
Chapter 22
Experimental Sensitivity Analysis of
Grid-Based Parameter Adaptation
Method

Vasileios A. Tatsis and Konstantinos E. Parsopoulos

Abstract Grid-based parameter adaptation method has been recently proposed as
a general-purpose approach for online parameter adaptation in metaheuristics. The
method is independent of the specific algorithm technicalities. It operates directly in
the parameter domain, which is properly discretized forming multiple grids. Short
runs of the algorithm are conducted to estimate its behavior under different parameter
configurations. Thus, it differs from relevant methods that usually incorporate ad hoc
procedures designed for specific metaheuristics. The method has been demonstrated
on two popular population-based metaheuristics with promising results. Similarly
to other parameter tuning and control methods, the grid-based approach has three
decision parameters that control granularity of the grids and length of algorithm runs.
The present study extends a preliminary analysis on the impact of each parameter,
based on experimental statistical analysis. The differential evolution algorithm is
used as the targeted metaheuristic, and the established CEC 2013 test suite offers the
experimental testbed. The obtained results and analysis verify previous evidence on
the method’s parameter tolerance, offering also an insightful view on the parameters
interplay.

22.1 Introduction

Metaheuristics have been long established as essential search and optimization pro-
cedures that can offer (sub-) optimal solutions in cases where traditional optimization
methods are either not applicable or deficient [8, 9, 21]. All metaheuristics typically
have a number of parameters that influence their dynamic. For example, the popular
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evolutionary algorithms require from the user to set parameters such as population
size, mutation and crossover type and rate, among other [6]. The ongoing research
activity on the development of new metaheuristics or improvement of established
ones has kept the parameter setting problem in a salient position among the most hot
research topics in the relevant literature.

There are two main types of parameter setting methodologies in metaheuristics:
offline parameter tuning and online parameter control. While offline methods are
based on preliminary trial-and-error experimentation, online methods dynamically
adapt the parameters on the fly. Offline methods are better suited to cases where a
multitude of related problems need to be solved. In such cases, a training subset of the
problems can be used to identify a promising parameter setting that is then adopted
for solving problems of the same type. Obviously this approach adds in reusability
of the parameters but the computational cost of the preliminary experiments can
be prohibitively high. Also, over-specialization is a deficiency that shall be taken
into consideration. Design of experiments [2], F-race [3], sequential model-based
optimization [11], and paramILS [10] are typical examples of such methods.

Alternatively, online parameter control does not provide reusable results, but it
dynamically controls the parameters based on performance feedback received during
the algorithm run. Thus, the algorithm can adjust its behavior in order to maintain
appropriate trade-off between exploration and exploitationduring thedifferent phases
of the optimization procedure. For this purpose, ad hoc methodologies developed for
the specific algorithm are usually adopted. Various online adaptation approaches
designed for the differential evolution algorithm that will be later used can be found
in [4, 6, 7, 13, 15, 22].

The general-purpose grid-based parameter adaptation method (henceforth abbre-
viated as GPAM) was recently proposed in [17]. It belongs to the category of online
parameter adaptation methods, and it has been successfully applied on two popu-
lar metaheuristics, namely differential evolution and particle swarm optimization. It
is based on grid search in a discretized parameter domain, exploiting performance
estimations through short runs of the algorithm under alternative parameter settings.
GPAM offered very promising results in state-of-the-art testbeds of various dimen-
sions [16–19].

All parameter adaptation methods involve a number of inner decision parameters.
The number of these parameters shall be reasonably small otherwise the adaptation
method would require another external procedure to “tune the tuner”. Besides the
small number of inner decision parameters, mild parameter sensitivity is highly
desirable for adaptation methods. Thus, identifying the impact of each parameter as
well as possible interactions among them is an important issue for the effectiveness
of the method.

A first study on the sensitivity of GPAM on its parameters was offered in [20]. In
that study the main effect of various levels of the three parameters, individually, was
investigated by changing one parameter at a time. The results offered some interesting
initial insight on the most important parameter. The present work aims at extending
the previous study through extensive experimentation and statistical analysis, in order
to identify also the interplay between the parameters. For this purpose, differential
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evolution was selected as the underlying algorithm, and the state-of-the-art CEC
2013 test suite was adopted as our testbest. Several levels of the GPAM parameters
were considered and full factorial experimentation was conducted, accompanied by
hypothesis testing analysis.

The rest of the chapter is organized as follows: Sect. 22.2 offers brief presentation
of GPAM and differential evolution. The experimental configuration and analysis is
offered in Sect. 22.3. Finally, Sect. 22.4 concludes the chapter.

22.2 Background Information

In the following paragraphs, the differential evolution algorithm is briefly presented
along with the GPAM approach.

22.2.1 Differential Evolution

Differential evolution (henceforth abbreviated as DE) [14] is a state-of-the-art meta-
heuristic for numerical optimization problems. Its adaptability and simplicity has
placed it among the most popular metaheuristics [5], despite its known sensitivity on
its control parameters. For the general continuous bound-constrained n-dimensional
optimization problem:

min
x

f (x), x ∈ X ⊂ R
n,

DE utilizes a population of N search points:

P = {x1, x2, . . . , xN },

with xi ∈ X , for all i ∈ I
def= {1, 2, . . . , N }. All population members are randomly

initialized in the search domain X .
At each iteration t , the mutation, crossover, and selection operators are applied

on each xi . Mutation produces a new vector ui for each xi by combining randomly
selected members of the population. The most common mutation operators of one
difference vector are defined as:

(DE /ψ / 1) u(t+1)
i = x(t)

α1
+ F

(
x(t)

α2
− x(t)

α3

)
,

where F > 0 is a scalar parameter. For ψ = “best” we set α1 = g, and α2, α3 =
randi(I ), where g stands for the index of the best member of the population (i.e.,
the one with the smallest function value), while each call at randi(I ) returns a
random integer from the indices set I defined above. Alternatively, for ψ = “rand”
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we set α1, α2, α3 = randi(I ). In both cases above, it shall hold that α j �= αk �= i ,
for all j �= k. Alternative operators with two difference vectors are defined as:

(DE /ψ / 2) u(t+1)
i = x(t)

α1
+ F

(
x(t)

α2
− x(t)

α3
+ x(t)

α4
− x(t)

α5

)

where forψ = “best” we set α1 = g, and α2, α3, α4, α5 = randi(I ), while forψ =
“rand” we have α1, α2, α3, α4, α5 = randi(I ). Another variant withψ = “current-
to-best” defines α1 = i , α2 = g, α3 = i , and α4, α5 = randi(I ). Again, α j �= αk �=
i shall hold for all j �= k. The above cases define the five most common mutation
operators.

Mutation is succeeded by crossover, where a trial vector vi is produced for each
xi . Each component of vi is selected as the corresponding component of ui with
probability CR ∈ (0, 1] (another scalar parameter of the algorithm), otherwise it is
taken from xi :

vi j =
{
ui j , if (rand( ) � CR) OR ( j = ζ ) ,

xi j , otherwise.
, j ∈ {1, 2, . . . , n},

where ζ = randi(1, 2, . . . , n) is a randomly selected dimension component that is
automatically inherited from the mutated vector, and rand( ) is the pseudo-random
number generator in the range [0, 1]. Eventually, the new vector vi competes with
xi and, if it has a better function value, it replaces xi in the population for the next
iteration. Detailed presentation of the DE algorithm can be found in relevant sources
such as [12].

22.2.2 Grid-Based Parameter Adaptation Method

Let us now describe the GPAMproposed in [17] on the DE algorithm. The two scalar
parameters of DE are F and CR as presented in the previous section. The mutation
operator type can be considered as a categorical parameter. GPAM can tackle such
parameters as it was shown in [16].

Given discretization steps λCR and λF for the corresponding scalar parameters, we
define their discrete domains SCR , SF , respectively. Then, we can define a parameter
grid as [17]:

G = {(CR, F); CR ∈ SCR, F ∈ SF } .

Smaller step sizes define fine-grained grids that may require longer grid searches for
the detection of appropriate parameter pairs. In general, optimal step sizes depend
on the studied algorithm and the optimization problem at hand, as well as on the
available computational resources. Possible previous experience on the algorithm’s
parameter sensitivitymay provide useful insight for the proper selection of step sizes.
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GPAM starts with an initial parameter pair in G (the central point is a reasonable
choice), and initializes a primary population, Pp, with this parameter pair, denoted
as (CRp, Fp). Then, Pp is evolved for a number of iterations,

tpri = α × n,

where α > 1 is an integer and n stands for the problem’s dimension. In [17] the
typical case F,CR ∈ [0, 1] was considered, and the selected parameter values were:

λCR = λF = 0.1, α = 10.

After the tpri iterations, three phases are iteratively applied.
The first one is the cloning phase. The primary parameter pair has eight immediate

neighboring parameter pairs in the grid, which are defined as:

CR′ = CRp + i λCR, F ′ = Fp + j λF , i, j ∈ {−1, 0, 1}, (22.1)

where, i = j = 0 corresponds to the current primary parameter vector. Each one of
the neighboring pairs as well as the primary one are individually assigned to nine
secondary populations, Psj , j ∈ {1, 2, . . . , 9}, which are initialized as clones of the
primary population Pp. In order to adapt also the mutation operator, as proposed
in [16], four additional secondary populations, also called bridging populations, are
used. Each bridging population is a copy of the primary population with same scalar
parameters but different mutation operator, selected from the five operators defined
in Sect. 22.2.1. The bridging populations are denoted as Psj , j ∈ {10, . . . , 13}.

The second phase is the performance estimation, where each one of the 13 sec-
ondary populations are evolved for a small number of iterations, tsec � tpri . These
short runs aim at probing the local performance dynamic of the secondary popula-
tions, providing evidence about the current primary population under the different
assigned parameter settings. Typically, tsec shall be significantly smaller than tpri in
order to spare computational resources (function evaluations).

For the performance assessment of the secondary populations, the average objec-
tive value (AOV) measure was proposed in [17]. The AOV of the secondary popula-
tion Psj is defined as:

AOV j = 1

N

N∑

i=1

f (xi ) , (22.2)

with xi ∈ Psj , i = 1, 2, . . . , N , j = 1, 2, . . . , 13. This is the average improvement of
the corresponding secondary population with its assigned parameter pair. In order to
take into consideration also the crucial issue of diversity, an additional performance
measurewas considered, namely the objective value standard deviation (OVSD) [16],
defined as:
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OVSD j =
√√√√ 1

N

N∑

i=1

(
f (xi ) − AOV j

)2
, (22.3)

with xi ∈ Psj , i = 1, 2, . . . , N , j = 1, 2, . . . , 13. Higher values of OVSD are asso-
ciated to higher diversity, which is preferable for alleviating premature convergence
and search stagnation.

Using these two performance metrics, the secondary populations are compared
in a Pareto manner. The best among them, i.e., the one with the lowest AOV and the
highest OVSD, is selected as the new primary population along with its parameters.
Note that more than one non-dominated populations may appear. Since these popu-
lations are incomparable, one is randomly selected among them to become the new
primary population. Moreover, the concept of sufficient improvement can be imple-
mented by replacing the primary population with a new one only if AOV is improved
for at least some ε > 0, otherwise the current primary population is retained.

Eventually, the dynamic’s deployment phase takes place, where the selected new
primary population is evolved for tpri iterations to reveal its dynamicwith the adopted
parameters. This step completes a full cycle of GPAM applied on DE. Following the
notation in [16], the combination of DE with GPAM is denoted as DEGPOA. For
further details on the method the reader is referred to [16, 17].

22.3 Experimental Analysis

In [20] a preliminary study on the impact of the three parameters of GPAM, namely
tpri , tsec, λ = λF = λCR , on DEGPOA was presented. The study was based on sim-
plistic experimental configuration where one of the parameters was changed at a
time, keeping the rest fixed. The considered parameter levels were as reported in
Table22.1. In the present study, we extend the previous results with a full factorial
design investigation. The produced 43 = 64 DEGPOA instances are named after the
values of the three parameters (n is skipped for tpri ) as follows:

tsec _ tpri _ λ.

Table 22.1 The considered parameter values in our experimental setting

Parameter Level

1 2 3 4

tsec 5 10 15 20

tpri 5n 10n 15n 20n

λ 0.05 0.1 0.15 0.2
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For example, 10_5_0.15 stands for the instance with tsec = 10, tpri = 5n, and
λ = 0.15.

All experiments were conducted on the state-of-the-art CEC 2013 test suite [1],
strictly following its guidelines. The test suite consists of 28 unimodal, multimodal,
and composite functions, henceforth denoted as f1- f28. The most common dimen-
sions n = 10 and n = 30were considered,while the search space for all test problems
was [−100, 100]n . As dictated by the test suite, the maximum computational bud-
get was set to Tmax = 104 × n function evaluations. Solution quality was measured
according to the error gap of the detected solution from the known optimal one.
Fixed population size was used in all experiments, while 51 independent runs per
test problem were conducted.

The preliminary statistical analysis in [20] offered clear indications that tsec is the
most influential parameter, followed by λ and tpri . The reader is referred to [20] for
a detailed explanation. The present work aims at expanding the previous analysis
through a full factorial design that can reveal possible parameter interactions and
correlations. For this reason, our current experimental configuration reported above
is identical to the previous one in [20].

The first part of our analysis was based on 3-way ANOVA on all the 64 DEGPOA
instances, based on their average error values over the whole test suite.1 The resulting
ANOVA tables for both dimensions are reported in Table22.2. The tables contain the
typical ANOVA invormation, with the last column (marked as “Prob> F”) providing
the p-values. For the 10-dimensional case (upper part of Table22.2), we can see p-
values smaller than 0.05 for tsec and λ, which suggest significant impact of these two
parameters, in contrast to tpri . However, there seems to be no statistically significant
interactions between any two of the parameters. This is in line with the results in the
preliminary analysis in [20].

In the 30-dimensional case, the impact of tsec remains significant, but now tpri
exhibits significant impact instead of λ. This interesting evidence suggests that, as
dimension increases, the granularity of the grid becomes less important than the
effort spent for the deployment of the algorithm’s dynamic. Also, it shows that
the computational budget devoted to the estimation of the best parameter setting
through the secondary populations is always important. This is a reasonable effect
because tsec is the key-factor for proper assessment of the secondary populations and,
consequently, for effective grid search in the parameter domain.

In addition to the these evidence,we followed an alternative analysis to identify the
most promising parameter combinations. For this purpose, we employed Wilcoxon
rank-sum tests to compare all algorithm instances among them on each test function,
individually, based on their solution errors in the 51 independent runs. For each
comparison between two algorithm instances, the rank-sum test revealed possible
statistically significant difference between the compared error samples. In this case,
the algorithm with the smallest mean error was awarded a win, and the opponent
algorithm a loss. In case of insignificant difference, both algorithms assumed a draw.

1The MathWorks Matlab® software was used for this purpose.
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Table 22.2 Three-way ANOVA for the 64 DEGPOA instances

Source Sum sq. d.f. Mean sq. F Prob > F

Dimension: n = 10

tsec 12.38 3 4.12667 6.15 0.0025

tpri 3.1402 3 1.04675 1.56 0.2219

λ 13.7274 3 4.5758 6.82 0.0014

tsec ∗ tpri 8.2554 9 0.91727 1.37 0.251

tsec ∗ λ 4.5431 9 0.50478 0.75 0.6592

tpri ∗ λ 2.8411 9 0.31568 0.47 0.8815

Error 18.1128 27 0.67084

Total 63 63

Dimension: n = 30

tsec 15.949 3 5.31632 8.6 0.0004

tpri 9.1731 3 3.05771 4.95 0.0073

λ 3.7093 3 1.23643 2 0.1376

tsec ∗ tpri 4.9029 9 0.54477 0.88 0.5534

tsec ∗ λ 6.8171 9 0.75746 1.23 0.3208

tpri ∗ λ 5.7618 9 0.6402 1.04 0.4382

Error 16.6868 27 0.61803

Total 63 63

After all pairwise comparisons, we calculated a rank measure for each algorithm,
defined as the difference between its wins and losses:

rank(alg) = winsalg − lossesalg.

Since each algorithm is compared to 63 others on 28 functions, it holds that:

−1764 � rank(alg) � 1764,

with higher values denoting better performance (higher number of wins against
losses).

All ranks are sorted and graphically illustrated in Fig. 22.1. The sorted ranks
clearly illustrate that the performance among all algorithm instances varies signif-
icantly in some cases. In order to get a better picture, we isolated the algorithm
instances with positive ranks and conducted the same rank analysis strictly among
them. The corresponding sorted ranks are given in Fig. 22.2.

As we can see, the top-performing instances for both dimensions prefer larger val-
ues of tpri (15n or 20n) but smaller values of tsec (typically 5 or 10). Interpreting this
evidence, we conclude that the most efficient algorithms are the ones putting more
emphasis on the dynamic deployment phase rather than the performance estimation
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Fig. 22.1 Sorted ranks of the 64 DEPGPOA instances

phase, where rough estimations are adequate to guide the grid search. Interestingly,
higher levels of λ appear more frequently in the top-performing algorithms. This
shows that the DEGPOA approach does not require highly fine-grained grids, prob-
ably as a consequence of DE’s reduced sensitivity in marginal changes of its scalar
parameters (this finding has been reported also in [16]).

The observed patterns of higher tpri and λ levels and lower tsec levels are more
clearly illustrated in Figs. 22.3 and 22.4. These figures illustrate all algorithm
instances sorted according to their ranks, along with their parameter levels. In order
to avoid scaling issues, the level indices (i.e., 1, 2, 3, 4) of the parameter values are
used instead of their actual values. The aforementioned pattern is clearly observed
on the right part of the figures, where the best-performing algorithm instances lie,
verifying the previous findings.
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Fig. 22.2 Sorted ranks of the 64 DEPGPOA instances

Fig. 22.3 The 64 DEGPOA instances sorted by their ranks, along with their corresponding param-
eter levels for the 10-dimensional functions



22 Experimental Sensitivity Analysis of Grid-Based Parameter Adaptation Method 345

Fig. 22.4 The 64 DEGPOA instances sorted by their ranks, along with their corresponding param-
eter levels for the 30-dimensional functions

22.4 Conclusion

We presented an extended analysis of GPAM applied on the DE algorithm, adding
to previous experimental analysis. The presented study is based on full factorial
statistical analysis for various parameter levels of the resulting DEGPOA approach,
based on the established CEC 2013 test suite.

The main findings can be summarized as follows:

(a) In smaller dimension, tsec and λ have higher impact on the algorithms than tpri .
In higher dimension, tsec and tpri exhibit higher statistical significance than λ.
Thus, as dimension increases, the granularity of the grid becomes less important
than the deployment of the algorithm’s dynamic.

(b) Higher values of tpri and λ, and lower values of tsec are associated with the best
performing algorithm instances.

These findings verify at large previous findings and they justify the parameter value
choices in previous works on DEGPOA.

Naturally, the observed results are highly associated with the specific algorithm
and testbed. Further experimentation is needed to probe the algorithm’s behavior in
different experimental environments, as well as for different algorithms.
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