
On the Design of Metaheuristics-Based
Algorithm Portfolios

Dimitris Souravlias and Konstantinos E. Parsopoulos

Abstract Metaheuristic optimization has been long established as a promising
alternative to classical optimization approaches. However, the selection of a specific
metaheuristic algorithm for solving a given problem constitutes an impactful deci-
sion. This can be attributed to possible performance fluctuations of the metaheuristic
during its application either on a single problem or on different instances of a
specific problem type. Algorithm portfolios offer an alternative where, instead of
using a single solver, a number of different solvers or variants of one solver are
concurrently or interchangeably used to tackle the problem at hand by sharing the
available computational resources. The design of algorithm portfolios requires a
number of decisions from the practitioner’s side. The present chapter exposes the
essential open problems related to the design of algorithm portfolios, namely the
selection of constituent algorithms, resource allocation schemes, interaction among
the algorithms, and parallelism issues. Recent research trends relevant to these
issues are presented, offering motivation for further elaboration.

Keywords Algorithm portfolios · Metaheuristics · Global optimization · Design
of algorithms

1 Introduction

A central issue in applied optimization is the selection of a suitable solver for a given
problem. Metaheuristics have proved to be very useful under various conditions
when the approximation of (sub-) optimal solutions is desirable. Despite the large

D. Souravlias (�)
Logistics Management Department, Helmut-Schmidt University, Hamburg, Germany
e-mail: dsouravl@hsu-hh.de

K. E. Parsopoulos
Department of Computer Science & Engineering, University of Ioannina, Ioannina, Greece
e-mail: kostasp@cse.uoi.gr

© Springer Nature Switzerland AG 2018
P. M. Pardalos, A. Migdalas (eds.), Open Problems in Optimization
and Data Analysis, Springer Optimization and Its Applications 141,
https://doi.org/10.1007/978-3-319-99142-9_14

271

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99142-9_14&domain=pdf
mailto:dsouravl@hsu-hh.de
mailto:kostasp@cse.uoi.gr
https://doi.org/10.1007/978-3-319-99142-9_14


272 D. Souravlias and K. E. Parsopoulos

number of metaheuristics in the relevant literature, choosing one for the problem at
hand is a crucial decision that is often based on the practitioner’s experience and
knowledge on the specific problem type.

Strong theoretical and experimental evidence suggest that there is no universal
optimization algorithm capable of tackling all problems equally well [17]. Thus,
relevant research has been focused on matching efficient algorithms with specific
problem types. However, even different parameterizations of an algorithm may
exhibit highly varying performance on a given problem. In this context, the idea of
concurrently or interchangeably using a number of different algorithms or variants
of a single algorithm was cultivated in order to reduce the risk of a wrong decision.
Inspiration behind this idea was drawn from the financial markets, where selecting
a portfolio of stocks instead of investing the whole capital on a single stock reduces
the risk of the investment.

Algorithm portfolios (APs) are algorithmic schemes that harness a number of
algorithms into a unified framework [5, 7]. They were initially introduced two
decades ago and, since then, they have gained increasing popularity in various
scientific fields such as inventory routing [11], lot sizing [12], facility location [4],
and combinatorics [13]. The term “algorithm portfolio” was first proposed in [7] and
dominated over previously used terms such as the ensembles of algorithms [6]. The
algorithms employed in an algorithm portfolio are called the constituent algorithms,
and they can be of different types ranging from evolutionary algorithms [9] and
randomized search methods [5] to SAT solvers [18].

In the present chapter, we focus on algorithm portfolios consisting of metaheuris-
tics, including both population-based and local-based algorithms. Population-based
algorithms exploit a population of search points that iteratively probe the search
space. On the other hand, local-based (or trajectory-based) methods operate on a
single search point that is iteratively improved through various local search strate-
gies. Thus, population-based algorithms possess essential exploration capabilities,
whereas local-based algorithms are well known for their exploitation capacities. It is
widely perceived that the trade-off between exploration and exploitation determines
the quality of a metaheuristic approach. Therefore, a framework that encompasses
both exploration-oriented and exploitation-oriented methods is expected to be more
beneficial than using a single approach.

The design of algorithm portfolios involves a number of issues that shall be
addressed by the practitioner. Specifically, the following decisions shall be made:

1. How many and which algorithms shall be included?
2. How are the computational resources allocated to the constituent algorithms?
3. Shall the algorithms interact among them and how?
4. How parallelism affects the operation of the algorithm portfolio?

In the following sections, we discuss these issues and review relevant research
developments. The rest of the chapter is structured as follows: Section 2 provides
a general description of algorithm portfolios. Various approaches on the selection
of constituent algorithms are presented in Section 3.1, while resource allocation



On the Design of Metaheuristics-Based Algorithm Portfolios 273

schemes are discussed in Section 3.2. Section 3.3 is devoted to the interaction
among algorithms, and Section 3.4 discusses the implications of parallelism. Finally,
Section 4 concludes the chapter.

2 Algorithm Portfolios

The need for the use of metaheuristics stems from the inability of classical
optimization algorithms to efficiently tackle optimization problems of various types
either due to special characteristics of the objective function or due to excessive
running time [3]. Such problems usually lack nice mathematical properties and
frequently involve, among others, discontinuous, noisy, and computationally heavy
objective functions, as well as multiple local and global minimizers.

Without loss of generality, we consider the unconstrained minimization problem,

min
x∈D f (x)

where D stands for the corresponding search space. The type of D (e.g., continuous,
discrete, etc.) is irrelevant since it affects only the type of relevant solvers that will
be used. Let also

S = {S1, S2, . . . , Sk},

be a set of available solvers suitable for the problem at hand. The set S may consist of
different algorithms or different instances (parameterizations) of a single algorithm
or both.

The design of an algorithm portfolio primarily requires the determination of
its constituent algorithms [2]. Thus, an algorithm selection process takes places
to distinguish n out of the k available solvers. The selection is typically based on
performance profiles of the algorithms on the specific problem or similar ones. The
outcome is a portfolio AP defined as

AP = {Si1, Si2 , . . . , Sin} ⊆ S.

For simplicity reasons, we will henceforth use the indices 1, 2, . . . , n, instead of
i1, i2, . . . , in, for the constituent algorithms.

Moreover, let Tmax be the available computational budget. This may refer to the
total execution time or the number of function evaluations that is available to the
algorithm portfolio. Then, each solver Si of AP is assigned a fraction Ti of this
budget, taking care of that

n∑

i=1

Ti = Tmax. (1)



274 D. Souravlias and K. E. Parsopoulos

The set of the allocated budgets will be henceforth denoted as T = {T1, T2, . . . , Tn}.
The allocated budgets can be determined either offline, i.e., prior to the application
of the algorithm portfolio, or online during its run. In both cases, performance
data (historical or current, respectively) are used along with predefined performance
measures.

During the run of the algorithm portfolio, the constituent algorithms may be
either isolated [14] or interactive [12]. In the latter case, the algorithms exchange
information and the user shall determine all the relevant details, including the type
and size of the exchanged information, as well as the communication frequency or
the conditions for triggering such a communication. Typically, the communication
takes place between pairs of algorithms, and the same type of information is
exchanged among them. For example, such information can be the best solution
detected so far by each algorithm.

The constituent algorithms of an algorithm portfolio may sequentially and
interchangeably run on a single processor. In this case, each constituent algorithm
Si is run in turn on the processor consuming a prespecified fraction of its assigned
computational budget Ti before the next algorithm occupies the processor. Thus,
the total budget assigned to each algorithm is not consumed in one turn but rather in
multiple turns (called also episodes or batches).

Nevertheless, the use of multiple algorithms in an algorithm portfolio makes
parallelism very appealing. In this case, a number of CPUs are available and devoted
to AP . Let U = {U1, U2, . . . , Um} be the set of available processing units. A
common master–slave parallelism model usually employs a master-node, which
is responsible for the coordination of the portfolio’s run as well as the necessary
book-keeping, and a number of slave-nodes that host the constituent algorithms.
In the ideal case, the number of slave-nodes is equal to the number of constituent
algorithms, i.e., m = n + 1. If this is not possible, CPUs host more than one of the
constituent algorithms.

Our descriptions above have brought forward a number of issues and open
problems that influence the application of algorithm portfolios. The aptness of the
underlying choices determines the efficiency and effectiveness of the portfolio. A
number of research works have probed these issues and derived useful conclusions
and suggestions for various problem types. The rest of the present chapter offers an
outline of the most important issues and suggestions.

3 Open Problems in Designing Algorithm Portfolios

In the following paragraphs, we present essential open problems in the design of
algorithm portfolios. Specifically, we consider the following problems:

1. Selection of the constituent algorithms.
2. Allocation of the computational budget.
3. Interaction among the constituent algorithms.
4. Parallel vs sequential application of the algorithm portfolio.



On the Design of Metaheuristics-Based Algorithm Portfolios 275

Our main goal is to expose the corresponding problems and discuss some of the
state-of-the-art remedies proposed in the relevant literature. This information can be
used as motivation and starting point for further elaboration.

3.1 Selection of Constituent Algorithms

The selection of the constituent algorithms in an algorithm portfolio is highly
related to the algorithm selection problem originally described by Rice [10]. This
refers to the selection and application of the best-performing algorithm for a given
optimization problem. Most commonly, algorithm selection is addressed for specific
problem types or sets of problems. Given a predefined set of algorithms S, a set of
problem instances I , and a cost function

F : S × I → R,

the widely known per instance algorithm selection problem refers to the detection
of a mapping G : I → S, such that the cost function F is minimized over all the
considered problem instances, i.e.,

min
G

∑

i∈I
F (G (i), i) . (2)

In the context of algorithm portfolios, this problem is referred as the constituent
algorithms selection problem [2, 15]. Specifically, given a predefined set of algo-
rithms S, a set of problem instances I , and a cost function F , the goal is to select a
set of algorithms AP ⊆ S, such that the cost function is minimized over all problem
instances. This can be considered as a relaxed version of the problem defined in
Equation (2) where, instead of mapping problem instances to algorithms, the main
challenge is to design the best-performing algorithm portfolio over all instances,
consisting of the selected algorithms Si ∈ S.

The constituent algorithms selection problem has been primarily addressed by
using offline selection methods. Such methods are applied prior to the execution
of the algorithm portfolio. They are based on a priori knowledge on the average
performance of each candidate algorithm over all problems at hand. If there is no
adequate information on the algorithms, a preprocessing phase is usually needed
to identify their relevant properties. However, this can be a time-consuming and
laborious task in cases of hard real-life problems.

In [2] a general selection scheme was proposed to tackle the constituent algo-
rithms selection problem. This scheme admits as input the number of all available
algorithms and the targeted problems, and generates the set of constituent algorithms
based on various selectors. The number of selected algorithms is either specified by
the user or determined by the used selector. The evaluation of the selectors in [2]
was conducted on a set of instances of the maintenance scheduling problem using
random data generated by the same distribution.



276 D. Souravlias and K. E. Parsopoulos

Comparisons among different selectors revealed the superiority of the selector
delete distance (SDI) and the selector racing (SRC) policies [2]. The SDI technique
applies all the available algorithms on a declining list of problem instances. First,
the order of the available instances is randomized and then each problem instance
is individually solved by each algorithm in turn. The algorithm that solves the
problem instance (i.e., the acquired objective function value is below a user-defined
threshold) is selected as a constituent algorithm, while the problem instance is
removed from the list. The process ends when all instances are solved by an
algorithm. On the other hand, the SRC method uses the F-Race method to select
algorithms. Specifically, each problem instance is randomly selected and tackled
by all algorithms in turn. If the instance is solved once, it is not considered again.
Algorithms that do not perform adequately well are discarded, based on statistical
comparisons of their performance with the rest. This procedure is terminated when
n constituent algorithms are selected.

A portfolio of population-based algorithms was considered in [15], consisting
of evolutionary algorithms for numerical optimization problems. The portfolio is
equipped with an online mechanism used to automatically select its constituent
algorithms. The selection mechanism is allocated a portion of the available com-
putational budget, and relies on the estimated performance matrix method applied
on each candidate evolutionary algorithm. Specifically, each algorithm is applied
k1 times for each one of the available k2 problem instances. Hence, for each
algorithm Si , a k1 × k2 performance matrix PMi is formed, where each component
is the solution’s function value detected in a single run of the algorithm on the
specific problem instance. The matrices are eventually used to select the constituent
algorithms of the portfolio, while the remaining computational budget is utilized to
solve the problem at hand.

The role of the synergy of the constituent algorithms in the success of an
algorithm portfolio has been recognized through theoretical and experimental evi-
dence [9]. The use of portfolios instead of individual algorithms aims at alleviating
possible weaknesses of one algorithm by using another one with complementary
performance. For example, let S1, S2 ∈ S be two algorithms, and I1, I2, I3, I4 be
four test problems. Suppose that S1 performs better than S2 on instances I1 and
I2, whereas S2 is more successful than S1 on instances I3 and I4. Including both
algorithms into a portfolio seems to be a reasonable choice, as they complementarily
perform on the considered instances. Thus, complementarity of the constituent
algorithms in a portfolio arises as an important issue in the algorithm selection
phase.

Moreover, complementarity is essential even during the run of the portfolio.
For example, the use of both exploration-oriented (global search) algorithms that
are very useful at the early stages of the optimization procedure and exploitation-
oriented (local search) algorithms that conduct more refined search around the best
detected solutions at the final stages of the optimization procedure can be highly
beneficial. A combination of these two can prevent from the undesirable premature
convergence problem. Recent experimental evidence on portfolios consisting of
both population-based and local search algorithms justified the above claims on
challenging manufacturing problems [12].



On the Design of Metaheuristics-Based Algorithm Portfolios 277

The identification of complementary algorithms is not a trivial task. To this end, a
new technique for designing portfolios with algorithms that exhibit complementarity
properties was introduced in [8]. This technique models the constituent algorithm
selection problem as an election task, where each problem “votes” for some of the
available algorithms. An algorithm Si is considered to be better than algorithm Sj
for a particular problem if it achieves better performance in terms of the necessary
number of function evaluations for attaining a specific objective value threshold.
The method consists of two phases. In the first (initialization) phase, a subset of the
available algorithms is generated. This subset contains all solvers that achieve the
best performance for at least one of the problems at hand. In the second phase, an
iterative procedure is initiated, where each problem defines a partial ordering of the
available algorithms based on the proposed performance measure. The algorithms
that are preferred by the majority of the problems are then added to the portfolio.

Summarizing, the constituent algorithms selection problem in algorithm portfo-
lios is an open problem directly connected to the well-known algorithm selection
problem. Although its relevance and significance for the portfolio’s performance is
supported by strong experimental evidence, it is probably the less studied problem
in relevant works. This can be partially attributed to the existence of abundant
data for various optimization problem types, which may narrow the selection to
specific algorithm types. This way the user can make more informative decisions
on the considered candidates. Nevertheless, integrated solutions that would offer
ad hoc selection options per problem or automate the whole selection procedure,
considering also variable numbers of algorithms in the portfolio, would add
significant merit to the general concept of algorithm portfolios.

3.2 Allocation of Computation Budget

The allocation of computational budget to the constituent algorithms is perhaps the
most studied topic in algorithm portfolios’ literature. The allocation problem can be
summarized in two essential questions:

1. What fraction of the total computational budget shall be assigned to each
constituent algorithm?

2. How is this budget allocated to the algorithms during the run?

Following the notation of Section 2, budget allocation requires the determination of
the set T = {T1, T2, . . . , Tn}, where Ti stands for the budget (function evaluations
or running time) allocated to the constituent algorithm Si , i = 1, 2, . . . , n, such that
Equation (1) holds. The goal is to distribute the available computational resources
among the n constituent algorithms such that the expected objective function value,
denoted as Ef , is minimized, i.e.,

min
T

Ef , subject to
n∑

i=1

Ti = Tmax, and Ti � 0, ∀i. (3)



278 D. Souravlias and K. E. Parsopoulos

The expected objective function value is averaged over a number of independent
experiments for each problem instance under consideration.

Naturally, the assignment of computational budget to algorithms has significant
performance impact. Assigning computational resources prior to the execution of
the algorithm portfolio may be insufficient since it neglects the online dynamic of
each algorithm. For this reason, online techniques for the dynamic allocation of
resources during the run have been recently proposed [4, 12, 19].

In [4] the proposed algorithm portfolio is composed of both population-based
and local search metaheuristics, and it is applied on the dynamic maximal covering
location problem. The portfolio is equipped with a learning mechanism that
distributes the available credit (namely computational budget) among the constituent
algorithms according to their performance. The credit assigned to each algorithm is
based on a weight function that takes into account the credit of each algorithm in
the previous iteration, a reward, and a penalization score. The reward score is added
to the current weight if the algorithm improves the best so far solution. The penal-
ization score is subtracted from the current weight and occurs when the algorithm
results in a solution that is inferior than the overall best. Eventually, the weight is
used to define a selection probability that is fed to a roulette wheel procedure.

The procedure above is incorporated into the main algorithm selection scheme
and determines the algorithm that will be executed in the next iteration. In the
specific study, the term “iteration” is interpreted differently for each type of
constituent algorithm. Thus, in local search methods, iteration is defined as one
application of the employed neighborhood operator and the computation of the
corresponding objective function. In population-based metaheuristics, an iteration
refers to the sequential application of the underlying evolutionary operators such as
crossover, mutation, and selection.

A different population-based portfolio was introduced in [19]. The algorithms
of that portfolio are individually executed without any exchange of information
among them. Also, they are executed interchangeably, i.e., they automatically
switch from one algorithm to another as a function of the available computational
resources. During the search procedure, the performance of each algorithm is
predicted by using its past objective function values. Specifically, a future time
point is determined and the performance curve of each algorithm is extrapolated
to that point. Extrapolation is conducted by applying a linear regression model to
the performance curve of each algorithm between iterations i − l and i. As l can
admit different values, a number of linear models (straight lines) are the outcome of
this procedure.

In turn, each linear model results in a corresponding predicted value, and
all these values are used to create a bootstrap probability distribution. The final
predicted value is sampled from the bootstrap probability distribution. Eventually,
the algorithm that achieves the highest predicted function value is executed in the
next iteration. The term iteration corresponds to the application of the algorithm’s
operators and the computation of the corresponding objective values, under the
assumption that all algorithms have identical population sizes. An advantage of this
allocation scheme is the lack of many parameters, which disburdens the practitioner
from the tedious task of their tuning.



On the Design of Metaheuristics-Based Algorithm Portfolios 279

Another allocation scheme was proposed in [12], based on stock trading mod-
els similar to the ones that motivated the development of algorithm portfolios.
The proposed parallel algorithm portfolio embeds a market trading-based budget
allocation mechanism. This is used to dynamically distribute the available com-
putational budget, rewarding the best-performing algorithms of the portfolio with
additional execution time. The core idea behind the allocation mechanism assumes
constituent algorithms-investors that invest on elite solutions, using execution time
as the trading currency. Both population-based and local search metaheuristics are
incorporated into the studied portfolio in [12]. Moreover, the constituent algorithms
are concurrently executed by using the master–slave parallelism model, where
slave-nodes host the constituent algorithms and the master-node coordinates the
procedure. According to the proposed scheme in [12], all algorithms are initially
allocated equal computational budgets, which is the running time in this case.
Then, a fraction of the assigned time (investment time) is used by each algorithm
to buy solutions from other algorithms, while its remaining time is devoted to
the algorithm’s own execution. During this procedure, the master-node retains an
archive of one elite solution per algorithm. For each stored solution, a price is
computed taking into consideration the objective values of all archived solutions
in the elite set. Obviously, high-quality solutions are also the most costly ones.

In the case that an algorithm cannot improve its own best solution for a specific
time period, it decides to bid for a better solution among the archived ones. To do so,
the buyer-algorithm contacts the master-node to initiate a profitable bargain. Among
the available archived solutions, the buyer-algorithm chooses to buy the one that
maximizes a specific quality measure, called the return on investment index [12]. In
simple words, among the affordable archived solutions (determined by its available
investment time and the solution prices) the buyer-algorithm chooses to buy the
solution that maximizes the improvement over its own best solution.

Then, the seller-algorithm, i.e., the one that discovered the traded solution,
receives from the buyer-algorithm the amount of computational budget (running
time) specified by the traded solution’s price. Overall, the proposed allocation mech-
anism enables the best-performing algorithms to sell solutions more frequently, thus
gaining additional execution time during their run. Note that the total execution time
that was allocated initially to the algorithm portfolio remains unchanged throughout
the optimization procedure. It is simply reallocated to the algorithms according to
the aforementioned dynamic scheme.

Summarizing, the allocation of computational budget to the constituent algo-
rithms of an algorithm portfolio is the main key for the portfolio’s efficiency.
The mechanism shall be capable of identifying either offline, based on historical
performance data or preprocessing, or online, based on current feedback of the
algorithms during their execution, the most promising algorithms and award them
additional fractions of the total budget. Online approaches fit their budget allocation
to the specific conditions during the portfolio’s execution. Thus, they can be highly
reactive to the course of the optimization procedure.

On the other hand, their outcome is hardly reusable in similar problems contrast-
ing the offline methods. Given the variety of optimization problems and the diversity



280 D. Souravlias and K. E. Parsopoulos

of algorithm characteristics, the possibility of developing universal optimal budget
allocation schemes seems questionable. Nevertheless, it is the authors’ belief that
enhanced ad hoc procedures can be developed by thoroughly analyzing (offline or
online) the performance profiles of the constituent algorithms. To this end, machine
learning and time series analysis can be valuable.

3.3 Interaction of Constituent Algorithms

In early algorithm portfolio models, the constituent algorithms were considered to
be isolated [11, 14, 19], i.e., there was no form of interaction among them. In other
works, some form of interaction existed [9, 12, 16]. Interaction comes in various
forms. For instance, in [9] the proposed portfolios comprise different population-
based algorithms. The portfolio holds separate subpopulations, each one assigned its
own computational budget. Also, each subpopulation adopts one of the constituent
algorithms. Interaction takes place through the exchange of individuals among the
subpopulations.

This process is the well-known migration property, and it is applied following a
simple scheme. In particular, two parameters are used, namely the migration interval
and the migration size, which are defined prior to the portfolio’s run. The migration
interval determines the number of iterations between two consecutive migrations,
while the migration size stands for the number of migrating individuals.

In [16], a multi-method framework that accommodates various evolutionary
algorithms was proposed for real-valued optimization problems. According to this
approach, the constituent algorithms are concurrently executed and share a joint
population of search points. In the beginning, an initial population is randomly
and uniformly created. Then, instead of using a single algorithm, all the constituent
algorithms contribute offspring to the population of the next generation. The number
of offspring per algorithm is determined through a self-adaptive learning strategy.

This strategy follows a two-step procedure. In the first step, the contribution
of each algorithm to the overall improvement of the objective function value is
computed. In the second step, this value is used to determine the fraction of offspring
generated by each algorithm in the next iteration. Obviously, the algorithms that
achieve higher improvements are offered the chance to be more productive than the
rest.

Besides the use of joint populations or subpopulations, other types of information
can be exchanged among the constituent algorithms. For example, in [12] the
proposed portfolios include both population-based and local search algorithms,
which are executed in parallel based on a master–slave model. Then, whenever an
algorithm fails to improve its findings for a specific amount of time, it receives the
best solution achieved by a different algorithm.

Overall, the interaction of constituent algorithms can be beneficial for an algo-
rithm portfolio especially when population-based algorithms are used. Migration
of individuals between populations can offer the necessary boost to less efficient



On the Design of Metaheuristics-Based Algorithm Portfolios 281

algorithms or may lead to improved solutions if it is used as initial condition for
a local search algorithm. Moreover, information exchange promotes interaction
and cooperation between the algorithms, also promoting performance correlations.
Nevertheless, it is a concept that remains to be studied individually as well as in
combination with the budget allocation approaches.

3.4 The Role of Parallelism

The constituent algorithms of an algorithm portfolio can be executed either inter-
changeably on a single CPU or concurrently on many CPUs. Three essential
parallelism models are used in parallel portfolios. Probably the most popular one
is the master–slave model, which has been widely used [12, 14]. In this model,
the slave-nodes usually host the constituent algorithms, while the master-node is
devoted to coordination and book-keeping services.

Figure 1 depicts a parallel heterogeneous and a parallel homogeneous portfolio
based on the master–slave model. The heterogeneous portfolio consists of two
variable neighborhood search (VNS) metaheuristics and two iterated local search
(ILS) algorithms. The two instances in each pair of metaheuristics assume the
same parameter configuration between them. The homogeneous portfolio includes
four copies of the VNS algorithm with the same configuration. Note that each
metaheuristic runs on a single slave-node, which sends (e.g., periodically) its best
solution to the master-node during the optimization procedure.

A different approach is the fine-grained parallelism model. This is used mostly
for population-based metaheuristics when massive parallel computers are avail-
able [1]. According to this model, the algorithm consists of a single population
and each individual that belongs to at least one neighborhood is confined to
communicate with the members of its own neighborhood. Overlaps among different
neighborhoods may also exist, promoting interactions among all individuals of the
population. Obviously, the neighborhood topology and the number of individuals
that comprise the neighborhood affect the performance of this model. Typically, a
number of individuals of the population are assigned to a single processing unit,

Master

Slave I: VNS

Slave II: VNS

Slave III: ILS

Slave IV: ILS

Master

Slave I: VNS

Slave II: VNS

Slave III: VNS

Slave IV: VNS

Fig. 1 Heterogeneous (left) and homogeneous (right) parallel algorithm portfolios



282 D. Souravlias and K. E. Parsopoulos

while the ideal case for time-consuming problems would allow only one individual
per CPU. However, in ordinary problems such distributed computation may impose
additional communication delays and should be avoided.

Another model is the so-called coarse-grained parallelism model, which is also
very common in population-based algorithms [1]. In this model, a population
consists of individual subpopulations, each one running on a single CPU. The
following parameters control the performance of such models:

1. Model topology: it specifies the communication links among subpopulations.
2. Migration period: it defines the frequency of migrations.
3. Migration size: it determines the number of migrating individuals.
4. Migration type: it distinguishes between synchronous and asynchronous migra-

tion.

Synchronous migration takes place at prespecified time points (e.g., periodically),
whereas asynchronous migration dictates that subpopulations communicate when
specific events occur.

It becomes obvious that the design of parallel algorithm portfolios raises a
number of issues. Special attention is required in the selection of the suitable
parallelism model and its parameters tuning [1]. Despite that, parallelism shall be
promoted against sequential approaches in order to take full advantage of modern
computer systems and increase the portfolios’ time-efficiency [1].

An equally important goal refers to effectiveness in terms of solution quality.
Even a simplistic portfolio that comprises copies of the same algorithm can in some
cases outperform its sequential counterparts, under the assumption that both models
receive equal computational resources [14]. This is attributed to the fact that more
than one threads concurrently explore different parts of the search space, hence the
probability of detecting better solutions is significantly increased.

Overall, parallelism can offer obvious advantages to algorithm portfolios in terms
of time-efficiency. Also, the parallelism model can influence the synchronization
and information flow in interactive portfolios. Thus, it is an open problem of interest
that shall be carefully considered in combination with the previously exposed open
problems in order to guarantee the development of more efficient approaches.

4 Conclusions

Metaheuristics-based algorithm portfolios have gained ongoing popularity as
promising alternatives for tackling hard optimization problems. So far, their
effectiveness and efficiency have been identified on several challenging problems
spanning diverse research areas. The present chapter provided information on recent
research trends and the most important issues in the design of efficient algorithm
portfolios.

In the relevant literature, four essential open problems can be distinguished,
namely the selection of constituent algorithms, resource allocation schemes, inter-



On the Design of Metaheuristics-Based Algorithm Portfolios 283

action among the algorithms, and parallelism against sequential implementations.
Each problem individually but, mostly, their interplay in the design of an algorithm
portfolio can draw the borderline between a top-performing scheme and a failure.

Research developments of the past decade offer the necessary motivation for
further discussion and elaboration on algorithm portfolios. It is the authors’ belief
that the accessibility to powerful parallel machines in the forthcoming years will
further expand research on algorithm portfolios. Latest developments on machine
learning and data analysis cultivate the ground toward this goal, placing algorithm
portfolios in a salient position among the available algorithmic artillery for global
optimization.

References

1. Akay, R., Basturk, A., Kalinli, A., Yao, X.: Parallel population-based algorithm portfolios.
Neurocomputing 247, 115–125 (2017)

2. Almakhlafi, A., Knowles, J.: Systematic construction of algorithm portfolios for a maintenance
scheduling problem. In: IEEE Congress on Evolutionary Computation, Cancun, Mexico, pp.
245–252 (2013)

3. Boussaïd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237,
82–117 (2013)

4. Calderín, J.F., Masegosa, A.D., Pelta, D.A.: An algorithm portfolio for the dynamic maximal
covering location problem. Memetic Comput. 9(2), 141–151 (2017)

5. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1), 43–62 (2001)
6. Hart, E., Sim, K.: On constructing ensembles for combinatorial optimisation. Evol. Comput.

26(1), 67–87 (2018)
7. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational

problems. Science 275(5296), 51–54 (1997)
8. Mun̈oz, M.A., Kirley, M.: Icarus: identification of complementary algorithms by uncovered

sets. In: IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, pp.
2427–2432 (2016)

9. Peng, F., Tang, K., Chen, G., Yao, X.: Population-based algorithm portfolios for numerical
optimization. IEEE Trans. Evol. Comput. 14(5), 782–800 (2010)

10. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
11. Shukla, N., Dashora, Y., Tiwari, M., Chan, F., Wong, T.: Introducing algorithm portfolios

to a class of vehicle routing and scheduling problem. In: 2nd International Conference on
Operations and Supply Chain Management (OSCM), Bangkok, Thailand, pp. 1015–1026
(2007)
In: Proceedings OSCM 2007, pp. 1015–1026 (2007)

12. Souravlias, D., Parsopoulos, K.E., Alba, E.: Parallel algorithm portfolio with market trading-
based time allocation. In: Lübbecke, M., Koster, A., Letmathe, P., Madlener, R., Peis, B.,
Walther, G. (eds.) Operations Research Proceedings 2014, pp. 567–574. Springer, Berlin
(2016)

13. Souravlias, D., Parsopoulos, K.E., Kotsireas, I.S.: Circulant weighing matrices: a demanding
challenge for parallel optimization metaheuristics. Optim. Lett. 10(6), 1303–1314 (2016)

14. Souravlias, D., Parsopoulos, K.E., Meletiou, G.C.: Designing Bijective S-boxes using algo-
rithm portfolios with limited time budgets. Appl. Soft Comput. 59, 475–486 (2017)

15. Tang, K., Peng, F., Chen, G., Yao, X.: Population-based algorithm portfolios with automated
constituent algorithms selection. Inf. Sci. 279, 94–104 (2014)



284 D. Souravlias and K. E. Parsopoulos

16. Vrugt, J.A., Robinson, B.A., Hyman, J.M.: Self-adaptive multimethod search for global
optimization in real-parameter spaces. IEEE Trans. Evol. Comput. 13(2), 243–259 (2009)

17. Wolpert, D.H., Macready, W.G.: No free lunch theorem for optimization. IEEE Trans. Evol.
Comput. 1, 67–82 (1997)

18. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: the design and analysis of
an algorithm portfolio for SAT. In: International Conference on Principles and Practice of
Constraint Programming, Providence, RI, USA, pp. 712–727 (2007)

19. Yuen, S.Y., Chow, C.K., Zhang, X., Lou, Y.: Which algorithm should I choose: An evolutionary
algorithm portfolio approach. Appl. Soft Comput. 40, 654 – 673 (2016)


