
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, VVVV 2005 1

Revisiting Java Bytecode Compression for
Embedded and Mobile Computing Environments

Dimitris Saougkos, George Manis, Konstantinos Blekas,Member IEEE,Apostolos V. Zarras,Member IEEE

Abstract— Pattern-based Java bytecode compression tech-
niques rely on the identification of identical instruction sequences
that occur more than once. Each occurrence of such a sequence is
substituted by a single instruction. The sequence defines apattern
that is used for extending the standard bytecode instruction set
with the instruction that substitutes the pattern occurrences in
the original bytecode. Alternatively, the pattern may be stored in
a dictionary that serves for the bytecode decompression. In this
case, the instruction that substitutes the pattern in the original
bytecode serves as an index to the dictionary. In this paper, we
investigate a bytecode compression technique that considers a
more general case of patterns. Specifically, we employ the use
of an advanced pattern discovery technique that allows locating
patterns of an arbitrary length, which may contain a variable
number of wildcards in place of certain instruction opcodes
or operands. We evaluate the benefits and the limitations of
this technique in various scenarios that aim at compressing the
reference implementation of MIDP, a standard Java environment
for the development of applications for mobile devices.

Index Terms— D.3.2.j Java, I.4.2 Compression (Coding).

I. I NTRODUCTION

T HE Java language has become a dominant means for
the realization of embedded and mobile computing en-

vironments. The main feature of Java that led to the previous
is its portability. More specifically, the compilation of Java
applications results in device independent code, generated
in terms of a standard format, called Javabytecode. The
Java bytecode can then execute on top of different device-
specific Java Virtual Machines (JVMs), which take charge of
translating the bytecode into device-specific machine code.

The memory limitations imposed by embedded and mobile
devices certainly constrain the set of applications that may pos-
sibly execute on top of them. Confronting the aforementioned
issue fosters research towards two orthogonal directions. The
first one concerns the reduction of the physical size and cost of
memory chips, while the second one involves reducing the size
of the code of embedded applications. Advances in both of the
previous research directions are equally valuable. No matter
how much we increase the amount of available memory, there
will always be more demanding applications. Similarly, even
if we manage to diminish the size of embedded and mobile
applications we may always require to concurrently execute
as many of them as possible.

Lots of significant research efforts have already been done
towards the generation of compressed code [1]. However, most
of these efforts involve the compression of either machine or

D. Saougkos, G. Manis, K. Blekas and A. V. Zarras are with the Computer
Science Department of the University of Ioannina, P.O. BOX 1186 GR 45110
Greece. Email:{dsaougos, manis, kblekas, zarras}@cs.uoi.gr

assembly code. Amongst the few approaches that focus on
the case of Java bytecode we have the ones proposed in [2],
[3] and [4]. In [2] the authors examine various approaches for
bytecode compression, relying on Huffman codes and Markov
chains. In [3], bytecode compression is based on the use of
canonical Huffman codes and the generation of fast decoders.
In [4], the approach followed is based on the discovery of
instruction sequences that occur more than once within the
Java bytecode. Each sequence of instructions defines apattern.
Each pattern occurrence is substituted by a single instruction
that is called amacro.

However, a pattern, in its broadest sense may have the
following characteristics:

1) It may be of anarbitrary length.
2) It may containwildcards in place of a particular opcode

or operand. Hereafter, we use the termparameterizedto
refer to patterns that contain a variable number of wild-
cards. Respectively, we use the termnon-parameterized
to refer to patterns that do not contain wildcards.

So far, existing approaches for Java bytecode compression
do not deal with the aforementioned generic form of patterns.
This fact is recognized in [4] where the authors further
highlight the need for more sophisticated pattern discovery
techniques.The main contribution of this paper is to assess
the use of such a technique in the context of Java bytecode
compression.Specifically:

• We customize a well-known pattern discovery technique,
called agglomerative clustering [5], [6], towards the iden-
tification of parameterized and non-parameterized pat-
terns within a given Java bytecode. The proposed tech-
nique allows discovering patterns of an arbitrary length,
which may contain a variable number of wildcards.

• We assess the advantages and the limitations of the
aforementioned technique in various scenarios that aim
at compressing MIDP, a standard Java environment that
supports the development of applications for mobile
devices. The main feature of the parameterized pattern
discovery technique is that it allows finding a large variety
of patterns that can be combined to obtain better bytecode
size reduction. This, however, is also its main limitation.
Exploring the large variety of patterns towards finding a
combination that gives a good bytecode size reduction is
a complex task. Given this fact, in our assessment:

1) We employ/compare two heuristic methods towards
the combination of patterns.

2) Based on the two heuristics, we investigate the
impact of using patterns that contain a variable

number of wildcards for the compression of Java
bytecode. To this end, we compress MIDP using
patterns that contain a variable number of wildcards,
patterns that do not contain wildcards and patterns
that contain a fixed number of wildcards and we
perform a comparative study of the results.

3) Moreover, we examine the impact of the increasing
length of the patterns in the compression of Java
bytecode.

4) Finally, we study the behavior of the decompression
overhead introduced by the examined technique.

The remainder of this paper is structured as follows. In
Section 2, we discuss related work. In Section 3, we intro-
duce a typical non-parameterized pattern discovery technique,
followed by the advanced parameterized pattern discovery
technique that we investigate. Following, we highlight the
benefits of the parameterized pattern discovery technique,
as opposed to the non-parameterized one, with respect to a
number of motivating examples. In Section 4, we introduce the
complementary heuristic techniques, which serve for handling
the complexity of combining large numbers of parameterized
and non-parameterized patterns. Moreover, we present the
experimental results we obtained in the case of MIDP. Finally,
in Section 5 we summarize the contribution of this paper and
point out the future directions of this work.

II. RELATED WORK

Code compression techniques can be divided into two major
categories [7]. The first one aims at producing a reduced-
size wire code that can be transmitted to the CPU as fast
as possible. In this case, what matters is to achieve the best
possible compression. For the particular case of Java, there
have been several approaches for the construction of wire
code. Amongst the prominent ones we have JAZZ [8], an
alternative to the standard JAR format and Slim Binaries [9],
an alternative to the standard bytecode format. Moreover, we
have the approach proposed in [2], where the authors discuss
methods for reducing the size of the constant pool. In [10],
Pugh also discusses interesting ideas towards a wire code
format that aims at reducing the size of collections of class
files. Finally, in [11] the authors investigate techniques for
the removal of redundant class file attributes and methods,
along with techniques for constant pool compression and class
hierarchy transformations.

The second category of techniques aims at producing a
reduced-sizeinterpretable codethat can be stored and exe-
cuted without being fully decompressed. In this case, what is
important is the reduction of the overall amount of memory
required for the execution of the application. The various
techniques proposed for the generation of interpretable code
rely either on Huffman codes and arithmetic coding, or on the
identification of patterns.

The use of Huffman codes [12], [13] and arithmetic coding
[14] in code compression aims at shortening a sequence of in-
structions by mapping them into the shortest possible sequence
of bits. Huffman based techniques have been criticized for their
decompression complexity. However, in [3] Latendresse and

Feeley propose an approach for fast Huffman decoding. Their
approach focuses on virtual instructions and is evaluated for
the case of Java bytecode. In [2], the authors also investigate
the use of Huffman codes for compressing Java bytecode.

Pattern-based techniques for interpretable code compression
focus on the identification of multiple occurrences of instruc-
tion sequences within an application. Each such sequence is
called apattern. Patterns are usually stored in a dictionary
and their occurrences in the original code are substituted
in the compressed code by dictionary indexes. Indexes are
frequently calledmacrosand their size is usually the size of
a single instruction. Specifically, in [15] the authors propose
a dictionary-based approach that can be applied in RISC
intermediate representations. This approach allows searching
for non-parameterized patterns of an arbitrary length. Non-
parameterized patterns of an arbitrary length are also used by
the IBM CodePack compressor [16], which is deployed on
PowerPCs. This particular technique originates from the one
proposed by Lefurgy et al. in [17].

In [18], the authors present an approach that deals with
parameterized patterns. The approach relies on the discovery
of similar basic blocks (i.e., code fragments with a unique
entry and a unique exit point). As a similarity metric the
authors use a fingerprint function. Moreover, several classical
compiler optimization techniques (e.g., dead code elimination)
are applied. In [19], the authors go one step further by
searching for similar procedures and code regions. Again, the
fingerprint function is used as a similarity metric. Parameter-
ized procedures are also used in Krinke’s work [20]. Moreover,
in BRISC [7] the authors propose a dictionary-based technique
that relies on patterns consisting of 2 instructions. The patterns
may further contain wildcards in place of instruction operands.
Parameterized pattern discovery is also used in [21]. This
approach focuses on the identification of similar basic blocks
in ARM code. For a set of similar blocks, a representa-
tive function is built. The representative function comprises
predicated instructions, corresponding to the differences met
amongst the original basic blocks. In [22], the authors also
propose an approach that employs a sort of parameterized
patterns. The proposed system accepts as input a grammar
and a training set of programs and produces an expanded
grammar that allows shorter derivations of the training and
other similar programs. The rules of the expanded grammar
can be seen as parameterized patterns, leading to different
derivations. In [20], legacy source code is transformed using
procedural abstraction so that it becomes more understandable,
maintainable and small. Extracted sets of statements form
procedures and the extracted code is replaced with procedure
calls. Similarly, in [23] the authors identify similar segments
of source code based on program dependence graphs.

Considering the particular case of Java bytecode, in
[4] the authors propose a technique which considers non-
parameterized patterns of an arbitrary length. Their main
contribution is that they do not directly use the notion of
a dictionary; instead they specialize the JVM with more
complex instructions that actually realize the execution of
the patterns. Then, the patterns can be substituted in the
original code by the new instructions, reducing thus the size

of the original code. In this paper, we investigate a dictionary-
based bytecode compression technique, which goes one step
further from [4] by considering both parameterized and non-
parameterized patterns of an arbitrary length. Currently, the
technique is applied in bytecode basic blocks but it could be
as well used in the case of whole Java methods. The technique
that we investigate is more fine-grained with respect to the
other parameterized pattern discovery techniques, discussed
in this section. It does not search for similarity among whole
basic blocks (or procedures). Instead, it searches inside the
basic blocks for similar instruction sequences of an arbitrary
length. To cope with the increased complexity of this task, we
employed the agglomerative clustering algorithm [5], [6].

III. JAVA BYTECODE COMPRESSIONPROCESS

The bytecode of a compiled Java program is a sequence
of binary encoded JVM instructions. Each instruction consists
of an opcode and possibly a number of operands. The size
of instruction opcodes or operands is 1 byte. As an example,
consider the Java program given in Figure 1(a). This simple
program comprises a class of objects that represent vectors
in the 3-dimensional space. Each vector is characterized by 3
coordinates (x, y, z, attributes) and provides a method, called
distance , which calculates the Euclidean distance norm,
d =

√
x2 + y2 + z2, for the vector.

The compiled bytecode for thedistance method of our
program is given in Figure 1(b). The overall size of the
sequence is 34 bytes. In the remainder of this section, we
use the example of Figure 1(b) to highlight the main steps
of the non-parameterized and the parameterized compression
approaches, discussed in this section. In both cases, the overall
compression process consists of the following steps:

1) The Java bytecode is segmented intobasic blocks.
2) A pattern discovery technique is used for the identifica-

tion of patterns in the basic blocks of the bytecode.
3) The resulted patterns are collected; possible combina-

tions of patterns are examined and for each one of them
the corresponding bytecode size reduction is calculated.

4) Finally, the combination of patterns that gives the highest
bytecode size reduction is selected and used for the
generation of the compressed code.

A. Non-Parameterized Pattern Discovery

The non-parameterized pattern discovery can be reduced
into a simple string search problem. Specifically, consider a
finite setΣ = {c1, . . . , cΩ} consisting ofΩ = |Σ| individual
characters. An arbitrary string over the setΣ is any sequence
Sj = {sjk}

Lj

k=1 of length Lj , where sjk ∈ Σ denotes the
character at thek-th position of the sequenceSj . Let S =
{S1, . . . , SM} be a set ofM sequences of lengthL1, . . . , LM ,
respectively. In our case,S denotes the set of basic blocks of
the Java bytecode, identified during the first step of the code
compression process. Then, the pattern discovery amounts to
finding common substrings that are repeated in the sequences
of S. Suppose that we search for substrings of a variable length
k = 2, . . . ,K. Then, to locate them we perform the following
tasks:

(a) Source code.

(b) Compiled bytecode for thedistance method.

Fig. 1. A simple Java program.

1) For eachk = 2, . . . ,K, obtain the collectionXk =
{xi}nk

i=1 of k-length substrings of the sequences that
belong in S, by sliding a window of sizek in each
sequenceSj ∈ S. For everySj , the resulted number of
substrings isLj − k + 1. Hence, the cardinality ofXk

is nk = |Xk| =
∑M

j=1{Lj − k + 1}.
2) Then, the set of non-parameterized patternsP is cal-

culated by searching within each collectionXk for
identical substrings. The union of the identical substrings
obtained during this step constitutesP .

To accomplish the first of the above tasks we have to perform∑K
k=2

∑M
j=1{Lj − k + 1} =

∑K
k=2{|Xk|} sliding steps.

Moreover, to accomplish the second task, we have to perform
an overall of

∑K
k=2

∑|Xk|−1
i=0 {|Xk| − i− 1} =

∑K
k=2{|Xk| ×

(|Xk| − 1)/2} substring comparisons.
All the possible combinations of the patterns retrieved are

2|P |. The subset ofP that gives us the highest bytecode size
reduction is stored in the dictionary. The dictionary we use
is actually a table of characters. Each table element is used
to hold a pattern instruction opcode or operand. Moreover,
there are table elements that contain a special character used
to signify the end of a pattern; hereafter, we use the term
ENDOF PATTERNto refer to that character. The occurrences

of each pattern are substituted in the original code by a
character (i.e., one byte) that indexes the dictionary element
that contains the first byte of the pattern. For the selection
of the indexing characters we employ the typical approach
of Clausen et al., which amounts to using unused bytecode
instruction opcodes [4]. Different standard Java platforms
for embedded systems comprise unused instruction opcodes,
whose number ranges from 52 to 152. As discussed by Clausen
et al., the number of unused opcodes limits the number of
patterns that can be used. However, this problem can be
alleviated by using a second character, along with the ones
that correspond to unused instruction opcodes.

Getting to our example scenario, the bytecode for the dis-
tance method (Figure 1(b)) constitutes a basic block as it does
not comprise any branch operations. AlphabetΣ consists of 12
characters that encode the various opcodes (e.g.,getfield ,
aload 0, etc.) and operands (e.g.,0, 2, 3, 4, 5) used in the
basic block. The basic block contains patterns of length 4.
Since the overall size of the basic block is 34 characters (i.e.,
34 bytes), the set of substrings of length 4 for this basic block
contains 31 elements. The set of patterns that results from the
31 substrings includes the 3 patterns given in Figure 2(a).

Let us consider the first of the three patterns. When stored
in the dictionary the required space is 4 bytes, plus one
more byte for theENDOF PATTERNcharacter. Since this
pattern appears twice in the examined Java bytecode, two
bytes are needed in the compressed bytecode to index into the
dictionary the position of the pattern. Hence, the gain from
substituting the occurrences of the first pattern in the original
bytecode is2 occurences× 4 bytes− (5 dictionary bytes+
2 indexing bytes) = 1 byte. Thus, compressing the bytecode
with respect to the first pattern saves us 1 byte. If we repeat
the same procedure for the other two patterns, we can save
two more bytes and the final bytecode will be 31 bytes.
Therefore, the bytecode size reduction obtained is8.82%.
As we demonstrate in the following subsection, this is much
smaller compared to the reduction obtained by using the
parameterized pattern discovery technique.

B. Parameterized Pattern Discovery

The parameterized pattern discovery technique is actually
an extension of the non-parameterized one. It starts from the
point where we have already identified the different collections
X2, . . . XK of substrings of the sequences that belong inS.
Following, the discovery of parameterized patterns can be
viewed as aclustering problemin the sense of searching for
disjoint subsets (clusters) in each setXk that are characterized
by a high degree of similarity among the samples that they
enclose. Several algorithms have been proposed for clustering
discrete data [24], [5], [6]. Among them, we selected the
agglomerative clustering(AC) [5], [6], which is a hierarchical
approach that relies on the bottom-up generation of a tree-like
structure of clusters.

AC is performed for everyXk towards obtaining a subset
of candidate patternsPk. Specifically, AC starts with a set of
|Xk| clusters (leaf nodes), each one containing one bytecode
substringxi from the setXk. Following, a multinomial distri-
bution with θv parameters is generated for each clusterv. In

particular,θv can be seen as a two-dimensional matrix of size
k× |Ω|. The rows of the matrix correspond to thek elements
of the samples ofv (i.e., xi, in the first step of the algorithm),
while the columns correspond to the different characters ofΩ
that can become the values of each element. Then, the value of
a matrix elementθv[m, l] denotes the probability of observing
charactercl at positionm of the samples ofv. Specifically,
θv[m, l] is maximum-likelihood (ML) estimated as follows:

θv[m, l] = nvml/nv (1)

nvml counts the number of occurrences of the charactercl ∈ Ω
at them-th position of thenv samples of clusterv. Formally:

nvml =
∑
xi∈v

δiml , whereδiml =
{

1 if xim = cl

0 otherwise
(2)

In the first step of AC,nv = 1 and each rowm of the
θv matrix contains one element equal to1. The values of
all the other elements of them-th row are 0. Taking our
example program of Figure 1, suppose that we search for
patterns, whose maximum length is 9 bytes. AC must be
applied in the different collectionsX2, . . . , X9 that contain
bytecode substrings of length2, . . . , 9, respectively. For the
case ofX9, AC results in creating leaf clusters, each one of
which includes a sequence of length 9. Some of these clusters
are given in Figure 2(b) (note that in order to simplify the
figure we usedA, G andF to denote the opcodes,aload 0,
getfield and fmul , respectively). Letv be the first leaf
cluster from the left side of the figure. Then,θv is a 9 × 12
matrix. Similar matrices are created for the rest of the leaf
clusters of Figure 2(b).

At each next step of AC, the algorithm searches the current
set of clusters to identify the two most similar onesv, u
that can be merged into a new cluster denoted byv ∪ u. In
our example, the substrings of the first and the third cluster
differ only in the operands that reside in their4-th and8-th
positions. These clusters can be merged into a new cluster
that contains the aforementioned substrings. Moreover, the4-
th and8-th rows of theθv∪u matrix comprise two non-zero
valued elements. Consequently, theθv∪U matrix represents a
parameterized pattern of the two substrings, which contains
two wildcards in place of its4-th and8-th elements. A similar
merge takes place in the third step of the algorithm. Letw be
the 4-th leaf cluster from the left of Figure 2(b). This cluster
is merged with the one created in the previous step into a
new one that is still represented by the parameterized pattern
created in the previous step.

The distance between two clusters is formally defined as
follows [5], [6]:

D(v, u) = Lv(θv) + Lu(θu)− Lv∪u(θv∪u) (3)

The quantityLv(θv) represents the log-likelihood value that
characterizes the clusterv and is given by the following
formula:

Lv(θv) =
∑
xi∈v

k∑
m=1

|Ω|∑
l=1

δiml log θv[m, l] (4)

(a) Non parameterized patterns.

(b) Parameterized patterns.

Fig. 2. Patterns discovered for thedistance method.

In general, a wildcard in thei-th position of a parameterized
pattern that characterizes a cluster signifies that the substrings
of the cluster differ in theiri-th byte. The pattern may contain
more than one consecutive wildcards, if the substrings of the
cluster differ in more than one consecutive bytes. The AC
algorithm may further construct non-parameterized patterns by
merging clusters that contain identical substrings.

The algorithm terminates when no pair of nodes is allowed
to be further merged. To assess the final set of patterns and
obtain Pk we perform a depth-first visit upon the nodes of
the constructed tree. In particular, starting from the high level
nodes, we traverse each subtree until finding the first cluster
(node)v, whose multinomial density parametersθv represent
a required degree of similarity. This is done by setting a
thresholdT (k) to the number of non-wildcard elements of
the pattern that is represented by the node that we look for.
The value forT (k) should be experimentally determined1.
Once such a node is found, it is stored inPk. By construction,
Pk may comprise patterns that overlap. More precisely, two
patterns inPk may refer to the same opcode or operand of
the original bytecode. Overlapping patterns may contribute
differently in the overall bytecode size reduction and therefore
they are included inPk. At the end of AC, the retrieved
patterns are further simplified. Specifically, ifPk contains
a pattern with a wildcard in place of the first (or the last)
byte, this pattern is substituted with the pattern that results
from removing this wildcard. Therefore, the resulting setPk

contains patterns that do not start or end with a wildcard. Non-
parameterized patterns may also result from the simplification
procedure when it is applied in patterns that contain wildcards
only in place of their first or last bytes.

The P2, . . . , PK subsets of significant patterns obtained

1In our particular experiments discussed in Section IV, a value ofT (k) =
dk/2e was sufficient for obtaining good percentages of bytecode size reduc-
tion.

from the application of AC to theX2, . . . , XK collections of
substrings are finally merged into a single set of significant
patternsP . Again, P may comprise overlapping patterns.
Moreover,P may comprise nested patterns, in the sense that
a patternp that was originally included inPi exactly matches
with a part of a patternq that was originally included inPj

wherej > i. The elements ofP are combined during the last
two steps of the code compression process mentioned at the
beginning of this section.

As in the case of the non-parameterized patterns technique,
the total number of possible combinations of patterns is
2|P |. The subset of them that gives us the highest bytecode
size reduction is stored in the dictionary, whose structure is
however slightly different compared to the one used in the
non-parameterized pattern discovery technique. Specifically,
the dictionary is still a table of characters. Each table element
holds a pattern instruction opcode or operand and there are
elements that contain theENDOF PATTERNcharacter. The
wildcards are not stored in the pattern. Instead of wasting one
table element for storing a value that signifies the existence
of a wildcard, we only spend 1 bit. Specifically, for patterns
of maximum lengthK we used(K − 2)/8e table elements at
the beginning of each pattern to encode the positions of the
wildcards within it. Recall that the patterns produced by AC
do not contain wildcards in their first and last bytes; hence,
a pattern of maximum lengthK may contain at mostK − 2
wildcards. Then, the value of thei-th bit of a table element that
encodes the positions of wildcards within the pattern is 1, if
the pattern contains a wildcard in thei-th position. Hence, for
patterns of maximum length 10 we use 1 extra table element.
Similarly, for patterns whose length is between 11 and 18, we
use 2 extra table elements and so on. In the original bytecode
the occurrences of a pattern are substituted by a character (i.e.,
one byte) that indexes the dictionary elements that encode the
positions of wildcards within the patterns. The indexing byte is
followed by the actual values of these wildcards. As indexing
characters we use unused bytecode instruction opcodes [4].

Summarizing, the most important concept of AC is theinter-
cluster distanceD(u, v), which we use as a basic criterion
for merging clusters during the construction of the tree. The
distance used (Eq. 3) is derived from a probabilistic model;
it reflects the likelihood decrease that results by merging the
clustersu and v. During each one of its steps, the algorithm
merges the best pair of clusters, i.e., those having the lower
likelihood decrease when putting together. AC has several
advantages as it requiresO(|Xk|) memory for everyXk, k =
2, . . . ,K, while its complexity is typically quadratic to|Xk|
[5]. Nevertheless, the application of other statistical methods
for finding patterns in Java bytecode constitutes one of our
future directions in this subject area.

Returning to our example scenario suppose that we use the
pattern identified in Figure 2(b) to compress our simple Java
program. The pattern appears in three bytecode sequences
in the program. Originally, for these sequences we need
3× 9 bytes = 27 bytes. In the dictionary we need 7 bytes to
store the non-wildcard pattern elements and one extra byte to
encode the positions of the wildcards.
Finally, we need 1 byte for theENDOF PATTERNcharacter.

(a) Class file and bytecode sizes.

(b) Percentage of bytecode size reduction.

TABLE I

USING THE NON-PARAMETERIZED AND THE PARAMETERIZED

TECHNIQUES TO COMPRESS A TYPICAL SET OF ALGORITHMS

IMPLEMENTED IN JAVA .

In the bytecode, each pattern occurrence is replaced by three
bytes, one for indexing the directory and two for the actual
values of the two wildcards. Thus, in the compressed code
we need 9 bytes for specifying the positions of the pattern
occurrences in the bytecode and 9 bytes for storing the pattern
in the dictionary. This means that the compression results
in saving 9 bytes. Hence, the use of parameterized patterns
gives us a much better bytecode size reduction (26.47%),
compared to the one (8.82%) obtained in the case of the non-
parameterized pattern discovery technique.

To further motivate the investigation of the advanced para-
meterized pattern discovery technique we applied it in a set
of simple Java programs that realize standard algorithms. The
sizes of these simple programs are given in Table I(a). The per-
centages of the bytecode size reduction we obtained in these
examples are given in Table I(b). It should be noted that these
results are optimal in the sense that we performed all possible
combinations of the retrieved patterns towards locating the
subset of these patterns that gives the highest bytecode size
reduction. Once more, we can observe that the parameterized
pattern discovery technique results in better percentages of
bytecode size reduction, compared to the ones obtained from
the non-parameterized one. It is worth noticing that in some
of the examples (e.g., fibonacci numbers, selection sort, etc.),
the non-parameterized technique completely failed to locate
any patterns, while the parameterized technique results in a
respectable percentage of bytecode size reduction.

C. Bytecode decompression

The bytecode decompression procedures for the techniques
we discussed in this section are quite straightforward. In the
case of the non-parameterized technique, the decompression
module is initialized with a given dictionary. The module
provides an operation that accepts as input an index to the
dictionary. This particular operation should be called by the
main loop of the Java bytecode interpreter, upon the discovery
of a byte that corresponds to an unused bytecode opcode. The
decompression module uses the input index to find the first
byte of the pattern. This corresponds to the first instruction
opcode contained in the pattern. The decompression module
reasons based on the given opcode about the number of bytes

that need to be fetched from the dictionary. Following, the
required number of bytes are fetched from the dictionary to-
wards forming an instruction. The remaining instructions that
constitute the particular pattern are decompressed similarly.
The overall decompression procedure ends up by fetching the
ENDOF PATTERNelement from the dictionary.

For the parameterized technique, the decompression is sim-
ilar. The decompression module is also initialized with a
given dictionary and the maximum length used for deriving
the patterns contained in this dictionary. The decompression
module accepts as input an index to the dictionary. Following,
it uses the input index to repeatedly fetch from the dictionary a
number of elements that encode the positions of the wildcards
within the indexed pattern. The number of these elements
depends on the maximum length used for discovering the
patterns contained in the dictionary (by default, the maximum
length of patterns is 9 and therefore one byte is fetched).
The byte that follows the elements that encode the positions
of wildcards is the first instruction opcode contained in the
pattern. As previously, the decompression module figures out
about the number of bytes required for forming the first
instruction that should be executed. Some of the required bytes
are fetched from the dictionary, while some others are found
in the compressed code. Specifically, thei-th byte is fetched
from the dictionary if the value of thei-th bit of the bytes
that encode the positions of wildcards within the pattern is
0. Otherwise, thei-th byte is found in the compressed code.
The remaining instructions that constitute the particular pattern
are decompressed similarly. Again, the overall decompression
procedure ends up by fetching theENDOF PATTERNelement
from the dictionary.

IV. A SSESSMENT

Although some benefits from using the parameterized pat-
tern discovery technique are evident from the simple examples
discussed in Section III, we further conducted experiments
involving a real-world case study. Specifically, the target of our
investigation is the MIDP (Mobile Information Device Profile)
v2.0 reference implementation from Sun Microsystems2.
MIDP is part of the Java 2 Platform Micro Edition (J2ME) and
relies on CLDC (Connected Limited Device Configuration).
It provides a basic environment for the development of Java
applications for mobile information devices (MIDs) such as
mobile phones and PDAs. The MIDP reference implemen-
tation consists of 11 packages. In this section, we present
the results we obtained from 6 of these packages, which we
consider as the core of MIDP. The basic characteristics of
each package (size of class file and bytecode size) are given
in Table II. The sizes of the particular Java class files are repre-
sentative, considering real world applications aimed at mobile
and embedded devices. Specifically, the standard JTWI (Java
Technology for the Wireless Industry3) specification sets the
limit of a standard-size-application to 64Kbytes. JTWI actually
defines a standard framework for the development of mobile
applications and MIDP is part of it. Applications that are

2http://java.sun.com/products/midp/
3http://java.sun.com/products/jtwi/

TABLE II

MIDP PACKAGES BASIC FEATURES.

under the limit of 64Kbytes are guaranteed to work correctly
over any kind of device that complies with JTWI. Regarding
the MIDP packages, java.io provides classes for input and
output through data streams. The java.lang package consists
of basic language classes coming from J2SE (Java 2 Standard
Edition), javax.microedition.io includes networking support
relying on CLDC. The javax.microedition.media package al-
lows accessing device-dependent resources for multimedia
processing. The javax.microedition.midlet package defines the
basic MIDP application model. Finally, javax.microedition.pki
enables managing certificates, used for securing connections.

The goal of our experiments was twofold:

1) To investigate thebenefitsand thecostof the parameter-
ized pattern discovery technique, measured in terms of
the bytecode size reductionobtained and thetime spent
for discovering and combining patterns, respectively.

2) To study the cost of the decompression procedure that
comes along with the parameterized technique in terms
of the time overhead, introduced in the execution of Java
bytecode.

A. Bytecode Compression

To evaluate the benefits and the cost of the parameterized
pattern discovery technique we performed two different sets
of experiments. The first one aims at evaluating the impact
of using patterns that contain a variable number of wildcards
in the compression of MIDP. The second set of experiments
aims at investigating the impact of the increasing length of
the patterns in the compression of MIDP. In the first set of
experiments, the maximum length of the patterns is set to 9,
while in the second one we increase this length from 9 to 11.
In both sets, the threshold for non-wildcard elements in the
patterns was set toT (k) = dk/2e.

The strong point of the advanced parameterized pattern
discovery technique is its ability to track-down a rich variety
of patterns, whose combination may lead to more effective
bytecode size reduction. This fact is particularly highlighted
in Tables III(a) and (b), which give the total number of patterns
and the number of non-parameterized patterns discovered in
the MIDP packages. Table III(a) specifically refers to the
first set of experiments where the maximum length of the
patterns was 9, while Table III(b) refers to the second set of

(a) Maximum length of patterns = 9.

(b) Maximum length of patterns = 11.

TABLE III

COMPARING THE NUMBERS OF PARAMETERIZED AND

NON-PARAMETERIZED PATTERNS DISCOVERED INMIDP.

experiments where the maximum length of the patterns was
11. In general, we can observe that increasing the maximum
length of the patterns results in increasing the overall number
of patterns found.

Nevertheless, the time required by the advanced parameter-
ized pattern discovery technique for the discovery of patterns
is quite high (Tables III(a) and (b)). Moreover, the discovery
of a rich variety of patterns also increases the complexity
of combining these patterns to obtain a good bytecode size
reduction. Therefore, an issue that should be studied in our
assessment is whether the discovered patterns are useful,
worthy of the time required for discovering and combining
them.

As already discussed, the complexity for finding all possible
combinations of patterns is2|P |. In the first set of experiments,
the average number of parameterized patterns found per MIDP
class is 157. On the other hand, the average number of non-
parameterized patterns found per MIDP class is 85.6. If we
assume that each combination of patterns requires 1 usec to be
performed, then the assessment of all possible combinations
of parameterized patterns would require5.39864 ∗ 1031 hours
to complete. Similarly, the assessment of all combinations
of non-parameterized patterns would require1.69879 ∗ 1010

hours. The assumption that the assessment of a particular
combination of patterns requires 1 usec is rather optimistic
and refers to combinations of 2 patterns. As we can observe
in the experiments detailed later the required time depends on
the number of combined patterns and it is usually higher than
1 usec. Therefore, for both the parameterized and the non-
parameterized sets of patterns found in MIDP, the assessment
of all possible combinations is virtually impossible. To deal
with this particular problem we investigate the use of two
heuristics. The purpose of the heuristics is to allow us to

efficiently obtain good suboptimal bytecode size reduction.
In both heuristics, we sort an overall set of patternsP based

on the bytecode size reduction provided by these patterns when
they are used in isolation for the compression of the bytecode
within which they were found. In a sense, we quantitatively
group/cluster the patterns with respect to the bytecode size
reduction that they provide. Following, in the first heuristic
we start from the pattern that offers the best bytecode size
reduction and we examine its combination with the second-
best pattern. If the bytecode size reduction obtained using the
two patterns is greater than the one obtained from the first
pattern we keep the second pattern as well. Otherwise, the
second-best pattern is useless. We follow the same procedure
for the rest of the sorted patterns, ending up with a set of
patterns that gives us a suboptimal bytecode size reduction.
The second heuristic amounts to performing the first heuristic
|P | times. During each iterationi : i = 1, . . . |P | we start
from the i-th best of the sorted patterns and we proceed by
checking the usefulness of combining it with thei + 1, i +
2, . . . , |P |, 1, 2, . . . , i−1 patterns. At the end of this procedure
we end up with|P | sets of patterns, amongst which we select
the one that gives us the highest bytecode size reduction.

In general, the impact of the second heuristic in the overall
time required for the bytecode compression is expected to be
much higher than the impact of the first heuristic (since the
application of the second heuristic consists of applying the
first heuristic|P | times). On the other hand, the combinations
of patterns examined by the second heuristic are a superset of
the combinations of patterns examined by the first heuristic.
Hence, the percentage of bytecode size reduction obtained
from the application of the second heuristic is expected to be
at least as good as the percentage of bytecode size reduction
obtained from the application of the first heuristic.

1) Experimental results - 1st set of experiments:In the first
set of experiments we used as input to both heuristics the
full set of patterns,Pparam, discovered by the parameterized
pattern discovery technique in each one of the MIDP packages.
Moreover, we used as input to both heuristics the set of
non-parameterized patterns,Pnon−param, discovered in each
one of the MIDP packages. To compare the contribution of
patterns that contain a variable number of wildcards, against
the contribution of patterns that contain a fixed number of
wildcards we further constructed four input sets,P1w, P2w,
P3w and P4w, consisting of patterns that contain one, two,
three and four wildcards, respectively.P1w, P2w, P3w and
P4w were constructed from the full set of patternsPparam

that resulted from AC. Finally, to investigate the impact of
the increasing number of wildcards in the compression of the
MIDP packages we constructed three more input sets,P1−2w,
P1−3w and P1−4w, consisting of patterns that contain one-
to-two, one-to-three and one-to-four wildcards, respectively.
P1−2w, P1−3w andP1−4w were also constructed from the full
set of patternsPparam that resulted from AC.

Figure 3 compares the results we obtained per MIDP
package from the application of the first heuristic inPparam,
Pnon−param, P1w, P2w, P3w andP4w (more detailed results
regarding the bytecode size reduction obtained per differ-
ent class of the MIDP packages are given in Appendix I).

Specifically, the time required to combine the patterns (Fig-
ure 3(b)) is acceptable in every case. However, the bytecode
size reduction we obtained for each package highly depends
on the patterns used. In particular, in some packages (e.g.,
javax.microedition.midlet),Pparam gives the best bytecode
size reduction. In other packages (e.g., java.io), the non-
parameterized set,Pnon−param, performs better. Finally, there
are also packages where the sets that contain patterns with
fixed numbers of wildcards give the best bytecode size re-
duction (e.g.,P1w andP2w in javax.microedition.pki). There-
fore, the first heuristic is quite fast but rather unpredictable
regarding the set of patterns that should be used to obtain the
highest bytecode size reduction. Moreover, in most packages
the first heuristic appears incapable of taking advantage of the
flexibility provided by the large variety of patterns contained
in Pparam.

The results obtained from the application of the second
heuristic in Pparam, Pnon−param, P1w, P2w, P3w and P4w

are given in Figure 4 (more details regarding the bytecode size
reduction obtained per different MIDP class are given in Ap-
pendix I). As expected, the time required to combine patterns
(Figure 4(b)) is much higher than the time spent when using
the first heuristic. However, it is still reasonable compared
to the time required for deriving all possible combinations of
patterns. The bytecode size reduction we obtained is generally
better than the corresponding reduction obtained from the
application of the first heuristic. The use ofPparam gives
the highest bytecode size reduction in all packages, except
for the javax.microedition.pki one (Figure 4(a)). Hence, the
second heuristic renders the use ofPparam more beneficial.
The reduction obtained from the sets that contain patterns with
fixed numbers of wildcards is in most packages poorer than
the reduction resulted fromPparam. However, amongstP1w,
P2w, P3w andP4w, the first two sets give better bytecode size
reduction. Hence, patterns with a relatively small number of
wildcards contribute more in reducing the size of the MIDP
packages.

Figures 5 and 6 compare the results we obtained from the
application of the first and the second heuristic inPparam,
Pnon−param, P1−2w, P1−3w and P1−4w (more details can
be found in Appendix I). Regarding the two heuristics, the
observations derived from Figures 3 and 4 are still valid. The
bytecode size reduction obtained from the first heuristic is
smaller compared to the one obtained from the application of
the second heuristic. In both heuristics the reduction obtained
in the case ofP1−2w, P1−3w and P1−4w is greater than the
reduction obtained in the case ofP1w, P2w, P3w and P4w.
In most cases,P1−2w gives better bytecode size reduction
than P1−3w and P1−4w. This observation is an additional
evidence that patterns with a small number of wildcards result
in combinations that give us better bytecode size reduction.

The inclusion of patterns with 3 and 4 wildcards in the
set of patterns that contain 1 and 2 wildcards results in
worst bytecode size reduction in certain cases because of the
overlapping between these patterns. For example, a pattern that
contains 3 wildcards could appear in the bytecode in the form
of two consecutive patterns that contain 1 and 2 wildcards. In
the same bytecode, there may also be individual occurrences

(a) Percentage of bytecode size reduction per MIDP package.

(b) Time to combine patterns per MIDP package (sec).

Fig. 3. Experimental results from the application of the first heuristic inPparam, Pnon−param, P1w, P2w, P3w andP4w.

of the two constituent patterns. If used in isolation4, the 2
constituent patterns may result in bytecode size reductions
that are smaller than the one that can be obtained from the
use of the 3-wildcards-pattern. On the other hand, if both the
constituent patterns are used we may get a reduction that is
better than the one obtained by the use of the 3-wildcards-
pattern. However, the selection of the 3-wildcards-pattern may
render the selection of the two constituent patterns impossible
(e.g. because after the substitution of the 3-wildcards-pattern
occurrences, the constituent patterns no longer appear in the
bytecode more than once).

Although one would expect that the bytecode size reduction
resulted fromP1−3w and P1−4w would be really close or
equal to the one obtained fromPparam, this is not the
case.P1−4w comprises all the patterns that contain wildcards.
However, Pparam further comprises the non-parameterized
patterns, discovered by AC (Section III B). The contribution
of the non-parameterized patterns is quite significant along
with the contribution of the patterns that contain 1 and 2
wildcards. This becomes clear with further elaboration on the
results obtained from the application of the second heuristic
in Pparam. Specifically, Figure 7 gives the numbers of useful
patterns (i.e., the patterns that are finally used for compressing
the MIDP packages) that resulted from the second heuristic in
relation with their lengths and the number of wildcards that

4i.e. according to the way that we assess the contribution of patterns in the
heuristics.

they contained.

Figures 3(a), 4(a), 5(a) and 6(a) further compare the results
we discussed so far with the ones obtained from the use
of GZIP. We usedGZIP to compress the bytecode of the
different MIDP packages that constitute our case study. The
resulted compressed bytecode is not interpretable, in that it can
not be executed without being fully decompressed. However,
the bytecode size reduction obtained withGZIP is a useful
measure towards our assessment. In all figures, we can observe
that the percentage of the bytecode size reduction obtained
with GZIP is comparable with the one resulted fromPparam.
It is interesting to note that in the case of the first heuristic
(Figures 3(a), 5(a)), in most MIDP packages,GZIP performs
slightly better thanPparam and Pnon−param. On the other
hand, in the case of the second heuristic we see thatPparam

gives in some MIDP packages (java.io, java.lang packages)
better bytecode size reduction thanGZIP, while Pnon−param

gives only at most as good bytecode size reduction asGZIP.

Summarizing the results from the first set of experiments,
we can derive the following conclusions. The examined pattern
discovery technique allows the discovery of a rich variety of
parameterized and non-parameterized patterns. The discovery
of the patterns is quite expensive, with respect to the time spent
by AC. Moreover, the complexity of selecting and combining
patterns is also high. Our experimental results showed that
in the case of MIDP, the mostusefulpatterns out ofPparam

are the non-parameterized ones and the ones that contain 1

(a) Percentage of bytecode size reduction per MIDP package.

(b) Time to combine patterns per MIDP package (sec).

Fig. 4. Experimental results from the application of the second heuristic inPparam, Pnon−param, P1w, P2w, P3w andP4w.

and 2 wildcards. However, this may not be the case in other
Java applications, where patterns with more than 2 wildcards
may also prove useful. Based on these remarks, a good
strategy for balancing the tradeoff between the time spent for
discovering/combining patterns and the resulted bytecode size
reduction is to apply the technique in an incremental manner.
For a given bytecode, instead of using AC for constructing a
large set of patterns, containing many wildcards, AC can be
customized to construct a smaller set of patterns, containing
few wildcards. Starting from this smaller set of patterns,
the technique may be used at a later time, if necessary, to
discover patterns that contain more wildcards, towards further
improving the bytecode size reduction.

2) Experimental results - 2nd set of experiments:In the
second set of experiments we used as input to both heuristics
the set of patterns of maximum length 11,Pparam, discovered
in each one of the MIDP packages. As discussed at the
beginning of this subsection, increasing the maximum length
of the patterns results in the discovery of more patterns.
Moreover, increasing the maximum length implies increasing
the time required for discovering the patterns and the time
required for combining them. The expected benefit against the
time increment is the increment of the bytecode size reduction.
However, the previous may not hold; increasing the maximum

length of the patterns may result only in a small increment of
the bytecode size reduction. In the worst case, it may result
in a decrement of the bytecode size reduction. As detailed in
Section III B, to encode the positions of wildcards in patterns
of maximum lengthK, we have to used(K − 2)/8e bytes.
Therefore, for patterns of maximum length 9, 1 byte is needed.
On the other hand, for patterns of maximum length 11, 2
bytes have to be used. The extra bytes used for encoding
the positions of wildcards when the maximum length of the
patterns is long may reduce the benefits obtained from using
these patterns.

More specifically, Figures 8(a) and (b) give the results
we obtained in the case of the MIDP packages. Figure 8(a)
refers to the first heuristic, while Figure 8(b) refers to the
second heuristic. In both figures, the left axis corresponds to
the percentage of the bytecode size reduction increment or
decrement resulted from increasing the maximum length of the
patterns from 9 to 11 (columns that are under 0% correspond
to bytecode size reduction decrement, while columns that are
over 0% correspond to bytecode size reduction increment; the
smaller the columns that are under 0%, the larger the decre-
ment of the bytecode size reduction). The right axis shows the
increment of the time required for discovering and combining
the patterns when their maximum length is increased from 9 to

(a) Percentage of bytecode size reduction per MIDP package.

(b) Time to combine patterns per MIDP package (sec).

Fig. 5. Experimental results from the application of the first heuristic inPparam, Pnon−param, P1−2w, P1−3w andP1−4w.

(a) Percentage of bytecode size reduction per MIDP package.

(b) Time to combine patterns per MIDP package (sec).

Fig. 6. Experimental results from the application of the second heuristic inPparam, Pnon−param, P1−2w, P1−3w andP1−4w.

11. In the case of the first heuristic, time increases from 26% to
34% for the different MIDP packages. Similarly, in the second
heuristic time increases up to 34%. With the exception of one
package (javax.microedition.pki), the bytecode size reduction

decreases. In the first heuristic the decrement ranges from -
12% (Figure 8(a) third column - javax.microedition.media) to
-42% (Figure 8(a) second column - java.lang), while in the
second heuristic the decrement ranges from -7% (Figure 8(b)

(a) java.io (b) java.lang

(c) javax.microedition.io (d) javax.microedition.media

(e) javax.microedition.midlet (f) javax.microedition.pki

Fig. 7. Patterns combined by the second heuristic in the case ofPparam.

(a) Results obtained from the first heuristic.

(b) Results obtained from the second heuristic.

Fig. 8. The impact of increasing the maximum length of the patterns in the bytecode size reduction obtained and the time required for discovering and
combining the patterns.

third column - javax.microedition.media) to -33% (Figure 8(b)
first column - java.io). In the javax.microedition.pki package,
the bytecode reduction increases up to 3% for both the

heuristics (sixth column - Figures 8(a) and (b)).

Summarizing the results from our second set of experiments,
we can conclude that very long patterns may not prove bene-

ficial for the bytecode compression process. The best strategy
is to start from discovering patterns whose maximum length is
less or equal to 10 since the bytes required for encoding them
in the dictionary is small. The discovery of longer patterns
could be tried towards optimizing the compression, while
keeping in mind that it may lead to worst results.

B. Bytecode Decompression

The decompression overhead introduced in the execution of
applications that were compressed into interpretable bytecode
is always an issue for the assessment of the compression
technique that was used. However, this overhead depends on
several factors concerning the application itself and the envi-
ronment within which the application executes. Specifically, in
the case of the technique examined in this paper, the overhead
depends on the number of pattern instances encountered during
the bytecode execution, the length of the patterns and the
number of wildcards of these patterns. Moreover, the overhead
depends on the characteristics of the particular device and the
JVM used for the execution of the bytecode. It should be
noted that the JVM may be even implemented as part of the
processor used. The previous particularly holds in the case of
Java processors such as picoJava5, Komodo6, aJile GEMCore7,
JOP8 and several others. Given the previous remarks, in
this paper we focus on examining the general behavior of
the decompression overhead. To this end, we used randomly
generated synthetic bytecode and a simple JVM main loop
[25] that interprets the synthetic bytecode. The simple JVM
main loop was realized for the purpose our experiments along
with a random bytecode generator and the two decompression
modules discussed in Section III C.

The random bytecode generator accepts as input a required
percentage of bytecode size reduction and produces a synthetic
bytecode sequence that can be compressed according to this
percentage of bytecode size reduction. The generator further
accepts as input the main features of a set of patterns that
is generated with respect to the given features. This set of
patterns is then used by the generator towards the construction
of the target bytecode sequence, which consists of instances
of the generated patterns, complemented with bytecode in-
structions that will not be compressed. Specifically, the main
features that characterize a generated set of patterns are:

• The maximum length,K, of the patterns. Based on this
feature, the generator creates patterns, whose length is
uniformly distributed in the range[2,K].

• The maximum number of wildcards,M , contained in the
patterns. Given this feature, the generator builds patterns,
whose number of wildcards is uniformly distributed in
the range[0,M].

• The maximum the number of pattern occurrences,L.
According to this feature, the generator constructs a
number of pattern occurrences in the target bytecode,
which is uniformly distributed in the range[2, L]

5http://www.sun.com/microelectronics/picoJava/
6http://ipr.ira.uka.de/komodo/komodoEng.html
7http://www.ajile.com/products/jemcore.htm
8http://www.jopdesign.com/

• A two-dimensionalK×M matrixFR. The value of each
matrix elementFR[k,m] (such thatk : 2, . . . ,K andm :
0, . . . ,M) corresponds to the probability of generating a
pattern of lengthk with m wildcards.

The JVM loop does not provide any advanced JIT compi-
lation capabilities. Moreover, several typical JVM activities
(e.g. verification, resolution, access control [25]) that pre-
cede the bytecode interpretation are omitted. Consequently,
the overhead introduced by the decompression modules is
expected to be high. In any case, the results are based on
randomly generated bytecode and may not be representative
of real applications that do not comply with the features used
for the generated bytecode in our experiments. To perform
our experiments we used 2 different environments. The first
one relies on a 2GHz AMD Athlon XP 2400+ with 256Kb
L2 cache, while the second one is based on a 500 MHz
UltraSPARC-IIe with 256Kb L2 cache.

The input parameters of the generator relied on the results
we obtained from the MIDP case study. In particular, we
constructed 4 different sets of bytecode sequences, whose
size was reduced 5%, 10%, 15% and 20%, respectively. The
compression of these bytecode sequences relied on patterns,
which contained up to 4 wildcards. Similarly, we generated 4
more sets of bytecode sequences, whose size was reduced 5%,
10%, 15% and 20%, with respect to sets of patterns, which did
not contain wildcards. In all cases, the maximum length of the
patterns was set to 9. The range of the pattern instances was
[2, 12]. The matrixFR that was given as input to the generator
was calculated with respect to the overall set of patterns that
were combined using the second heuristic in the case of MIDP
(Figure 7). The specific values ofFR that we used are given
in Figure 9(a).

Figure 9(b) gives the average decompression overhead we
obtained for the aforementioned sets of bytecode sequences.
As expected, the overhead is quite high (however, it is close
to the overhead reported in [4] for the CaffeineMark synthetic
Java programs). The overhead linearly increases with the
percentage of the bytecode size reduction. In general, the
overhead in the case of the bytecode sequences that were
compressed using patterns that did not contain wildcards was
smaller, compared to the overhead in the case of the bytecode
sequences that were compressed using patterns that contained
wildcards. To further elaborate on the decompression overhead
we measured the absolute time required for decompressing
parameterized and non-parameterized patterns, whose length
ranged from 2 to 9 bytes. The parameterized patterns com-
prised up to 3 wildcards. Specifically, the patterns of length 2
and 3 comprised 1 wildcard. The patterns of length 4, 5, and 6
comprised 2 wildcards. Finally, the patterns of length 7, 8 and
9 comprised 3 wildcards. The results we obtained are given
in Figure 9(c). The time to decompress linearly increases with
the length of the patterns.

V. CONCLUSION

In this paper, we introduced a first approach that aimed at
assessing the use of statistical pattern discovery for dictionary-
based Java bytecode compression. In particular, we focused on

(a) Probabilities of generating patterns of lengthk : 2, . . . , 9 with m : 0, . . . , 4 wildcards.

(b) Decompression overhead for the synthetic bytecode sequences. (c) Absolute times for pattern decompression (usec).

Fig. 9. Evaluating the decompression overhead of the parameterized pattern discovery technique.

the use of agglomerative clustering, a well-known hierarchi-
cal pattern discovery technique. The main outcome revealed
from our assessment is that the examined technique promotes
the identification of a rich collection of parameterized and
non-parameterized patterns of variable lengths, which give
the opportunity for obtaining good bytecode size reduction.
However, the discovery of such a rich set of patterns for a
given bytecode is certainly time consuming. Moreover, the
complexity of finding useful combinations of patterns out of
this set that result in a good bytecode size reduction is also
high. To deal with the complexity of combining patterns we in-
vestigated two heuristics. Our experimental results showed that
the length of the patterns should be appropriately customized
so that it does not negatively affect the compression by requir-
ing a large number of bytes for encoding the patterns. More-
over, our experimental results showed that non-parameterized
patterns and patterns that contain a relatively small number
of wildcards are the most useful in our case study. However,
this observation may not hold for any possible Java bytecode.
Based on these remarks, a good strategy for balancing the
tradeoff between the time spent for discovering/combining
patterns and the resulted bytecode size reduction is to apply
the patterns discovery technique in an incremental manner.
In a first step, the algorithm can be customized towards the
discovery of small sets of patterns that contain few wildcards.
Following, the small sets of patterns may serve as input to
the algorithm towards the discovery of patterns that contain
more wildcards, which may further improve the bytecode size
reduction.

The incremental use of the agglomerative clustering al-
gorithm is an interesting issue for further research, along
with techniques that would allow pruning patterns that are
not useful, early in the patterns discovery process. Currently,
our work is also targeted towards further improving the
efficiency of the pattern combination procedure. To this end,

we aim at formulating the problem of pattern combination
as a global optimization problem. This would allow us to
investigate the use of classical global optimization techniques
such as simulated annealing in conjunction with the proposed
parameterized pattern discovery technique. Our future research
further aims at the exploration of other, possibly more efficient,
statistical methods for discovering patterns in Java bytecode.

APPENDIX I
FURTHER RESULTS FROM THEMIDP CASE STUDY

In this section, we provide further details regarding the
experiments performed for the assessment of the parameterized
pattern discovery technique discussed in this paper. Specifi-
cally, Figures 10 and 11, provide details regarding the bytecode
size reduction obtained per different MIDP class from the
application of the first and the second heuristics inPparam,
Pnon−param, P1w, P2w, P3w andP4w. Similarly, Figures 12
and 13 give the bytecode size reduction obtained per different
MIDP class from the application of the first and the second
heuristics inPparam, Pnon−param, P1−2w, P1−3w andP1−4w.
Finally, Figures 14 and 15 detail the impact of increasing the
maximum length of the patterns found in MIDP from 9 to 11,
in the bytecode size reduction obtained and the time required
for compressing each MIDP class.

REFERENCES

[1] A. Besźedes, R. Ferenc, T. Gyiḿothy, A. Dolenc, and K. Karsisto,
“Survey of Code-Size Reduction Methods,”ACM Computing Surveys,
vol. 35, no. 3, pp. 223–267, 2003.

[2] D. Rayside, E. Mamas, and E. Hons, “Compact Java Binaries for
Embedded Systems,” inProceedings of the 1999 ACM Conference of the
Centre for Advanced Studies on Collaborative Research (CASCON’99),
1999, pp. 1–14.

[3] M. Latendresse and M. Feeley, “Generation of Fast Interpreters for
Huffman Compressed Bytecode,”Science of Computer Programming
(Advances in Interpreters, Virtual Machines and Emulators), vol. 57,
no. 3, pp. 295–317, 2005.

[4] L. R. Clausen, U. P. Schultz, C. Consel, and G. Muller, “Java Bytecode
Compression for Low-End Embedded Systems,”ACM Transactions on
Programming Languages and Systems, vol. 22, no. 3, pp. 471–489, 2000.

[5] M. Meil ă and D. Hecherman, “An experimental comparison of model-
based clustering methods,”Machine Learning, vol. 42, pp. 9–29, 2001.

[6] K. Blekas and A. Likas, “Incremental Mixture Learning for Clustering
Discrete Data,” inLecture Notes in Artificial Intelligence, vol. 3025.
Springer-Verlag, 2004, pp. 210–219.

[7] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A. Proebsting, “Code
Compression,” inProceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’97), 1997,
pp. 358–365.

[8] Q. Brandly, R. N. Horspool, and J. Viter, “JAZZ: An Efficient Com-
pressed Format for Java Archive Files,” inLecture Notes in Artificial
Intelligence, vol. 3025. Springer-Verlag, 2004, pp. 210–219.

[9] M. Franz and T. Kistler, “Slim Binaries,”Communications of the ACM,
vol. 40, no. 12, pp. 87–94, 1997.

[10] W. Pugh, “Compressing Java Class Files,” inProceedings of the ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’99), 1999, pp. 247–258.

[11] F. Tip, P. Sweeney, C. Laffra, A. Eisma, and D. Streeter, “Practical
Extraction Techniques for Java,”ACM Transactions on Programming
Languages and Systems, vol. 24, no. 6, pp. 625–666, 2002.

[12] A. Wolfe and A. Chanin, “Executing Compressed Programs on an
Embedded RISC Architecture,” inProceedings of the 25th IEEE Inter-
national Symposium on Microarchitecture (Micro-25), 1992, pp. 81–92.

[13] M. Kozuch and A. Wolfe, “Compression of Embedded System Pro-
grams,” inProceedings of the International IEEE Conference on Com-
puter Design: VLSI in Computers & Processors, 1994, pp. 270–277.

[14] H. Lekatsas and A. Wolfe, “SAMC: A Code Compression Algorithm for
Embedded Processors,”IEEE Transactions on Computer Aided Design,
vol. 18, no. 12, pp. 1689–1701, 1999.

[15] K. D. Cooper and N. McIntosh, “Enhanced Code Compression for
Embedded Risc Processors,”ACM SIGPLAN Notices, vol. 5, pp. 139–
149, 1999.

[16] IBM, “CodePack: PowerPC Code Compression Utility User’s Manual
v3.0,” IBM Corporation, Tech. Rep., 1998.

[17] C. R. Lefurgy, P. L. Bird, I-C. Chen and T. N. Mudge, “Improving
Code Density Using Compression Techniques,” inProceedings of the
30th ACM/IEEE International Symposium on Microarchitecture (Micro-
30), 1997, pp. 194–203.

[18] S. K. Debray, W. Evans, R. Muth and B. De Sutter, “Compiler
Techniques for Code Compaction,”ACM Transactions on Programming
Languages and Systems, vol. 22, no. 2, pp. 378–415, 2000.

[19] B. De Sutter, B. De Bus and K. De Bosschere, “Sifting out the Mud:
Low Level C++ Code Reuse,” inProceedings of the 17th ACM SIGPLAN
Conference on Object-Oriented Programming Systems Languages and
Applications (OOPSLA’02), 2002, pp. 275–291.

[20] J. Krinke, “Identifying Similar Code with Program Dependence Graphs,”
in Proceedings of the 8th IEEE Working Conference on Reverse Engi-
neering, 2001, pp. 301–309.

[21] W. Cheung, W. Evans, and J. Moses,Software and Compilers for
Embedded Systems: 7th International Workshop (SCOPES’03), ser.
LNCS. Springer-Verlag, 2003, vol. 2826, ch. Predicated Instructions
for Code Compaction, pp. 17–31.

[22] W. Evans and C. Fraser, “Bytecode Compression via Profiled Grammar
Rewriting,” in Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI’01), 2001, pp.
148–155.

[23] R. Komondoor and S. Horwitz, “Effective, Automatic Procedure Ex-
traction,” in Proceedings of the 11th IEEE International Workshop on
Program Comprehension (IWPC’03), 2003, pp. 33–43.

[24] Y. Bengio and S. Bengio, “Modeling High-Dimensional Discrete Data
with Multi-Layer Neural Networks,” inAdvances in Neural Processing
Systems 12, S. Solla, T. Leen, and K.-R. Ḿoller, Eds. MIT Press, 2000,
pp. 400–406.

[25] T. Lindholm and F. Yellin,The Java Virtual Machine Specification.
SUN Microsystems, 1999, ch. 5: The Structure of the Java Virtual
Machine.

Dimitris Saougkos received his B.Sc.
in 2004 from the Department of
Computer Science of the University of
Ioannina, Greece. Following, he obtained
his M.Sc. in 2006 from the same
department. His main research interests
include code compression, compilers,
programming languages, middleware,
mobile and embedded computing
systems.

George Manis is a Lecturer in the Department of
Computer Science of the University of Ioannina,
Greece. He received his Diploma in Electrical and
Computer Engineering in 1992 from the National
Technical University of Athens (NTUA), Greece. In
1993, he obtained his MSc from the Queen Mary and
Westfield College (QMW), University of London. In
1997, he obtained his Ph.D. in Computer Engineer-
ing from NTUA. His main research interests include
computing systems and architectures, compilers, and
biomedical engineering.

Konstantinos Blekasreceived his Diploma in Elec-
trical Engineering in 1993 and his Ph.D. in Electrical
and Computer Engineering in 1997, both from the
National Technical University of Athens (NTUA).
Since 2002, he has been with the Department of
Computer Science, University of Ioannina, Greece,
where he is currently a Lecturer. His research inter-
ests include artificial intelligence, statistical pattern
recognition, machine learning, and bioinformatics.

Apostolos V. Zarras holds a Lecturer position
at the Department of Computer Science, Univer-
sity of Ioannina, Greece. He received his B.Sc. in
Computer Science in 1994 from the Department of
Computer Science, University of Crete. In 1996,
he received his M.Sc. in Distributed Systems and
Computer Architecture, from the same department.
He obtained his Ph.D in Distributed Systems and
Software Architectures in 2000 from the University
of Rennes I, France. From 1999 to 2001 Apostolos
Zarras worked as a researcher at the ARLES Group

of INRIA-Rocquencourt. His research interests include middleware, model-
driven architecture development and pervasive computing.

(a) java.io (b) java.lang

(c) javax.microedition.io (d) javax.microedition.media

(e) javax.microedition.midlet (f) javax.microedition.pki

Fig. 10. Experimental results - per MIDP class - from the application of the first heuristic inPparam, Pnon−param, P1w, P2w, P3w andP4w.

(a) java.io (b) java.lang

(c) javax.microedition.io (d) javax.microedition.media

(e) javax.microedition.midlet (f) javax.microedition.pki

Fig. 11. Experimental results - per MIDP class - from the application of the second heuristic inPparam, Pnon−param, P1w, P2w, P3w andP4w.

(a) java.io (b) java.lang

(c) javax.microedition.io (d) javax.microedition.media

(e) javax.microedition.midlet (f) javax.microedition.pki

Fig. 12. Experimental results - per MIDP class - from the application of the first heuristic inPparam, Pnon−param, P1−2w, P1−3w andP1−4w.

(a) java.io (b) java.lang

(c) javax.microedition.io (d) javax.microedition.media

(e) javax.microedition.midlet (f) javax.microedition.pki

Fig. 13. Experimental results - per MIDP class - from the application of the second heuristic inPparam, Pnon−param, P1−2w, P1−3w andP1−4w.

(a) java.io (b) java.lang

(c) javax.microedition.io (d) javax.microedition.media

(e) javax.microedition.midlet (f) javax.microedition.pki

Fig. 14. The impact - per MIDP class - of increasing the maximum length of the patterns in the bytecode size reduction obtained and the time required for
discovering and combining the patterns (first heuristic).

(a) java.io (b) java.lang

(c) javax.microedition.io (d) javax.microedition.media

(e) javax.microedition.midlet (f) javax.microedition.pki

Fig. 15. The impact - per MIDP class - of increasing the maximum length of the patterns in the bytecode size reduction obtained and the time required for
discovering and combining the patterns (second heuristic).

