nique to solve them involves solving a sequence of linear
subproblems, whose solutions are constrained to lie in a
trust region [14, 15, 16]. Thus, Trust Region methods, such
as the one presented in [14, 16], are used to solve the prob-
lem, exploiting the structure of the subproblems, which can
be solved as equality bounded variable linear programming
problems.

Recently, a new evolutionary optimization technique,
called Particle Swarm, has been developed by Eberhart and
Kennedy [3, 6]. This technique is inspired by the popula-
tion dynamics of “birds flocks” and “fish schools” and it
is able to work within disjoint search spaces and on non–
differentiable objective functions, since it uses only func-
tion values and no derivatives, and results in very good so-
lutions and fast convergence rates, without any loss of ef-
ficiency. Thus, it seems a good choice for solvingl1 norm
optimization problems, where the objective function is not
differentiable.

In the rest of the paper, the Errors–in–Variables prob-
lem is briefly presented in Section 2 and the Particle Swarm
Optimizer is presented in Section 3. Experimental results
for implicit models are presented in Section 4 and conclu-
sions are derived in Section 5.

2. THE ERRORS – IN – VARIABLES
PROBLEM

Suppose that we have a set of observationsyi 2 R; i =1; : : : ; n; at pointsxi 2 Rt ; i = 1; : : : ; n; and a model for
the underlying relationshipy = F (x; �); (1)

where� 2 Rp is a vector of free parameters. We are inter-
ested in finding the values of the free parameters that give
the best fit. If it is assumed that bothyi andxi contain sig-
nificant errors,ri and"i respectively, then the model can
be written asyi + ri = F (xi + "i; �); i = 1; 2; : : : ; n: (2)



Thus, a proper vector� has to be chosen, in order to mini-
mize the errorsri and"i for i = 1; 2; : : : ; n.

Although the least squares norm (l2) is widely used in
data fitting modelling and it is well studied, there are some
drawbacks, getting clear whenever “wild” points or large
errors are introduced into the data set. This is due to the
assignment of excessive weights to these points, which re-
sults in non-satisfactory estimators. The alternative, which
is usually used in such cases, is thel1 norm and to this end
several algorithms have been developed [14, 16].

Although Eq. 1 is in explicit form, it can always be
written in the more general implicit formf(x; �) = 0; (3)

wherex 2 Rk ; k = t+ 1; represents all the variables. The
corresponding model for Eq. 3 isf(xi + "i; �) = 0; i = 1; 2; : : : ; n; (4)

where"i represents now the vector of the errors for all the
variables. Thus, the considered problem isminimize�;" k"k1 (5)subject to f(xi + "i; �) = 0; i = 1; : : : ; n; (6)

which is a constrained problem, in contradiction to the case
of the explicit model of Eq. 2, where the corresponding
problem is unconstrainedminimize�;" fkrk1 + k"k1g;
with ri = F (xi + "i; �)� yi; i = 1; : : : ; n.

There are several ways to solve the constrained mini-
mization problem. The Kuhn–Tucker theory provides nec-
essary conditions for the solution of such problems, but a
subgradient has to be used [5]. Alternatively, this can be
solved by using anl1 penalty function [4, 14]. In this case,
the problem under consideration isminimize�;" fkfk1 + �k"k1g; (7)

where� > 0.
In [14, 16], a Trust Region type algorithm which in-

volves Simplex steps for solving the linear subproblems
has been considered and it has been applied to various test
problems. Although the solutions resulted from that al-
gorithm are good, there is another approach to attack the
problem. This approach is more straightforward, easy to
implement as well as economic in function evaluations. It
uses the PSO technique to solve the problem of Eq. 7. The
main aspects of PSO are described in the next section.

3. THE PARTICLE SWARM OPTIMIZA-
TION TECHNIQUE

The PSO technique is an Evolutionary Computation tech-
nique, but it differs from other well–known Evolution-
ary Computation algorithms, such as the Genetic Algo-
rithms [3, 6, 7, 8]. Although a population is used for search-
ing the search space, there are no operators inspired by the

human DNA procedures applied on the population. In-
stead, in PSO, the population dynamics simulates a “bird
flock’s” behavior, where social sharing of information takes
place and individuals can profit from the discoveries and
previous experience of all the other companions during the
search for food. Thus, each companion, calledparticle, in
the population, which is calledswarm, is assumed to “fly”
over the search space in order to find promising regions
of the landscape. For example, in the minimization case,
such regions possess lower function values than other, vis-
ited previously. In this context, each particle is treated as
a point in aD–dimensional space, which adjusts its own
“flying” according to its flying experience as well as the
flying experience of other particles (companions).

There have been many variants of the PSO technique
proposed so far, after Eberhart and Kennedy introduced
it [3, 6, 7]. In our experiments we used a new version of
this algorithm, which is derived by adding a new inertia
weight to the original PSO dynamics [2, 7]. This version is
described in the following paragraphs.

First, let us define the notation adopted in this pa-
per: thei-th particle of the swarm is represented by theD–dimensional vectorXi = (xi1; xi2; : : : ; xiD) and the
best particle in the swarm, i.e. the particle with the small-
est function value, is denoted by indexg. The best pre-
vious position (i.e. the position giving the best function
value) of thei-th particle is recorded and represented asPi = (pi1; pi2; : : : ; piD), and the position change (veloc-
ity) of the i-th particle isVi = (vi1; vi2; : : : ; viD).

The particles are manipulated according to the follow-
ing equationsvid = � �wvid + c1r1(pid � xid) ++ c2r2(pgd � xid)�; (8)xid = xid + vid; (9)

whered = 1; 2; : : : ; D; i = 1; 2; : : : ; N andN is the size
of the population;� is a constriction factor (usually equal
to 1) which is used to control and constrict velocities;w is
the inertia weight;c1 andc2 are two positive constants;r1
andr2 are two random numbers within the range[0; 1].

The first equation is used to calculate thei-th parti-
cle’s new velocity by taking into consideration three terms:
the particle’s previous velocity, the distance between the
particle’s best previous and current position, and, finally,
the distance between swarm’s best experience (the position
of the best particle in the swarm) and thei-th particle’s cur-
rent position. Then, following the second equation, thei-th
particle flies toward a new position. In general, the perfor-
mance of each particle is measured according to a prede-
fined fitness function, which is problem–dependent.

The role of the inertia weightw is considered very
important in the PSO convergence behavior. The inertia
weight is employed to control the impact of the previous
history of velocities on the current velocity. In this way,
the parameterw regulates the trade–off between the global
(wide–ranging) and the local (nearby) exploration abilities



x1 0.1 0.9 1.8 2.6 3.3 4.4 5.2 6.1 6.5 7.4x2 5.9 5.4 4.4 4.6 3.5 3.7 2.8 2.8 2.4 1.5

Table 1. Data Set 1, used in Experiments 1 and 3.x1 0.05 0.11 0.15 0.31 0.46 0.52 0.70 0.74 0.82 0.98 1.17x2 0.956 0.89 0.832 0.717 0.571 0.539 0.378 0.370 0.306 0.242 0.104

Table 2. Data Set 2, used in Experiments 2, 4 and 5.

of the swarm. A large inertia weight facilitates global ex-
ploration (searching new areas), while a small one tends
to facilitate local exploration, i.e. fine–tuning the current
search area. A suitable value for the inertia weightw usu-
ally provides balance between global and local exploration
abilities and consequently a reduction on the number of it-
erations required to locate the optimum solution. A general
rule of thumb suggests that it is better to initially set the
inertia to a large value, in order to make better global ex-
ploration of the search space, and gradually decrease it to
get more refined solutions. Thus, a time decreasing inertia
weight value is used. The initial population can be gener-
ated either randomly or by using a Sobol sequence genera-
tor [13], which ensures that theD-dimensional vectors will
be uniformly distributed within the search space.

From the above discussion, it is obvious that PSO, to
some extent, resembles evolutionary programming. How-
ever, in PSO, instead of using genetic operators, each in-
dividual (particle) updates its own position based on its
own search experience and other individuals (companions)
experience and discoveries. Adding the velocity term to
the current position, in order to generate the next posi-
tion, resembles the mutation operation of Genetic Algo-
rithms. Note that in PSO, however, the “mutation” opera-
tor is guided by the particle’s own “flying” experience and
benefits from the swarm’s “flying” experience. In another
words, PSO is considered as performing mutation with a
“conscience”, as pointed out by Eberhart and Shi [2].

The PSO technique has been proved very efficient
in solving general Global Optimization problems and per-
forming Neural Networks training [9, 10, 11, 12]. In the
next section, results obtained by the application of this
technique to data fitting modelling problems are exhibited
and conclusions are derived in the final section of the paper.

4. EXPERIMENTAL RESULTS

The models that we consider in this section are (or assumed
to be) implicit and are the same that appear in [14, 16] in
order to obtain comparable results. All the models are sim-
ple and some of them are actually explicit, but treated as
implicit. The initial approximation for the vector" is usu-
ally set equal to zero and this is the approach we followed

too. Concerning parameter�, the fixed value0:1 was used,
although it is more proper for many problems to gradually
decrease its value to force convergence of the penalty func-
tion to zero. Parameter� had a different initial value for
each model and the desired accuracy for all unknowns was10�3.

The values of the PSO parameters werec1 = c2 = 2
(default values) andw was gradually decreased from1:2
toward0:1. The maximum allowable number of PSO it-
erations was500 and the size of the swarm was fixed and
equal to150 for all experiments.

In all the tables, the found optimal values for� and
for thel1 norm of", denoted as�� andk"�k1 respectively,
are presented.

Experiment 1 [14]. The first model considered is thehy-
perbolicmodel introduced by Britt and Luecke in [1] withf = x21x22 � �:
The data used is given in Table 1 and the initial value of� was taken equal to100. The results for both the Trust
Region and the PSO methods are given in Table 3. PSO
found the solution after130 iterations.

Trust Region PSO�� 133.402 139.688k"�k1 7.255 3.446

Table 3. Results of Experiment 1.

Experiment 2 [14]. The second model considered hasf = 2Xi=0 �ixi1 � x2;
and the data used is given in Table 2. Initially,� =(1; 1; 1)> was taken and PSO found the solution after158
iterations. The results are exhibited in Table 4.

Experiment 3 [14]. This is another model withf = 3Xi=0 �ixi1 � x2;



Trust Region PSO�� (1.001,-1.038,0.232) (0.997,-1.001,0.201)k"�k1 0.112 0.001

Table 4. Results of Experiment 2.

and the data used is given in Table 1, after setting the first
value ofx1 equal to 0.0. Initially,� = 0 was taken, and
PSO found the solution after160 iterations. The results are
exhibited in Table 5.

Trust Region PSO�� (5.9,-0.839,0.142,-0.015) (5.91,-0.624,0.057,-0.006)k"�k1 1.925 0.298

Table 5. Results of Experiment 3.

Experiment 4 [14]. Here we had the nonlinear modelf = �1 + �2x1 + �3 � x2;
and the data used is given in Table 2. The initial approxi-
mation was� = (�4; 5;�4)> and PSO found the solution
after282 iterations. The results are exhibited in Table 6.

Trust Region PSO�� (-1.934,7.761,-2.638) (0.503,-17.009,-482.805)k"�k1 0.109 0.165

Table 6. Results of Experiment 4.

Experiment 5 [14, 16]. This is a growth model withf = �1 + �2e�x1 � x2;
and the data used is given in Table 2. The initial approxi-
mation was� = (0; 0)> and PSO found the solution after490 iterations. The results are exhibited in Table 7.

Trust Region PSO�� (-0.225, 1.245) (-0.227,1.247)k"�k1 0.169 0.005

Table 7. Results of Experiment 5.

Experiment 6 [16]. This is theordinary rational function
model with f = �1x1 � �2 � x2;

and the data was generated according to the schemexi = 0:01 + 0:05 (i� 1);yi + ri = 1 + xi + (xi + "i)2; i = 1; : : : ; 40;
whereri are uniformly distributed in (-0.15, 0.15), and"i
are uniformly distributed in (-0.05, 0.05). The initial ap-
proximation was� = (1; 1)> and PSO found the solution
after211 iterations. The results are exhibited in Table 8.

Trust Region PSO�� (0.978, 1.006) (1.0017,1.0002)k"�k1 1.458 1.011

Table 8. Results of Experiment 6.

Experiment 7 [16]. This is thesimple decay curve, which
describes the decay of a radioactive substance,f = �1 � �2 e��3x1 � x2:
The data was generated according to the schemexi = 0:02 (i� 1);yi + ri = 3� e�(xi+"i); i = 1; : : : ; 40;
whereri are uniformly distributed in (-0.15, 0.15), and"i
are uniformly distributed in (-0.05, 0.05). The initial ap-
proximation was� = (3; 1; 1)> and PSO found the solu-
tion after315 iterations. The results are exhibited in Ta-
ble 9.

Trust Region PSO�� (2.528, 0.918, 4.396) (2.709, 1.007, 0.975)k"�k1 2.564 2.231

Table 9. Results of Experiment 7.

Experiment 8 [16]. This is thelogistic curve, which de-
scribes the decay of a radioactive substance,f = �1 � log �1 + e�(�2+�3x1)�� x2:
The data was generated according to the schemexi = 0:02 (i� 1);yi + ri = 3� log �1 + e�(1+xi+"i)�; i = 1; : : : ; 40;
whereri are uniformly distributed in (-0.15, 0.15), and"i
are uniformly distributed in (-0.05, 0.05). The initial ap-
proximation was again� = (3; 1; 1)> and PSO found the



Trust Region PSO�� (2.812, 0.487, 16.033) (2.722, 0.851, 1.164)k"�k1 2.348 0.471

Table 10. Results of Experiment 8.

solution after336 iterations. The results are exhibited in
Table 10.

As exhibited in all tables, PSO almost always outper-
formed the Trust Region algorithm. It was able to detect
better solutions even in vicinities of the search space that
were far away from the vicinity of solutions obtained by
the Trust Region method. Furthermore, although the same
initial vector for the parameter�, as in [14], was used, in
further experiments, that we performed, we obtained the
same good solutions starting from arbitrarily chosen initial
points. The number of iterations performed by the PSO
method to detect the optimum solutions was surprisingly
small.

5. CONCLUSIONS

In this paper, we consider the ability of the Particle Swarm
Optimizer to tackle data fitting models. We have performed
several experiments in well known implicit as well as ex-
plicit models. The results obtained by our approach have
been compared with the corresponding results presented
in [14, 16], where a Trust Region method was used.

The results presented here are very promising and
make clear that PSO can solve efficiently such problems. In
many cases, the problem becomes easier due to the ability
of the method to detect good solutions starting from several
initial points, in contradiction to the Trust Region method
whose behavior is heavily influenced by the starting point.
Furthermore, the solutions are obtained after a quite small
number of iterations. An important role is played by the
penalty parameter�. Usually, the convergence rates of both
techniques and the quality of results depend on the value of�.

Further work has to be done to fully investigate the
performance of the algorithm in more complicated prob-
lems as well as to derive possible combinations of the PSO
with other algorithms on this topic.
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