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AbstrAct

The multiple criteria nature of most real world problems has boosted research on multi-objective algo-
rithms that can tackle such problems effectively, with the smallest possible computational burden. Particle 
Swarm Optimization has attracted the interest of researchers due to its simplicity, effectiveness and ef-
ficiency in solving numerous single-objective optimization problems. Up-to-date, there are a significant 
number of multi-objective Particle Swarm Optimization approaches and applications reported in the 
literature. This chapter aims at providing a review and discussion of the most established results on this 
field, as well as exposing the most active research topics that can give initiative for future research.

IntroductIon

Multi-objective optimization problems consist 
of several objectives that are necessary to be 
handled simultaneously. Such problems arise in 
many applications, where two or more, sometimes 
competing and/or incommensurable, objective 
functions have to be minimized concurrently. 
Due to the multicriteria nature of such problems, 

optimality of a solution has to be redefined, giving 
rise to the concept of Pareto optimality. 

In contrast to the single-objective optimization 
case, multi-objective problems are characterized 
by trade-offs and, thus, there is a multitude of 
Pareto optimal solutions, which correspond to 
different settings of the investigated multi-objec-
tive problem. For example, in shape optimization, 
different Pareto optimal solutions correspond to 
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different structure configurations of equal fitness 
but different properties. Thus, the necessity of 
finding the largest allowed number of such solu-
tions, with adequate variety of their corresponding 
properties, is highly desirable.

Evolutionary algorithms seem to be particu-
larly suited to multi-objective problems due to their 
ability to synchronously search for multiple Pareto 
optimal solutions and perform better global explo-
ration of the search space (Coello, Van Veldhuizen, 
& Lamont, 2002; Deb, 1999; Schaffer, 1984). Up-
to-date, a plethora of evolutionary algorithms have 
been proposed, implementing different concepts 
such as fitness sharing and niching (Fonseca & 
Fleming, 1993; Horn, Nafpliotis, & Goldberg, 
1994; Srinivas & Deb, 1994), and elitism (Deb, 
Pratap, Agarwal, & Meyarivan, 2002; Erickson, 
Mayer, & Horn, 2001; Zitzler & Thiele, 1999). 
External archives have also been introduced as 
a means of memory for retaining Pareto optimal 
solutions. This addition enhanced significantly 
the performance of some algorithms, but it has 
also raised questions regarding the manipulation 
of the archive and its interaction with the actual 
population of search points.

Particle Swarm Optimization (PSO) is a swarm 
intelligence method that roughly models the so-
cial behavior of swarms (Kennedy & Eberhart, 
2001). PSO shares many features with evolution-
ary algorithms that rendered its adaptation to the 
multi-objective context straightforward. Although 
several ideas can be adopted directly from evolu-
tionary algorithms, the special characteristics that 
distinguish PSO from them, such as the directed 
mutation, population representation and opera-
tors must be taken into consideration in order 
to produce schemes that take full advantage of 
PSO’s efficiency.

Up-to-date, several studies of PSO on multi-
objective problems have appeared, and new, 
specialized variants of the method have been 
developed (Reyes-Sierra & Coello, 2006a). This 
chapter aims at providing a descriptive review of 
the state-of-the-art multi-objective PSO variants. 

Of course, it is not possible to include in the limited 
space of a book chapter the whole literature. For 
this reason, we selected to present the approaches 
that we considered most important and proper to 
sketch the most common features considered in the 
development of algorithms. Thus, we underline to 
the reader the fundamental issues in PSO-based 
multi-objective approaches, as well as the most 
active research directions and future trends. An 
additional reading section regarding applications 
and further developments is included at the end of 
the chapter, in order to provide a useful overview 
of this blossoming research field.

The rest of the chapter is organized as follows: 
Section 2 provides concise descriptions of the 
necessary background material, namely the basic 
multi-objective concepts and the PSO algorithm. 
Section 3 is devoted to the discussion of key 
concepts and issues that arise in the transition 
from single-objective to multi-objective cases. 
Section 4 exposes the established PSO approaches 
reported in the relative literature, and highlights 
their main features, while Section 5 discusses the 
most active research directions and future trends. 
The chapter concludes in Section 6. 

bAckground MAterIAl

Although the basic concepts of multi-objective 
optimization have been analyzed in another chap-
ter of this book, we report the most essential for 
completeness purposes, along with a presentation 
of the PSO algorithm.

basic Multi-objective optimization 
concepts

Let S ⊂  n be an n-dimensional search space, and 
fi(x), i=1,…,k, be k objective functions defined over 
S. Also, let f be a vector function defined as

f(x) = [ f 1(x), f2(x),…, fk(x)],  (1)
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and 

gi(x) ≤ 0, i = 1,…, m,   (2)

be m inequality constraints. Then, we are inter-
ested in finding a solution, x* = (x1*, x2*,…, xn*), 
that minimizes f(x). The objective functions fi(x) 
may be conflicting with each other, thereby ren-
dering the detection of a single global minimum 
at the same point in S, impossible. For this pur-
pose, optimality of a solution in multi-objective 
problems needs to be redefined properly. 

Let u = (u1,…, uk) and v = (v1,…, vk) be two 
vectors of the search space S. Then, u dominates 
v, if and only if, ui ≤ vi for all i=1, 2,…, k, and ui 
< vi for at least one component. This property is 
known as Pareto dominance. A solution, x, of 
the multi-objective problem is said to be Pareto 
optimal, if and only if there is no other solution, 
y, in S such that f(y) dominates f(x). In this case, 
we also say that x is nondominated with respect 
to S. The set of all Pareto optimal solutions of a 
problem is called the Pareto optimal set, and it 
is usually denoted as *. The set

* = { f(x): x ∈ * },    (3)

is called the Pareto front. A Pareto front is convex 
if and only if, for all u, v ∈ * and for all λ ∈ 
(0, 1), there exists a w ∈ * such that 

λ ||u|| + (1-λ) ||v|| ≥ ||w||,

while it is called concave, if and only if

λ ||u|| + (1-λ) ||v|| ≤ ||w||.

A Pareto front can also be partially convex 
and/or concave, as well as discontinuous. These 
cases are considered the most difficult for most 
multi-objective optimization algorithms. 

The special nature of multi-objective problems 
makes necessary the determination of new goals 
for the optimization procedure, since the detec-

tion of a single solution, which is adequate in the 
single-objective case, is not valid in cases of many, 
possibly conflicting objective functions. Based on 
the definition of Pareto optimality, the detection 
of all Pareto optimal solutions is the main goal in 
multi-objective optimization problems. However, 
since the Pareto optimal set can be infinite and 
our computations adhere to time and space limita-
tions, we are compelled to set more realistic goals. 
Thus, we can state as the main goal of the multi-
objective optimization procedure, the detection 
of the highest possible number of Pareto optimal 
solutions that correspond to an adequately spread 
Pareto front, with the smallest possible deviation 
from the true Pareto front. 

Particle swarm optimization

Eberhart and Kennedy (1995) developed PSO 
as an expansion of an animal social behavior 
simulation system that incorporated concepts 
such as nearest-neighbor velocity matching and 
acceleration by distance (Kennedy & Eberhart, 
1995). Similarly to evolutionary algorithms, 
PSO exploits a population, called a swarm, of 
potential solutions, called particles, which are 
modified stochastically at each iteration of the 
algorithm. However, the manipulation of swarm 
differs significantly from that of evolutionary 
algorithms, promoting a cooperative rather than 
a competitive model. 

More specifically, instead of using explicit 
mutation and selection operators in order to 
modify the population and favor the best perform-
ing individuals, PSO uses an adaptable velocity 
vector for each particle, which shifts its position 
at each iteration of the algorithm. The particles 
are moving towards promising regions of the 
search space by exploiting information springing 
from their own experience during the search, as 
well as the experience of other particles. For this 
purpose, a separate memory is used where each 
particle stores the best position it has ever visited 
in the search space. 
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Let us now put PSO more formally in the 
context of single-objective optimization. Let S 
be an n-dimensional search space, f : S →  be 
the objective function, and N be the number of 
particles that comprise the swarm, 

 = {x1, x2,…, xN}.

Then, the i-th particle is a point in the search 
space, 

xi = (xi1, xi2,…, xin) ∈ S,

as well as its best position,

pi = (pi1, pi2,…, pin) ∈ S,

which is the best position ever visited by xi during 
the search. The velocity of xi is also an n-dimen-
sional vector,

vi = (vi1, vi2,…, vin).

The particles, their best positions, as well as 
their velocities, are randomly initialized in the 
search space. 

Let NGi ⊆  be a set of particles that exchange 
information with xi. This set is called the neigh-
borhood of xi, and it will be discussed later. Let 
also, g, be the index of the best particle in NGi, 
that is, 

f(pg) ≤ f(pl),  for all l with xl ∈ NGi,

and t denote the iteration counter. Then, the 
swarm is manipulated according to the equations 
(Eberhart & Shi, 1998),

vij(t+1) = w vij(t) + c1 r1 (pij(t) – xij(t)) + c2 r2 (pgj(t) 
– xij(t)),      (4)

xij(t+1) = xij(t) + vij(t+1),    (5)
     

where i = 1, 2,…, N; j = 1, 2,…, n; w is a positive 
parameter called inertia weight; c1 and c2 are two 
positive constants called cognitive and social pa-
rameter, respectively; and r1, r2, are realizations 
of two independent random variables that assume 
the uniform distribution in the range (0, 1). The 
best position of each particle is updated at each 
iteration by setting 

pi(t+1) = xi(t+1),  if f(xi) < f(pi),

otherwise it remains unchanged. Obviously, an 
update of the index g is also required at each 
iteration.

The inertia weight was not used in early PSO 
versions. However, experiments showed that the 
lack of mechanism for controlling the veloci-
ties could result in swarm explosion, that is, an 
unbounded increase in the magnitude of the 
velocities, which resulted in swarm divergence. 
For this purpose, a boundary, vmax, was imposed 
on the absolute value of the velocities, such that, 
if vij > vmax then vij = vmax, and if vij < -vmax then vij 
= -vmax. In later, more sophisticated versions, the 
new parameter was incorporated in the velocity 
update equation, in order to control the impact of 
the previous velocity on the current one, although 
the use of vmax was not abandoned. 

Intelligent search algorithms, such as PSO, 
must demonstrate an ability to combine explo-
ration, that is, visiting new regions of the search 
space, and exploitation, that is, performing more 
refined local search, in a balanced way in order 
to solve problems effectively (Parsopoulos & 
Vrahatis, 2004; Parsopoulos & Vrahatis, 2007). 
Since larger values of w promote exploration, 
while smaller values promote exploitation, it was 
proposed and experimentally verified that declin-
ing values of the inertia weight can provide better 
results than fixed values. Thus, an initial value 
of w around 1.0 and a gradually decline towards 
0.0 are considered a good choice. On the other 
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hand, the parameters c1 and c2 are usually set to 
fixed and equal values such that the particle is 
equally influenced by its own best position, pi, 
as well as the best position of its neighborhood, 
pg, unless the problem at hand implies the use of 
a different setting.

An alternative velocity update equation was 
proposed by Clerc and Kennedy (2002),

vij(t+1) = χ [vij(t) + c1 r1 (pij(t) – xij(t)) + c2 r2 (pgj(t) 
– xij(t))],     (6)

where χ is a parameter called constriction factor. 
This version is algebraically equivalent with the 
inertia weight version of Equation (4). However, 
the parameter selection in this case is based on 
the stability analysis due to Clerc and Kennedy 
(2002), which expresses χ as a function of c1 and 
c2. Different promising models were derived 
through the analysis of the algorithm, with the 
setting χ = 0.729, c1 = c2 =2.05, providing the most 
promising results and robust behavior, rendering 
it the default PSO parameter setting.

Regardless of the PSO version used, it is clear 
that its performance is heavily dependent on the 
information provided by the best positions, pi 
and pg, since they determine the region of the 
search space that will be visited by the particle. 

Therefore, their selection, especially for pg, which 
is related to information exchange, plays a central 
role in the development of effective and efficient 
PSO variants. 

Moreover, the concept of neighborhood men-
tioned earlier in this section, raises efficiency is-
sues. A neighborhood has been already defined as 
a subset of the swarm. The most straightforward 
choice would be to consider as neighbors of the 
particle xi, all particles enclosed in a sphere with 
center xi and a user-defined radius in the search 
space. Despite its simplicity, this approach in-
creases significantly the computational burden of 
the algorithm, since it requires the computation 
of all distances among particles at each iteration. 
This deficiency has been addressed by defining 
neighborhoods in the space of particles’ indices 
instead of the actual search space. 

Thus, the neighbors of xi are determined based 
solely on the indices of the particles, assuming 
different neighborhood topologies, that is, order-
ings of the particles’ indices. The most common 
neighborhood is the ring topology, depicted in Fig. 
1 (left), where the particles are arranged on a ring, 
with xi-1 and xi+1 being the immediate neighbors of 
xi, and x1 following immediately after xN. Based 
on this topology, a neighborhood of radius r of 
xi is defined as

Figure 1. The ring (left) and star (right) neighborhood topologies of PSO
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NGi(r) = {xi-r, xi-r+1,…, xi-1, xi, xi+1,…, xi+r-1, xi+r},

and the search is influenced by the particle’s own 
best position, pi, as well as the best position of its 
neighborhood. This topology promotes explora-
tion, since the information carried by the best 
positions is communicated slowly through the 
neighbors of each particle. A different topology 
is the star topology, depicted in Figure 1 (right) 
where all particles communicate only with a 
single particle, which is the overall best position, 
pg, of the swarm, that is, NGi ≡ . This topology 
promotes exploitation, since all particles share the 
same information. This is also called the global 
variant of PSO, denoted as gbest in the relative 
literature, while all other topologies with NGi ⊂ 
, define local variants, usually denoted as lbest. 
Different topologies have also been investigated 
with promising results (Janson & Middendorf, 
2004; Kennedy, 1999).

key concePts of 
MultI-objectIve Pso 
AlgorIthMs 

In the previous section, it was made clear that the 
search ability of a particle is heavily dependent 
on the best positions, pi and pg, involved in its 
velocity update equation (Equation (4) or (6)). 
These best positions attract the particle, biasing its 
movement towards the search space regions they 
lie, with pi representing the inherent knowledge 
accumulated by the particle during its search, 
while pg is the socially communicated informa-
tion of its neighborhood, determined through the 
adopted neighborhood topology. 

In multi-objective problems, we can distin-
guish two fundamental approaches for designing 
PSO algorithms (Reyes-Sierra & Coello, 2006a). 
The first approach consists of algorithms that con-
sider each objective function separately. In these 
approaches, each particle is evaluated only for one 

objective function at a time, and the determina-
tion of the best positions is performed similarly to 
the single-objective optimization case. The main 
challenge in such cases is the proper manipulation 
of the information coming from each objective 
function in order to guide the particles towards 
Pareto optimal solutions. 

The second approach consists of algorithms 
that evaluate all objective functions for each 
particle, and, based on the concept of Pareto opti-
mality, they produce nondominated best positions 
(often called leaders) that are used to guide the 
particles. In these approaches, the determination 
of leaders is not straighforward, since there can be 
many nondominated solutions in the neighborhood 
of a particle, but only one is usually selected to 
participate in the velocity update. 

In the aforementioned approaches, the problem 
of maintaining the detected Pareto optimal solu-
tions must be addressed. The most trivial solution 
would be to store nondominated solutions as the 
particles’ best positions. However, this choice is 
not always valid, since the desirable size of the 
Pareto front may exceed the swarm size. Moreover, 
two nondominated solutions are equally good, 
arising questions regarding the selection of the one 
that will be used as the best position of a particle. 
The size problem can be addressed by using an 
additional set, called the external archive, for 
storing the nondominated solutions discovered 
during search, while the problem of selection of 
the most proper archive member depends on the 
approach. Nevertheless, an external archive has 
also bounded size, thereby making unavoidable 
the imposition of rules regarding the replacement 
of existing solutions with new ones.

The general multi-objective PSO scheme can 
be described with the following pseudocode:

Begin
	 Initialize swarm, velocities and best positions
	 Initialize external archive (initially empty)
	 While (stopping criterion not satisfied) Do
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	 	 For each particle
	 	 	 Select a member of the external  
   archive (if needed)
	 	 	 Update velocity and position
	 	 	 Evaluate new position
	 	 	 Update best position and external 
   archive
  End For
 End While
End

It is clear that selection of a member of the 
external archive, as well as the update of archive 
and best positions, constitute key concepts in the 
development of multi-objective PSO approaches, 
albeit not the only ones. Diversity also affects 
significantly the performance of the algorithm, 
since its loss can result in convergence of the 
swarm to a single solution.

The problem of selecting members from the 
external archive has been addressed through the 
determination of measures that assess the quality 
of each archive member, based on density esti-
mators. Using such measures, archive members 
that promote diversity can be selected. The most 
commonly used density estimators are the Nearest 
Neighbor Density Estimator (Deb et al., 2002) and 
the Kernel Density Estimator (Deb & Goldberg, 
1989). Both measures provide estimations regard-
ing the proximity and number of neighbors for 
a given point. 

The problem of updating the archive is more 
complex. A new solution is included in the archive 
if it is nondominated by all its members. If some 
members are dominated by the new solution, then 
they are usually deleted from the archive. The 
necessity for a bounded archive size originates 
from its tendency to increase significantly within 
a small number of algorithm iterations, rendering 
domination check computationally expensive. 

Also, the user must decide for the action 
taken in the case of a candidate new solution 
that is nondominated by all members of a full 
archive. Obviously, this solution must compete 

all members of the archive in order to replace an 
existing member. Diversity is again the funda-
mental criterion, that is, the decision between an 
existing and a new solution is taken such that the 
archive retains the maximum possible diversity. 
For this purpose, different clustering techniques 
have been proposed (Knowles & Corne, 2000; 
Zitzler & Thiele, 1999). A similar approach 
uses the concept of ε-dominance to separate the 
Pareto front in boxes and retain one solution for 
each box. This approach has been shown to be 
more efficient than simple clustering techniques 
(Mostaghim & Teich, 2003b).

The update of each particle’s own best posi-
tion, is more straightforward. Thus, in approaches 
based on distinct evaluation of each objective 
function, it is performed as in standard PSO for 
single-objective optimization. On the other hand, 
in Pareto-based approaches, the best position 
of a particle is replaced only by a new one that 
dominates it. If the candidate and the existing 
best position are nondominated, then the old one 
is usually replaced in order to promote swarm 
diversity. At this point, we must also mention the 
effect of the employed neighborhood topology and 
PSO variant, on the performance of the algorithm. 
However, there are no extensive investigations to 
support the superiority of specific variants and 
topologies in multi-objective cases.

estAblIshed MultI-objectIve 
Pso APProAches

In this section we review the state-of-the-art litera-
ture on multi-objective PSO algorithms. We will 
distinguish two fundamental categories of algo-
rithms, based on the two approaches mentioned 
in the previous section, namely, approaches that 
exploit each objective function separately, and 
Pareto-based schemes. The distinction is made 
mainly for presentation purposes, and it is not 
strict, since there are algorithms that combine 
features from both approaches. The exposition 
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of the methods for each category is based on a 
chronological ordering.

Algorithms that exploit each 
objective function separately

This category consists of approaches that either 
combine all objective functions to a single one or 
consider each objective function in turn for the 
evaluation of the swarm, in an attempt to exploit 
the efficiency of PSO in solving single-objective 
problems. This approach has the advantage of 
straightforward update of the swarm and best 
positions, with an external archive usually em-
ployed for storing nondominated solutions. The 
main drawback of these methods is the lack of 
a priori information regarding the most proper 
manipulation of the distinct objective values, in 
order to converge to the actual Pareto front (Jin, 
Olhofer, & Sendhoff, 2001). 

objective function Aggregation 
Approaches

These approaches aggregate, through a weighted 
combination, all objective functions in a single 
one,

F(x) = ∑
=

k

i
ii xfw

1
)(  ,

where wi are nonnegative weights such that

1
1

=∑
=

k

i
iw ,

and the optimization is performed on F(x), simi-
larly to the single-objective case. If the weights 
remain fixed during the run of the algorithm, we 
have the case of Conventional Weighted Aggre-
gation (CWA). This approach is characterized by 
simplicity but it has also some crucial disadvan-
tages. For only a single solution can be attained 

through the application of PSO for a specific weight 
setting, the algorithm must be applied repeatedly 
with different weight settings in order to detect 
a desirable number of nondominated solutions. 
Moreover, the CWA approach is unable to detect 
solutions in concave regions of the Pareto front 
(Jin et al., 2001). 

The aforementioned limitations of CWA were 
addressed by using dynamically adjusted weights 
during optimization. Such approaches are the 
Bang-Bang Weighted Aggregation (BWA), which 
is defined for the case of bi-objective problems 
as (Jin et al., 2001),

w1(t) = sign(sin(2πt/a)), w2(t) = 1- w1(t),

as well as the Dynamic Weighted Aggregation 
(DWA), which is defined as,

w1(t) = |sin(2πt/a)|, w2(t) = 1- w1(t),

where a is a user-defined adaptation frequency 
and t is the iteration number. The use of the sign 
function in BWA results in abrupt changes of the 
weights that force the algorithm to keep mov-
ing towards the Pareto front. The same effect 
is achieved with DWA, although the change in 
the weights is milder than BWA. Experiments 
with Genetic Algorithms have shown that DWA 
approaches perform better than BWA in convex 
Pareto fronts, while their performance is almost 
identical in concave Pareto fronts.

Parsopoulos and Vrahatis (2002a, 2002b) 
proposed the first multi-objective PSO weighted 
aggregation approach. They considered bi-ob-
jective problems with CWA, BWA and DWA 
approaches. Preliminary results on widely used 
benchmark problems were promising, and graphi-
cal representations showed that the two schemes 
could provide Pareto fronts with satisfactory 
spreading. As expected, the dynamically modified 
scheme outperformed the fixed weights approach. 
Although the simplicity and straightforward ap-
plicability render weighted aggregation schemes 
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very attractive in combination with PSO, their 
efficiency on problems with more than two objec-
tives has not been investigated extensively. 

Baumgartner, Magele and Renhart (2004) 
considered a similar approach, where subswarms 
that use a different weight setting each, are used 
in combination with a gradient-based scheme for 
the detection of Pareto optimal solutions. More 
specifically, the swarm is divided in subswarms 
and each one uses a specific weight setting. The 
best particle of each subswarm serves as a leader 
only for itself. Also, a preliminary pareto deci-
sion is made in order to further investigate points 
that are candidate Pareto optimal solutions. This 
decision is made for each particle, x, based on 
the relation

( ) ( )( )
1

1 sgn ( 1) ( )  1
k

j j
j

f x t f x t
k =

+ − ≠∑
,

where t stands for the iteration counter. If it holds, 
then x could be a Pareto optimal point, and the 
gradients of the objective functions f1,…, fk, are 
computed on a perturbed point x+Δx. If none ob-
jective function improves at the perturbed point, 
then it is considered as a Pareto optimal point and 
it is removed from the swarm. Although results 
on a limited set of test problems are promising, 
the algorithm has not been fully evaluated and 
compared with other PSO approaches.

Mahfouf, Chen and Linkens (2004) proposed 
a dynamically modified weights approach. How-
ever, in this approach, the standard PSO scheme 
with linearly decreasing inertia weight was 
modified, by incorporating a mutation operator 
in order to alleviate swarm stagnation, as well as 
an acceleration term that accelerates convergence 
at later stages of the algorithm. More specifically, 
Equation (4) was modified to 

vij(t+1) = w vij(t) + a (r1 (pij(t) – xij(t)) + r2 (pgj(t) 
– xij(t))),

where a is an acceleration factor that depends on 
the current iteration number,

a = a0 + t / MIT,

where MIT is the maximum number of iterations 
and a0 lies within the range [0.5, 1]. After the 
computation of the new positions of the particles, 
both new and old positions are entered in a list. 
The Non-Dominated Sorting technique (Li, 2003) 
is applied for this list, and the nondominated 
particles (that approximate the Pareto front) are 
selected. These particles suffer a mutation proce-
dure in an attempt to further improve them. The 
resulting set of particles constitutes the swarm in 
the next iteration of the algorithm. Results from 
the application of this scheme on a problem from 
steel industry are reported with promising results. 
The algorithm combines characteristics of differ-
ent approaches that have been shown to enhance 
the performance of multi-objective methods. Its 
competitive performance to both PSO and other 
evolutionary approaches, such as NSGA-II and 
SPEA2, can be attributed to the mutation opera-
tor that preserves swarm diversity, as well as to 
the Nondominated Sorting technique that allows 
the direct exploitation and evolution of points 
approximating the Pareto front, instead of using 
an external archive. 

objective function ordering 
Approaches

These approaches require the determination of a 
ranking of the objective functions. Then, mini-
mization is performed for each function indepen-
dently, starting from the most important one. Hu 
and Eberhart (2002) proposed a scheme based on 
such an ordering. Since Pareto front constitutes a 
boundary of the fitness values space, the algorithm 
retains the simplest objective function fixed and 
minimizes the rest of the objective functions. In 
their scheme, a local PSO variant with dynamic 
neighborhoods was used, with neighborhoods 
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been defined rather in the fitness values space 
than the standard index-based scheme described 
in Section 2.2. Nondominated solutions are stored 
as particles’ best positions and no external archive 
is used. The approach was applied successfully 
on problems with two objective functions but the 
function ordering procedure, which can be crucial 
for its performance especially in problems with 
more than two objectives, lacks justification.

An extension of the previous approach was pro-
posed one year later (Hu, Eberhart, & Shi, 2003), 
incorporating an external archive in the form of 
external memory for storing nondominated solu-
tions and reducing the computational cost. Albeit 
the reported preliminary results on problems with 
two objective functions were promising, further 
investigation is needed to reveal the algorithm’s 
potential under more demanding situations, as well 
as its sensitivity to the parameter setting. Also, 
the authors mentioned the limited applicability of 
this approach, which was unable to address the 
binary string problem.

non-Pareto, vector evaluated 
Approaches

Parsopoulos and Vrahatis (2002a; 2002b) pro-
posed the Vector Evaluated PSO (VEPSO) scheme. 
This is a multiswarm approach based on the idea 
of Vector Evaluated Genetic Algorithm (VEGA) 
(Schaffer, 1985). In VEPSO, there is one swarm 
devoted to each objective function, and evalu-
ated only for this objective function. However, 
in the swarm update (the algorithm employed 
the global variant of PSO), the best positions of 
one swarm are used for the velocity update of 
another swarm that corresponds to a different 
objective function. 

Thus, if the problem consists of k objectives, 
then k swarms are used. If vi

[s] denotes the velocity 
of the i-th particle in the s-th swarm, s=1,…, k, 
then it is updated based on the relation

vij
[s](t+1) = w vij

[s](t) + c1 r1 (pij
[s](t) – xij

[s](t)) + c2 r2 
(pgj

[q](t) – xij
[s](t)),

where pg
[q]  is the best position of the q-th swarm 

(which is evaluated with the q-th objective func-
tion). In this way, the information regarding the 
promising regions for one objective is inoculated 
to a swarm that already possesses information for 
a different objective. Experimental results imply 
that the algorithm is capable of moving towards 
the Pareto front, always in combination with the 
external archive approach of Jin et al. (2001). 

A parallel implementation of VEPSO has 
also been investigated (Parsopoulos, Tasoulis & 
Vrahatis, 2004) with promising results. In this 
implementation, each swarm is assigned to a 
processor and the number of swarms is not neces-
sarily equal to the number of objective functions. 
The communication among swarms is performed 
through an island migration scheme, similar to 
the ring topology used in PSO’s ring neighbor-
hood topology. VEPSO has been successfully 
used in two real-life problems, namely, the opti-
mization of a radiometer array antenna (Gies & 
Rahmat-Samii, 2004), as well as for determining 
generator contributions to transmission systems 
(Vlachogiannis & Lee, 2005).

An approach similar to VEPSO, was proposed 
by Chow and Tsui (2004). The algorithm, called 
Multi-Species PSO, was introduced within a 
generalized autonomous agent response-learning 
framework, related to robotics. It uses subswarms 
that form species, one for each objective func-
tion. Each subswarm is then evaluated only with 
its own objective function, and information of 
best particles is communicated to neighboring 
subswarms with the form of an extra term in the 
velocity update of the particles. Thus, the velocity 
of the i-th particle in the s-th swarm is updated 
as follows:

vij
[s](t+1) = vij

[s](t) + a1 (pij
[s](t) – xij

[s](t)) + a2 (pgj 
[s](t) – xij

[s](t))) + A,
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where 
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with Hs being the number of swarms that commu-
nicate with the s-th swarm, and pg

[l] the best posi-
tion of the l-th swarm, l = 1,…, Hs. The algorithm 
was shown to be competitive to other established 
multi-objective PSO approaches, although in 
limited number of experiments. Also, questions 
arise regarding the velocity update that does not 
include any constriction factor or inertia weight, 
as well as on the scheme for defining neighbor-
ing swarms, since the schemes employed in the 
investigated problems are not analyzed.

Algorithms based on Pareto 
dominance

These approaches use the concept of Pareto domi-
nance to determine the best positions (leaders) 
that will guide the swarm during search. As we 
mentioned in Section 3, several questions arise 
regarding the underlying schemes and rules for 
the selection of these positions among equally 
good solutions. For the imposition of additional 
criteria that take into consideration further issues 
(such as swarm diversity, Pareto front spread, etc.) 
is inevitable, the development of Pareto-based 
PSO approaches became a blossoming research 
area, with a significant number of different ap-
proaches reported in the literature. In the follow-
ing paragraphs we review the most significant 
developments.

Coello and Salazar Lechuga (2002) proposed 
the Multi-objective PSO (MOPSO), one of the first 
Pareto-based PSO approaches (Coello, Toscano 
Pulido, & Salazar Lechuga, 2004). In MOPSO, the 
nondominated solutions detected by the particles 
are stored in a repository. Also, the search space 
is divided in hypercubes. Each hypercube is as-
signed a fitness value that is inversely proportional 

to the number of particles it contains. Then, the 
classical roulette wheel selection is used to select a 
hypercube and a leader from it. Thus, the velocity 
update for the i-th particle becomes

vij(t+1) = w vij(t) + c1 r1 (pij(t) – xij(t)) + c2 r2 (Rh(t) 
– xij(t)),

where pi is its best position and Rh is the selected 
leader from the repository. The best position pi is 
updated at each iteration, based on the domination 
relation between the existing best position of the 
particle and its new position. 

Also, the repository has limited size and, if 
it is full, new solutions are inserted based on the 
retention criterion, that is, giving priority to solu-
tions located in less crowded areas of the objective 
space. MOPSO was competitive against NSGA-II 
and PAES on typical benchmark problems, under 
common performance metrics, and it is currently 
considered one of the most typical multi-objec-
tive PSO approaches. A sensitivity analysis on 
the parameters of the algorithm, including the 
number of hypercubes used, can provide further 
useful information on this simple though efficient 
approach.

Fieldsend and Singh (2002) proposed a 
multi-objective PSO scheme that addresses the 
inefficiencies caused by the truncation of lim-
ited archives of nondominated solutions. For 
this purpose, a complex tree-like structure for 
unconstrained archiving maintenance, called the 
dominated tree, is used (Fieldsend, Everson, & 
Singh, 2003). The algorithm works similarly to 
MOPSO, except the repository, which is main-
tained through the aforementioned structures. 
An additional feature that works beneficially 
is the use of mutation, called craziness, on the 
particle velocity, in order to preserve diversity. 
The algorithm has shown to be competitive with 
PAES, although the authors underline the general 
deficiency of such approaches in cases where 
closeness in the objective space is loosely related 
to closeness in the parameter space.
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Ray and Liew (2002) proposed an approach that 
employs the nearest neighbor density estimator in 
combination with a roulette wheel scheme for the 
selection of leaders. More specifically, leaders are 
generated through a multilevel sieve procedure 
that ranks individuals. Initially, all nondominated 
particles are assigned a rank of 1 and removed 
from swarm. The nondominated solutions from 
the remaining particles are assigned a rank of 2, 
and the procedure continues until all particles 
have been assigned a rank. If at most half of the 
swarm has been assigned a rank of 1, then all 
particles with rank smaller than the average rank 
are assigned to the set of leaders. Otherwise, only 
particles with a rank of 1 are assigned to the set 
of leaders. For the rest of the particles, a leader is 
selected and used for updating their position. 

The selection of leader is based on the com-
putation of the crowding radius for each leader 
and a roulette wheel selection mechanism that 
uses these values. Leaders with higher crowd-
ing radius have higher selection probability and, 
therefore, promote the uniform spread of solu-
tions on the Pareto front. Special care is taken in 
constrained problems, where ranking takes into 
consideration both the objective and constraint 
values. The algorithm was tested on benchmark 
as well as engineering design problems and results 
were represented graphically. However, neither 
numerical results nor comparisons with any other 
multi-objective algorithm are reported to convince 
the reader regarding its efficiency.

Bartz-Beielstein, Limbourg, Mehnen, Schmitt, 
Parsopoulos, & Vrahatis (2003) proposed DOPS, 
a method based on an elitist archiving scheme. 
Their analysis considered different schemes for 
updating the archive and selecting the most proper 
solutions for the particles’ update, using functions 
that assess the performance and contribution of 
each particle to the Pareto front spreading. More 
specifically, two functions, Fsel and Fdel, are used 
to assign a selection and a deletion fitness value 
to each particle, respectively. The selection fitness 

value is a measure of the particle’s influence to 
the spreading of the Pareto front, and increases 
with its distance to its nearest neighbors. Thus, 
every time a personal or a globally best position 
is needed, a member is chosen from the archive 
based on a roulette wheel selection over Fsel. If 
the number of available nondominated solutions 
surpasses the archive size, then a member of 
the archive is selected for deletion based on Fdel. 
Different selection and deletion functions are 
proposed and evaluated. The method was sup-
ported by sensitivity analysis on its parameters, 
providing useful hints on the effect of archiving 
on the performance of multi-objective PSO.

Srinivasan and Seow (2003) introduced the 
Particle Swarm inspired Evolutionary Algorithm 
(PS-EA). This algorithm can only roughly be 
characterized as a PSO-based approach, since 
the update of particles is completely different 
than any PSO algorithm. More specifically, the 
particle update equations (Equations (4) and (5)) 
are substituted by a probability inheritance tree. 
Thus, instead of moving in the search space with 
an adaptable velocity, the particle rather inherits 
the parameters of its new position. Therefore, it 
can inherit parameters from an elite particle, that 
is, its own or the overall best position, or inherit 
parameters from a randomly selected neighboring 
particle. Further choices are pure mutation and 
the retainment of the existing parameter in the 
new position. 

All these choices are made probabilistically, 
based on a dynamic inheritance probability ad-
juster (DIPA). This mechanism controls the prob-
abilities based on feedback from the convergence 
status of the algorithm, and more specifically on 
the fitness of the overall best particle. If the overall 
best seems to stagnate or does not change posi-
tions frequently, DIPA adjusts the probabilities. 
Unfortunately, the authors do not provide details 
regarding the exact operation of DIPA even in 
their experiments. Thus, although the algorithm 
is shown to be competitive with a GA approach, 
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there are no indications regarding the complexity 
of setting the DIPA mechanism properly in order 
to achieve acceptable performance. 

Mostaghim and Teich proposed several algo-
rithms based on MOPSO, incorporating special 
schemes for the selection of archive members 
that participate in the update of the particles’ 
velocity. In Mostaghim and Teich (2003a), a 
MOPSO approach is proposed in combination 
with the sigma method that assigns a numerical 
value to each particle and member of the archive. 
For example, in a bi-objective problem, if the i-
th particle has objective values ( f1, f2), then it is 
assigned a sigma value,
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where K1, K2, are the maximum objective values 
of the particles for f1 and f2, respectively. Then, a 
particle uses as leader the archive member with the 
closest sigma value to its own. Also, a turbulence 
(mutation) factor is used for the position update 
of the particle, to maintain swarm diversity. The 
algorithm outperformed SPEA2 in typical bi-
objective problems but the opposite happened for 
problems with three objectives. Also, the authors 
underline the necessity for large swarm sizes, since 
an adequate number of distributed solutions are 
required in the objective space. 

Mostaghim and Teich (2003b) studied further 
the performance of MOPSO using also the concept 
of ε-dominance, and compared it to clustering-
based approaches, with promising results. The 
investigation in this work focused mostly on the 
archiving methodology rather than the search 
algorithm itself, indicating the superiority of the 
ε-dominance approach with respect to the quality 
of the obtained Pareto fronts through MOPSO, in 
terms of convergence speed and diversity. 

Furthermore, an algorithm for covering the 
Pareto front by using subswarms and an un-
bounded external archive, after the detection of an 

initial approximation of the Pareto front through 
MOPSO, was proposed by Mostaghim and Teich 
(2004). In this approach, an initial approximation 
of the Pareto front is detected through MOPSO, 
and subswarms are initialized around each non-
dominated solution in order to search the neigh-
borhood around it. The algorithm outperformed 
an evolutionary approach (Hybrid MOEA) that 
incorporates a space subdivision scheme, on an 
antenna design problem. The applicability of the 
proposed MOPSO scheme on problems of any 
dimension and number of objectives, constitutes 
an additional advantage of the algorithm, as 
claimed by the authors.

Li (2004) proposed an approach called the 
MaximinPSO that exploits the maximin fitness 
function (Balling, 2003). For a given decision 
vector x, this fitness function is defined as,

{ })()(minmax
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−
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where k is the number of objective functions and 
N is the swarm size. Obviously, only decision 
vectors with a maximin function value less than 
zero can be nondominated solutions with respect 
to the current population. The maximin function 
promotes diversity of the swarm, since it penal-
izes particles that cluster in groups. Also, it has 
been argued that it favors the middle solutions in 
convex fronts and the extreme solutions in concave 
fronts (Balling, 2003). However, Li (2004) has 
shown that this effect can be addressed through 
the use of adequately large swarms. The particles 
in the proposed algorithm are evaluated with the 
maximin function and nondominated solutions 
are stored in an archive to serve as leaders (ran-
domly selected by the particles). MaximinPSO 
outperformed NSGA-II on typical benchmark 
problems. However, experiments were restricted 
in bi-objective unconstrained problems, thus, no 
sound conclusions can be derived regarding its 
efficiency in more demanding cases.

Toscano Pulido and Coello (2004) proposed 
Another MOPSO (AMOPSO), an approach similar 
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to VEPSO, where subswarms are used to probe 
different regions of the search space. Each sub-
swarm has its own group of leaders. These groups 
are formed from a large set of nondominated 
solutions through a clustering technique. Then, 
each subswarm is assigned a group of leaders and 
select randomly those that will serve as its guides 
towards the Pareto front. This approach can al-
leviate problems related to disconnected search 
spaces, where a particle may be assigned a leader 
that lies in a disconnected region, wasting a lot 
of search effort. However, at some points, infor-
mation exchange is allowed among subswarms. 
The authors show that AMOPSO is competitive 
to NSGA-II, and could be considered as a viable 
alternative.

AMOPSO does not use an external archive 
(nondominated solutions are stored as best posi-
tions of the particles), in contrast to OMOPSO, 
the approach of Reyes-Sierra and Coello (2005), 
which employs two external archives. This ap-
proach uses the nearest neighbor estimator and 
stores the selected best positions for the cur-
rent iteration of PSO in the one archive and the 
overall nondominated solutions (final solutions) 
in the other archive. Established concepts such 
as turbulence (mutation) and ε-dominance are 
also used for diversity and archive maintenance 
purposes, respectively, increasing the complexity 
of the algorithm significantly, when compared 
to AMOPSO. The special feature of the algo-
rithm is the incorporation of a mechanism for 
removing leaders, when their number exceeds a 
threshold. The aforementioned features result in 
an increased efficiency and effectiveness of the 
OMOPSO, which is shown to outperform previ-
ously presented MOPSO approaches as well as 
NSGA-II and SPEA2, rendering it a highly ef-
ficient method.

A different idea has been introduced in (Vil-
lalobos-Arias et al., 2005), where stripes are used 
on the search space and they are assigned particles 
that can exploit a unique leader that corresponds 
to a specific stripe. The core of this work is the 

stripes-based technique and its ability to maintain 
diversity in the employed optimizer. Its combi-
nation with MOPSO exhibits promising results, 
although it is not clear if this is independent of 
the search algorithm or the specific technique is 
beneficial specifically for MOPSO (the authors 
mention it as a future work direction).

Ho, Yang, Ni, Lo & Wong (2005) proposed a 
multi-objective PSO-based algorithm for design 
optimization. However, they introduced a plethora 
of unjustified modifications to the PSO algorithm 
regarding its parameter configuration and veloc-
ity update. Similarly to AMOPSO, the resulting 
scheme uses several external archives, one for the 
overall solutions and one for each particle, where 
it stores the most recent Pareto optimal solutions 
it has discovered. For the velocity update of the 
particle xi, its best position, pi, is selected from 
the latter archive, while pg is selected from the 
overall archive, through a roulette wheel selection 
procedure. Aging of the leaders in the reposito-
ries is also introduced, as a means of biasing the 
selection scheme towards these leaders that have 
not been selected frequently. The algorithm is 
tested only on two problems and no comparisons 
with other methods are provided (the authors 
just mention its superiority against a simulated 
annealing approach), thus, no clear conclusions 
can be derived regarding its usefulness.

Raquel and Naval (2005) proposed MOPSO-
CD, an approach that incorporates a crowding 
distance mechanism for the selection of the 
global best particle, as well as for the deletion 
of nondominated solutions from the external 
archive. Mutation is also employed to maintain 
diversity of the nondominated solutions in the 
external archive. Crowding distance is computed 
for each nondominated solution separately. If 
f1,…, fk, are the objective functions and R is the 
external archive, then for the computation of the 
crowding distance of p in R, with respect to fj, 
j=1,…, k, we sort all points in R with respect to 
their fj objective value and take
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CD_ fj = fj(q) – fj(r),

where q is the point of R that follows immedi-
ately after p in the sorting with respect to the fj 
objective values, and r is the point that precedes 
p in the same ordering. Thus, the total crowding 
distance of p is given by

∑
=

k

j
jfCD

1
_

.

A proportion of the nondominated points of 
R with the highest crowding distances serve as 
leaders of the swarm (selected randomly). Also, 
mutation applied on the particles at randomly 
selected iterations promotes swarm diversity. 
Typical constraint-handling techniques adopted 
from the NSGA-II algorithm (Deb et al., 2002) are 
incorporated for addressing constrained problems. 
MOPSO-CD was compared to MOPSO, with 
results implying its viability as an alternative.

Alvarez-Benitez, Everson & Fieldsend (2005) 
proposed the Rounds, Random, and Prob tech-
niques, which are based solely on the concept of 
Pareto dominance, for selecting leaders from the 
external archive. Each technique promotes differ-
ent features in the algorithm. Rounds promotes 
as global guide of a particle xi the nondominated 
solution that dominates the fewest particles of the 
swarm, including xi. This solution is then excluded 
from selection for the rest of the particles. The 
procedure can be computationally expensive for 
large archives, however it is shown that promotes 
diversity. On the other hand, Random uses as 
global guide of a particle xi a probabilistically 
selected nondominated solution that dominates xi, 
with each nondominated solution having the same 
probability of selection. Prob constitutes an exten-
sion of Random that favors the archive members 
that dominate the smallest number of points. Muta-
tion is also employed, while constraint-handling 
techniques are proposed and discussed, deriving 
the conclusion that careful handling of explora-

tion near the boundaries of the search space can 
be beneficial for all multi-objective optimization 
approaches. However, this concept needs further 
experimentation to be confirmed.

As described earlier, MOPSO has an implicit 
fitness sharing mechanism for the selection of 
hypercubes. Salazar Lechuga and Rowe (2005) 
introduced MOPSO-fs, a MOPSO variant with ex-
plicit fitness sharing. According to this approach, 
each particle pi in the repository of nondominated 
solutions, is assigned a fitness 
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with σshare being a user-defined distance and di 

j be a distance measure between nondominated 
solutions pi and pj. This fitness-sharing scheme as-
signs higher fitness values to solutions with small 
number of other solutions around them. Then, 
the leaders of the swarm are selected through a 
roulette wheel selection technique that uses the 
assigned fitness values. MOPSO-fs has shown 
to be competitive with MOPSO, as well as with 
NSGA-II and PAES, although the analysis of 
choosing the fitness sharing parameters is under 
further investigation.

Mostaghim and Teich (2006) proposed re-
cently a new idea, similar to that of Ho et al. 
(2005) described above. More specifically, each 
particle retains all nondominated solutions it has 
encountered in a personal archive. Naturally, a 
question arises regarding the final selection of 
the leader from the personal archive. The authors 
propose different techniques, ranging from pure 
random selection to the use of weights and di-
versity-preserving techniques. Experiments with 
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the sigma-MOPSO (Mostaghim & Teich, 2003a) 
provided promising results on typical benchmark 
problems. 

Huo, Shen Zhu (2006) proposed an interesting 
idea for the selection of leaders. More specifically, 
they evaluated each particle according to each 
objective function separately, and then, they as-
sumed the mean of the best particles per function, 
as the global best position for the swarm update. 
Diversity of the swarm is preserved through a 
distance measure that biases the leader selection 
towards nondominated solutions that promote 
the alleviation of particle gathering in clusters. 
The resulting SMOPSO algorithm was tested 
on a limited number of test problems, and no 
comparisons were provided with other methods, 
to fully evaluate its efficiency. 

Reyes-Sierra and Coello (2006b) conducted an 
interesting investigation on a hot research topic 
of both single- and multi-objective optimiza-
tion, namely the on-line parameter adaptation of 
multi-objective algorithms. More specifically, the 
inertia weight, w, acceleration coefficients, c1 and 
c2, and selection method (dominance or crowding 
values) probability, Ps, of the MOPSO approach 
described earlier, were investigated using Analysis 
of Variance (ANOVA). The analysis has shown that 
large values of Ps, w, and c2 provide better results, 
while c1 seems to have a mild effect on MOPSO’s 
performance. After identifying the most crucial 
parameters, different adaptation techniques, based 
on a reward system, were proposed. Thus, the 
parameter level selection could be proportional, 
greedy, or based on the soft max strategy that 
employs Gibbs distribution. The results are very 
promising, opening the way towards more efficient 
self-adaptive multi-objective approaches.

future reseArch dIrectIons

The non-Pareto algorithms describe in Section 
4.1, share some characteristics that have concen-

trated the interest of the research community. 
With simplicity and straightforward applicabil-
ity being their main advantage, while increased 
computational cost being their common drawback 
in some cases, these algorithms can be considered 
as significant alternatives that provide satisfac-
tory solutions without complex implementation 
requirements. 

However, there are still fundamental questions 
unanswered. More specifically, for the weighted 
aggregation approaches, the most efficient 
schedule for changing weights remains an open 
question. In most cases, the problem is addressed 
on a problem-dependent base, since there are no 
extensive investigations that can imply specific 
choices based on possible special characteristics 
of the problem at hand. 

The same holds for the function ordering ap-
proaches. If the problem at hand implies a specific 
significance ordering for the objective functions, 
then these algorithms can be proved valuable. On 
the other hand, if there are no such indications, 
it is very difficult to make proper orderings and 
hold the overall computational cost at an accept-
able level.

The non-Pareto vector evaluated approaches 
are the most popular in this category of algo-
rithms, due to their straightforward applicability 
and use of the fundamental element of swarm 
intelligence, that is, the exchange of information 
among swarms. Still, there are features of these 
algorithms that need further investigation, such 
as the frequency and direction of information 
exchange among swarms. The size and number 
of swarms used, as well as the incorporation of 
external archives, constitute further interesting 
research issues.

It has been made obvious that the category of 
Pareto-based approaches is significantly wider 
than that of non-Pareto approaches. This can 
be partially attributed to the direct attack to the 
multi-objective problem through algorithms that 
incorporate in their criteria the key-property of 
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Pareto dominance. In this manner, many non-
dominated solutions are considered in a single 
run of the algorithm, and stored as the resulting 
approximation of the Pareto front. 

Naturally, there are crucial issues that need 
to be addressed prior to the design of efficient 
Pareto-based algorithms. In PSO Pareto-based 
approaches, we can distinguish three fundamental 
issues: 

1. Selection of leaders, 
2. Promotion of diversity, and 
3. Archive maintenance. 

The first two issues depend only on the swarm 
dynamics, while the latter can be considered as a 
more general issue that arises in all multi-objective 
algorithms that use archives. However, since the 
specific workings of an algorithm can mutually 
interact with the archiving procedures, it is pos-
sible that some archiving schemes fit better the 
multi-objective PSO approaches, resulting in more 
efficient algorithms.

Unfortunately, although there is a plethora of 
approaches for tackling the aforementioned is-
sues, most of them are based on recombinations 
of established ideas from the field of evolutionary 
multi-objective algorithms. Also, the vast majority 
of experiments is conducted on a narrow set of 
test problems of small dimensionality, and perhaps 
this is the most proper point for underlining the 
necessity for extensive investigations of the algo-
rithms, since this is the only way to reveal their 
advantages and deficiencies. The assumption of 
widely acceptable performance metrics from the 
multi-objective optimization community would 
also help towards this direction. It is not rare for 
two algorithms to compete completely different 
under two different metrics, but only favorable 
metrics are reported in most papers, hindering the 
user from detecting and interfering to the weak 
aspects of the algorithms.

Parallel implementations of multi-objective 
PSO approaches constitute also an active research 

area. Although PSO fits perfectly the framework 
for parallel implementations that can save signifi-
cant computational effort in demanding problems, 
the development of such schemes as well as the 
interaction of the algorithms’ modules (multiple 
swarms, archives, etc.) under this framework has 
not been studied extensively. 

Furthermore, self-adaptation is considered a 
very challenging topic in almost all application 
areas where evolutionary algorithms are involved. 
The development of self-adaptive PSO schemes 
that can tackle multiple objectives will disengage 
the user from the necessity of providing proper 
parameter values, and it will render the algorithm 
applicable to any environment and problem, since 
it will be able to adapt its dynamic in order to fit 
the problem at hand.

The aforementioned topics can be extended to 
the field of dynamic multi-objective optimization, 
where the problem changes over time, along with 
its constraints. The dynamic case is far harder than 
the static one, since the algorithm shall be able 
to both approximate the Pareto front and track it 
through time. The literature in this field is limited 
and the development of PSO-based approaches 
for such problems is an open (although not very 
active yet) research area.

Finally, as time passes, the necessity for novel 
ideas that can tackle the aforementioned issues, 
while retaining the highest possible simplicity 
and efficiency for the algorithms, becomes more 
vivid. It is the authors’ opinion that, besides the 
aforementioned topics, special emphasis should 
be given to it in future research.

conclusIons

This chapter provided a descriptive review of 
the state-of-the-art multi-objective PSO variants. 
Issues related to the operation of PSO in multi-ob-
jective environments have been pointed out and a 
plethora of approaches with various characteristics 
have been exposed. Naturally, the collection of 
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algorithms described in the previous sections is 
far from complete, since the number of research 
works published on the field has been significantly 
increased in the late years. However, we provided 
the most significant results from our perspective, 
in order to sketch the up-to-date state of research 
in multi-objective PSO algorithms. 

Since multi-objective optimization is inti-
mately related to real-life applications, efficiency 
must be the key issue in the development of new 
multi-objective PSO approaches. The plethora of 
established approaches provides a wide variety of 
ideas and combinations of existing techniques for 
better manipulation of the algorithms, but only 
a minority of the existing methods have shown 
their potential in real-life problems. Thus, further 
work is needed to verify the nice properties of 
existing approaches in practice. Also, theoretical 
analyses that will provide further information on 
multi-objective PSO dynamics are expected to 
encourage the development of less complex and 
easily parametrized algorithms. Nevertheless, the 
development of multi-objective PSO approaches 
is currently and will remain a very active and 
exciting research field.
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