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Functional magnetic resonance imaging (fMRI) has become a novel technique for
studying the human brain and obtaining maps of neuronal activity. An impor-
tant goal in fMRI studies is to decompose the observed series of brain images
in order either to detect activation when a stimulus is presented to the subject,
or to identify and characterize underlying brain functional networks when the
subject is at rest. In this chapter a model class is presented for addressing this
issue that consists of finite mixture of generalized linear regression models. The
main building block of the method is the general linear model which constitutes a
standard statistical framework for investigating relationships between variables of
fMRI data. We extend this into a finite mixture framework that exploits enhanced
modeling capabilities by incorporating some innovative sparse and spatial prop-
erties. In addition a weighted multi-kernel scheme is employed dealing with the
selection problem of kernel parameters where the weights are estimated during
training. The proposed regression mixture model is trained using the maximum
a posteriori approach, where the Expectation-Maximization (EM) algorithm is
applied for constructing update equations for the model parameters. We provide
comparative experimental results in both activation-based and resting state ap-
plications that illustrate the ability of the proposed method to produce improved
performance and discrimination capabilities.

1. Introduction

Human brain represents the most complex system in the nature. It is the center

of the nervous system. This organ of 1.5 Kg and a volume around of 1200cm3 is

responsible for almost every complex task of a human being. Millions of elementary
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components, called neurons, are interconnected to each other creating a complex

information processing network. The activity of this network is associated with the

mind and gives rise to consciousness. Despite of the rapid scientific progress of

last decades, how the brain works remains a mystery. While the brain is protected

by the bones of the skull, it is still vulnerable to damage and disease. Also it is

susceptible to degenerative disorders, such as Parkinson’s disease, multiple sclerosis,

and Alzheimer’s disease. Understanding the human brain is one of the greatest

scientific challenges of the years to come [1,2].

Brain imaging uses various techniques to produce images of the brain. Electroen-

cephalography (EEG) is the oldest technique for brain imaging and it produces

images of the brain by recording the electrical activity along the scalp. Another

neuroimaging technique is the Magnetoencephalography (MEG) which records the

magnetic fields produced by the electric currents of the brain. While both techniques

present excellent temporal resolution, their spatial resolution is a major drawback

since they cannot describe the anatomical structures of the brain. Hence, the use of

them has decreased after the introduction of anatomical imaging techniques with

high spatial resolution such as Magnetic Resonance Imaging (MRI). Positron Emis-

sion Tomography (PET) is a functional neuroimaging technique used to examine

various tissues of human body. This technique presents very good spatial resolu-

tion. However, the time resolution is very bad and this affects the experimental

design since only blocked design experiments can be performed. PET is an invasive

technique since a radiotracer is injected into the human body.

Today, the most popular technique for functional neuroimaging is the fMRI.

It is a noninvasive technique which presents very good spatial resolution while its

time resolution is better compared to other similar techniques such as PET, that of-

fers the opportunity to perform more complicated experimental designs. The fMRI

analysis is based mostly on the Blood Oxygenation Level Dependent (BOLD) effect,

firstly reported in [3]. When a stimulus is applied to a subject, regions of the brain

involved in the process are becoming active. As a result the rate of blood flow is

increased and more oxygenated blood arrives. Furthermore, the blood contains iron

which is a paramagnetic material. In the above metabolic procedure oxygenated

and deoxygenated blood are taking part. However, the deoxygenated blood is more

paramagnetic than oxygenated. This difference on the magnetic properties between

oxygenated and deoxygenated blood is exploited by MRI technology to produce

brain images. The increase in blood flow is known as the hemodynamic response.

For the statistical analysis of the fMRI data two properties of the hemodynamic

response are important. First, the hemodynamic response is slow compared to the

neuronal activity. Second, it can be treated (or approximated) as a linear time in-

variant system. The linearity property together with the mathematical operation of

convolution constitute the basic tools to construct statistical models and environ-

ments such as the SPM [4] and the FSL [5], for studying fMRI applications.

Image acquisition of fMRI constructs a 4−D dataset consisting of 3−D brain
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Fig. 1. Overall scheme in fMRI analysis.

volumes that evolve in time. The basic element is called voxel and represents a

value on a grid in 3 −D. By taking the values of voxels over time we create a set

of time-series, i.e. sequential type of data measured in successive time instances

at uniform intervals. The fMRI data contains various important properties and a

careful analysis of them is needed for the subsequent analysis. Temporal correlations

between the samples are found due to physiological properties and experimental

conditions. This phenomenon depends mostly on how frequently we acquire the

images in conjunction with the duration of BOLD effect. Also, spatial correlation

can be observed in the data. This is derived from physiological properties, such

as the activated brain areas and the connectivity between brain areas, as well as

technical considerations, such as the smallest size of brain location in space that

we can obtain. In addition, what affects the quality of fMRI data is the presence of

noise that is observed in the data. There are two main sources of noise: noise due

to the imaging process and noise due to the human subject.

The types of fMRI experiments can be divided into two large groups according

to the desired target. In the activation based fMRI experiments the human subject is

exposed to a series of stimulated events according to the experimental design, which

provides a binary vector (stimulus is either present, or not). This vector is combined

with the hemodynamic response function, through the convolution operator, to give

the BOLD regressor which is very important for the statistical analysis of our data.

The second group is the resting state type of fMRI experiments where we try to
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find connections between various brain areas when the human subject is at rest, i.e.

no stimulus is present. Figure 1 illustrates briefly the overall procedure of the fMRI

data analysis process in a flow diagram design.

2. An overview of fMRI data analysis

The objective of fMRI data analysis is to detect the weak BOLD signal from the

noisy data and determine the activated areas of the brain. It usually consists of

two stages: preprocessing and statistical analysis. The first stage contains various

techniques that could be made in order to remove artifacts, validate the assumptions

of the model and standardize the brain regions across subjects [6,7]. Among them,

the most common preprocessing schemes are: slice timing correction, realignment,

coregistration of images, normalization, spatial smoothing and temporal filtering.

In the literature there are many methodologies that have been proposed for the

analysis of fMRI data. They can be divided into two major categories: the model-

based and the data driven (or model-free). The term ”model” is referred to the

process of modeling the hemodynamic response. The model-based approaches are

used only for activation based fMRI studies, and are mainly based on the general

linear regression model (GLM) [8] and its extensions [9, 10]. At the end of the

learning process the statistical activation map is drawn based on t− or F− statistics

displaying the activation areas and the importance of each voxel [8]. On the other

hand, the data driven methods are applied on both resting state and activation

based studies and include the principal component analysis (PCA) [11], independent

component analysis (ICA) [12,13] and clustering algorithms [11,13–15].

A significant drawback of the GLM is that spatial and temporal properties of

fMRI data are not taken into account in its basic scheme. More specifically, autore-

gressive modeling of noise have been proposed in [9,10] so as to incorporate temporal

correlations, while non-stationary models of noise have been presented in [16,17] for

the analysis of fMRI time series. Moreover, spatial properties of data are included

by usually performing a smoothing with a fixed Gaussian kernel as a preprocess-

ing step [9,18]. Other approaches have been also proposed that elaborate denoising

techniques, see for example [9, 19]. Under the Bayesian framework, spatial depen-

dencies have been modeled through Markov Random Field (MRF) priors applied

either to temporal and spatial components of the signal, or to the noise process [20].

Also, Gaussian spatial priors have been placed over the regression coefficients, as

well as on autoregressive coefficients of the noise process [9].

An important feature of the GLM is the type of the design matrix used which

may affect significantly the subsequent statistical analysis. Some typical examples

are the Vandermonde or B-splines matrix (dealing with polynomial or spline regres-

sion models), while other use some predefined dictionaries (basis functions) derived

from transformations, such as Fourier, Wavelets, or Discrete Cosine Transform [10].

Other more advanced techniques apply kernel design matrix constructing from an

appropriate parametric kernel function [21, 22]. Alternatively, for the activation
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based fMRI studies the design matrix could contain information about the experi-

mental paradigm [8]. Also, regressors related to head motion can be included since

remnants from head motion noise could be present in the time series [10]. Finally,

following the Bayesian framework, sparse priors over regression coefficients could be

introduced so as to determine automatically the design matrix [21–23].

Another family of methods for the fMRI data analysis with special advantages

is through clustering techniques. Clustering is the procedure of dividing a set of

unlabeled data into a number of groups (clusters), in such a way that similar in

nature samples to belong to the same cluster, while dissimilar samples to become

members of different clusters [24]. Cluster analysis of fMRI data constitutes a very

interesting application that has been successfully applied during last years. The tar-

get is to create a partition into distinct regions, where each region consists of voxels

with similar temporal behavior. Most popular clustering methods use partitioning

methodologies such as k-means, fuzzy clustering and hierarchical clustering. They

are are applied to either entire raw data, or feature sets which are extracted from

the fMRI signals [14,15,25–31].

Recently, more advanced approaches have been introduced in order to meet

spatial correlation properties of data. In [32] a spatially constrained mixture model

has been adopted for capturing the Hemodynamic Response Function (HRF), while

in [33] the fuzzy c-means algorithm in cooperation with a spatial MRF was proposed

to cluster the fMRI data. Furthermore, a mixture model framework with spatial

MRFs applied on statistical maps was described in [19, 34]. However, in the above

works the clustering procedure was performed indirectly, either through careful

construction of the regression model, or using features extracted from the fMRI

time series. Also, temporal patterns of clusters have not been taken into account.

A solution to this is to perform the clustering directly to fMRI time series, as for

example in [35], where a mixture of GLMs was presented using a spatial prior based

on the Euclidean distances between the positions of time series and cluster centers

in a 3-D space head model. An alternative solution was given in [36], where spatial

correlations among the time series is achieved through Potts models over the hidden

variables of the mixture model.

In this chapter we present an advanced regression mixture modeling approach

for clustering fMRI time series [22] that incorporates very attractive features to

facilitate the analysis of fMRI data. The main contribution of the method lies on

three aspects:

• Firstly, it achieves a sparse representation of every regression model (clus-

ter) through the use of an appropriate sparse prior over the regression coef-

ficients [37]. Enforcing sparsity is a fundamental machine learning regular-

ization principle [24,37] and has been used in fMRI data analysis [9,17,23].

• Secondly, spatial constraints of fMRI data have been incorporated directly

to the body of mixture model using a Markov random field (MRF) prior

over the voxel’s labels [21], so as to create smoother activation regions.



April 15, 2014 17:38 WSPC/Trim Size: 9.75in x 6.5in for Review Volume fmri˙chapter

6 V.P. Oikonomou

• Finally, a kernel estimation procedure is established through a multi-kernel

scheme over the design matrix of the regression models. In this way we can

manage to improve the quality of data fitting and to design more compact

clusters.

Training of the proposed regression mixture model is performed by setting a Max-

imum A Posteriori (MAP) estimation framework and employing the Expectation-

Maximization (EM) algorithm [38,39]. Numerous experiments have been conducted

using both artificial and real fMRI datasets where we have considered applications

on activation based, as well as on resting state fMRI data. Comparison has been

made using a regression mixture model with only spatial properties and the known

k-means clustering algorithm. As experiments have shown, the proposed method

offers very promising results with an excellent behavior in difficult and noisy envi-

ronments.

This chapter is structured as follows. At first we present the basic regression

mixture model and then we show how it can be adapted in order to fit the fMRI

data and their properties. This is split into descriptions of the priors, the general

construction and the MAP likelihood, where we show how the EM algorithm can

be used for estimating the model parameters. The experiments section presents

several results from functional activation studies of auditory and event-related (foot

movement) experiments, as well as from resting state fMRI studies. Comparison

has been also made with standard approaches. The chapter finishes with some

concluding remarks.

3. Finite mixture of regression models

3.1. Mixture models

Mixture models provides a powerful probabilistic modeling tool for data analysis.

It has been used in many scientific areas including machine learning, pattern recog-

nition, signal and image analysis and computer vision [24,39]. That makes mixture

models so popular and suitable is that they are parametric models of elegant way,

yet they are very flexible and easily extensible in estimating any general and complex

density and finally, they are capable of accounting for unobserved heterogeneity.

A mixture model of order K is a linear combination of K probability density

parametric functions p(y|θj) of different sources and it is formulated as:

p(y|Θ) =

K∑
j=1

πjp(y|θj) . (1)

The parameters πj are the mixing weights satisfying the constraints:

0 ≤ πj ≤ 1 and

K∑
j=1

πj = 1 , (2)
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while Θ = {πj , θj}Kj=1 is the set of model parameters which are unknown and must

be estimated. According to this model, each observation is generated by first se-

lecting a source j based on the probabilities {πj} and then by performing sampling

based on the corresponding distribution with parameters θj . Having found the pa-

rameters Θ, the posterior probabilities that an observation y belongs to the j-th

component can be calculated:

P (j|y) =
πjp(y|θj)∑K
k=1 πkp(y|θk)

(3)

Then, an observation belongs to the component j∗ with the largest posterior value,

i.e. P (j∗|y) > P (j|y) ∀j 6= j∗.

Let us assume that we have a data set of N samples Y = {y1, . . . ,yN} which

are independent. The estimation of the mixture model parameters Θ can be made

by maximizing the log-likelihood function:

l(Θ) = log p(Y |Θ) =

N∑
n=1

log p(yn|Θ) =

N∑
n=1

log{
K∑
j=1

πjp(yn|θj)} . (4)

The Expectation-Maximization (EM) [38] algorithm provides a useful framework

for solving likelihood estimation problems. It uses a data augmentation scheme and

is a general estimation method in the presence of missing data. In the case of finite

mixture models the component memberships play the role of missing data. EM

iteratively performs two main steps. During the E-step the expectation of hidden

variables are calculated based on the current estimation of the model parameters:

znj = P (j|yn) =
πjp(yn|θj)∑K
k=1 πkp(yn|θk)

. (5)

At the M-step the maximization of the complete data log-likelihood function (Q-

function) is performed:

Q(Θ|Θ(t)) =

N∑
n=1

K∑
j=1

znj{log πj + log p(yn|θj)} (6)

This leads to obtaining new estimates of the mixture weights:

πj =

∑N
n=1 znj
N

, (7)

as well as of the model components parameters θ
(t+1)
j . The received update rules

depend on the type of component density functions. In the case of multivariate

Gaussian mixture models for example, i.e. p(y|θj) = N(y;µj ,Σj), these rules be-

come [24,39]:

µj =

∑N
n=1 znjyn∑N
n=1 znj

(8)

Σj =

∑N
n=1 znj(yn − µj)(yn − µj)T∑N

n=1 znj
(9)
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The E- and M- steps are alternated repeatedly until some specified convergence

criterion is achieved.

3.2. Regression Mixture Modeling

In the case of fMRI data analysis, we are dealing with time-series type of data

which are sequences of values measured at T successive time instances xl, i.e. yn =

{ynl}Tl=1. Linear regression modeling constitutes an elegant functional description

framework for analyzing sequential data. It is described with the following form:

y = Xw + en , (10)

where w is the vector of M (unknown) linear regression coefficients. The en is

an additive error term (T dimensional vector) that is assumed to be zero mean

Gaussian with a spherical covariance en ∼ N (0, σ2I), i.e. errors are not correlated.

For constructing the design matrix X several approaches can be employed. A

common choice is to use Vandermonde or B-splines matrix in cases where we assume

polynomial or splines regression models, respectively. Another option is to assume a

kernel design matrix using an appropriate kernel basis function over time instances

{xl}Tl=1, with the RBF kernel function to be the most commonly used:

[X]lk = K(xl, xk;λ) = exp
(
− (xl − xk)2

2λ

)
,

where λ is a scalar parameter. Specifying the proper value for this parameter is an

important issue that may affect drastically the quality of the fitting procedure. In

general, its choice depends on the amount of local variations of data which must be

taken into account. In addition, the design matrix may contain information about

the experimental paradigm of fMRI experiment.

Following the Eq. 10 it is obvious that, given the set of regression model pa-

rameters θ = {w, σ2}, the conditional probability density of time-series yn is also

Gaussian, i.e.

p(yn|θ) = N (Xw, σ2I) .

Regression mixture models [39] provides a natural framework for fitting a given

set of sequential data Y = {y1, . . . ,yn}. They allow for simultaneously modeling

heterogeneous regression functions by training a mixture of distinct distributions

where each one corresponds to a latent class. Obviously, this is equivalent to the

task of time-series clustering, i.e. the division of the set Y into K clusters, in such

a way that each cluster contains similar in nature elements. Therefore each cluster

has its own regression generative mechanism, as given by a conditional density with

parameters θj = {wj , σ
2
j }, j = 1, . . . ,K.

The EM algorithm can be then applied in order to train regression mixture

models. That differs from the basic scheme described previously is the expected
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complete log-likelihood Q-function which takes the following form:

Q(Θ|Θ(t)) =

N∑
n=1

K∑
j=1

znj

{
log πj −

T

2
log 2π − T log σj −

‖yn −Xwj‖2

2σ2
j

}
, (11)

as well as the update rules of the regression component parameters θj which are

wj =
( N∑
n=1

znjX
TX

)−1
XT

N∑
n=1

(znjyn), (12)

σ2
j =

∑N
n=1 znj‖yn −Xwj‖2

T
∑N
n=1 znj

. (13)

After the convergence of the EM algorithm, each sequence yn is assigned to the

cluster with the maximum posterior probability P (j|yn) (similar to Eq. 3).

4. Regression mixture analysis of fMRI time-series

The application of the basic ML-based scheme of regression mixture models to the

task of fMRI data analysis has some limitations due to its weakness to capture some

important features arisen from the nature of these observations. In particular, the

fMRI data are structures that involve spatial properties, where adjacent voxels tend

to have similar activity behavior [40]. Furthermore, there are temporal correlations

which are derived from neural, physiological and physical sources [10]. These are

physical constraints that must be incorporated to the model.

4.1. General construction

A significant advantage of Bayesian estimation is its flexibility of incorporating

appropriate priors and its full characterization of the posterior. Bayesian modeling

also enable us to model the uncertainty of the hyperparameters so as the final

performance to be more robust. In such a way we can eliminate the phenomenon

of data overfitting found in the ML case. Three are the main building blocks for

constructing a maximum a-posteriori (MAP) approach which offers a more advanced

solution: sparseness, spatial, and multi-kernel.

4.1.1. Sparse modeling

An important issue when using a regression model is how to estimate its order M ,

i.e. the size of linear regression coefficients wj . Estimating the proper value of M

depends on the shape of data to be fitted, where models of small order may lead to

underfitting, while large values of M may become responsible for data overfitting.

This may deteriorate significantly the clustering performance. Bayesian regulariza-

tion framework provides an elegant solution to this problem [24, 37]. It initially

assumes a large value of order M . Then, a heavy tailed prior distribution p(wj) is

imposed upon the regression coefficients that will enforce most of the coefficients
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to be zero out after training. This has been successfully employed in the Relevance

Vector Machine model [37].

More specifically, the prior is defined in an hierarchical way by considering first

a zero-mean Gaussian distribution over the regression coefficients:

p(wj |αj) = N (wj |0, A−1j ) =

M∏
l=1

N (wjl|0, α−1jl ) , (14)

where Aj is a diagonal matrix containing the M components of the precision (inverse

variance) vector αj = (aj1, . . . , ajM ). At a second level, precision can be seen as

hyperparameters that follow a Gamma prior distribution:

p(αj) =

M∏
l=1

Γ(αjl|b, c) ∝
M∏
l=1

αb−1jl exp−cαjl . (15)

Note that both Gamma parameters b and c are a priori set to zero so as to achieve

uninformative priors. The above two-stage hierarchical sparse prior is actually the

Student’s-t distribution enforcing most of the values αjl to be large and thus elimi-

nating the effect of the corresponding coefficients wjl by setting to zero. In such way

the regression model order for every cluster is automatically selected and overfitting

is avoided.

4.1.2. Spatial regularization

A common approach to achieve spatial correlations between voxels is to apply a

spatial Gaussian filter to smooth the signal prior to statistical analysis. This is used

for instance in Statistical Parametric Mapping (SPM) [4]. However, this can lead

to overlay blurred results, where effects with small spatial extend can be lost and

detected regions may extend beyond their actual boundaries. A more advanced ap-

proach to spatial regularization is through the use of Markov Random Field (MRF)

prior [41] which models the conditional dependence of the signals in neighboring

voxels.

MRFs have been successfully applied to computer vision applications [41, 42].

Conventional use of MRFs requires the set of sites of the random field as the image

voxels, with the neighborhood structure given by a regular lattice. More specifically,

we can treat the probabilities (voxel labels) πnj of each fMRI sequence yn belongs

to the j-th cluster (mixture component) as random variables, which also satisfy

the constraints πnj ≥ 0 and
∑K
j=1 πnj = 1. We assume that the set of voxel labels

Π = {πn}Nn=1 follows the Gibbs prior distribution with density [41]

p(Π) =
1

Z
exp{−

N∑
n=1

VNn(Π)} . (16)

The function VNn
(Π) denotes the clique potential function around the neighborhood
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Nn of the n-th voxel taking the following form:

VNn
(Π) =

∑
m∈Nn

K∑
j=1

βj(πnj − πmj)2. (17)

In our case we consider neighbourhood consisted of eight (8) voxels which are hor-

izontally, diagonally and vertically adjacent. We also assume that every cluster has

its own regularization parameter βj . This has the ability to increase the flexibility

of model, since it allows different degree of smoothness at each cluster. It is interest-

ing to note here that in this framework the regularization parameters βj belong to

the set of the unknown parameters and thus can be estimated during the learning

process. Finally, the term Z of Eq. 16 is the normalizing factor that is analogous to

Z ∝
∏K
j=1 β

−N
j .

An alternative methodology on using a capable MRF prior to leverage spatial

correlations in brain maps is through a recent non-parametric scheme shown in

[43]. In particular, an appropriate class-specific Gibbs potential function has been

proposed of the following form:

ϑnj =
∑
m∈Nn

znjzmj , (18)

that gives the influence of the neighborhood to the decision process. This function

acts as a smooth filter to the estimated posteriors and it works like a voting system,

where the majority cluster-label among its closest neighbors is assigned to every

sequence. Then, probabilities of voxels’ labels are given according to a softmax

function:

πnj ∝
eϑnj∑K
k=1 e

ϑnk

. (19)

4.1.3. Multi-kernel scheme

As mentioned before, the construction of the design matrix X is a crucial part of

the regression model and may be significantly affected by the parameter value of

the desired kernel function. This problem can be solved by adopting a multi-kernel

scheme [44,45]. In particular, we assume a pool of S kernel matrices {Φs}Ss=1, each

one having its own scalar parameter value λs. Thus the composite kernel matrix

Xj for the j−th cluster can be written as a linear combination of S kernel matrices

Φs:

Xj =

S∑
s=1

ujsΦs , (20)

where ujs are the coefficients of the multi-kernel scheme which are unknown and

satisfy the constraints ujs ≥ 0 and
∑S
s=1 ujs = 1. These parameters should be

estimated during learning in order to construct the kernel design matrix that better
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suits to every cluster. As experiments have shown, the use of the proposed multi-

kernel scheme has the ability to significantly improve the performance and the

quality of the data fitting procedure.

4.2. Estimation of model parameters

After defining the sparse and sparse priors together with the multi-kernel scheme,

we are now ready to describe the estimation process of the model parameters. The

incorporation of the above properties leads to a modification of the regression mix-

ture model which is written as:

f(yn|Θ) =

K∑
j=1

πnjp(yn|θj), (21)

where Θ = {{πnj}Nn=1, θj = (wj ,αj , σ
2
j ,uj , βj)}Kj=1 is the set of mixture model pa-

rameters. The clustering procedure becomes now a Maximum-A-Posteriori (MAP)

estimation problem, where the MAP log-likelihood function is given by

lMAP (Θ) = log p(Y |Θ) + log p(Θ) =

=

N∑
n=1

log f(yn|Θ) + log p(Π) +

K∑
j=1

{
log p(wj |αj) + log p(αj)

}
. (22)

The EM algorithm can then be applied for MAP-estimating the model param-

eters. Likewise, it requires at each iteration the conditional expectation values znj
of the hidden variables to be computed first (E-step):

znj = P (j|yn,Θ) =
πnjp(yn|θj)
f(yn|Θ)

. (23)

During the M-step the maximization of the complete data MAP log-likelihood ex-
pectation is performed:

Q(Θ|Θ(t)) =

N∑
n=1

K∑
j=1

znj

{
log πnj −

T

2
log 2π − T log σj −

‖yn −Xjwj‖2

2σ2
j

}
−

K∑
j=1

{
−N log βj + βj

N∑
n=1

∑
m∈Nn

(πnj − πmj)2 +
1

2
wT

j Ajwj −
M∑
l=1

[(b− 1) logαjl − cαjl]
}

. (24)

By setting the partial derivatives of the above Q function with respect to all model

parameters we can obtain the update rules. For the regression model parameters
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{wj , σ
2
j ,αj , βj} we can easily obtain the next equations:

wj =
[( N∑

n=1

znj

) 1

σ2
j

XT
j Xj +Aj

]−1
· 1

σ2
j

XT
j

( N∑
n=1

znjyn

)
, (25)

σ2
j =

∑N
n=1 znj‖yn −Xjwj‖2

T
∑N
n=1 znj

, (26)

αjl =
1 + 2c

w2
jl + 2b

, (27)

βj =
N∑N

n=1

∑
m∈Nn

(πnj − πmj)2
. (28)

In the case of the label parameters πnj we obtain the following quadratic equa-

tion:

π2
nj− < πnj > πnj −

1

2βj |Nn|
znj = 0 , (29)

where |Nn| is the cardinality of the neighborhood Nn and < πnj > is the mean

value of the j-th cluster’s probabilities of the spatial neighbors of the n-th voxel,

i.e. < πnj >= 1
|Nn|

∑
m∈Nn

πmj . The above quadratic expression has two roots, where

we select only the one with the positive sign since it yields πnj ≥ 0:

πnj =
< πnj > +

√
< πnj >2 + 2

βj |Nn|znj

2
. (30)

Note that in the above update rule the neighborhood Nn may contain label param-

eters πmj that have been either already updated or not. However, these values do

not satisfy the constraints 0 ≤ πnj ≤ 1 and
∑K
j=1 πnj = 1, and there is a need to

project them on their constraint convex hull. For this purpose, we apply an efficient

convex quadratic programming approach presented in [42], that is based on the

active-set theory [46].

Finally, the weights ujs of the multi-kernel scheme are adjusted by solving the

following minimization problem, where we have considered only the part of likeli-

hood function that involves uj :

min
uj

N∑
n=1

znj ‖ yn −
S∑
s=1

ujsΦswj ‖2= min
uj

N∑
n=1

znj ‖ yn −Xjuj ‖2=

min
uj

{
uTj X Tj Xjuj − 2uTj X Tj

N∑
n=1

znjyn

N∑
n=1

znj

}
, s.t.

S∑
s=1

ujs = 1 and ujs ≥ 0 . (31)

In the above formulation, the matrix Xj has S columns calculated by Φswj , i.e.

Xj = [Φ1wj Φ2wj · · · ΦSwj ]. The minimization problem described in Eq. 31 is a
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typical constrained linear least-squared problem that can be solved again with the

active-set theory [46].

At the end of the learning process the activation map of the brain is constructed

with the following manner: Initially, we select the cluster h that best match with

the BOLD signal ξ (which is known before the data analysis) among the K mixture

components. This is done according to the Pearson correlation measurement (cosine

similarity) between the estimated mean curve µj = Xjwj of each cluster with the

BOLD signal ξ, i.e.

h = arg
K

max
j=1

µTj ξ

|µj ||ξ|
. (32)

Then, the voxels that belong to cluster h determine the brain activation region,

while the rest voxels (that belong to all other K − 1 clusters) correspond to the

non-activation region. In this way we create a binary image with activated and

non-activated pixels.

A drawback of the EM algorithm is its sensitivity to the initialization of the

model parameters due to its local nature. Improper initialization may lead to poor

local maxima of the log-likelihood that sequentially affects the quality of the clus-

tering solution. A common practice is to initialize mixture model parameters by

randomly selecting K input time-series and to perform only a few EM steps. Sev-

eral trials of such procedure can be made and finally the solution with the maximum

log-likelihood value can be selected for the initialization.

A more advanced approach has been proposed in [22] that follows an incremental

strategy for building the regression mixture model. Starting with a mixture model

with one regression component, the learning methodology adds a new component

to the mixture based one a component splitting procedure. In activation based fMRI

data analysis this is done by selecting a cluster for splitting based on their similarity

with the BOLD signal. A detailed description can be found in [22]. It must be

noted that an obvious advantage of the incremental learning scheme is that of

simultaneously offering solutions for the intermediate models with k = {1, . . . ,K}
components. This can be seen very convenient for introducing model order selection

criteria and terminating the evolution of learning: stop training when the insertion

of a new component does not offer any significant improvement of the (penalized)

likelihood function.

5. Experiments

The proposed regression mixture model (called as SSRM) has been evaluated using

a variety of artificial datasets and real fMRI data. In all experiments for constructing

the multi-kernel scheme, we calculated first the total variance of samples, λ. Next, we

used a set of S = 10 RBF kernel functions, where each one had a scalar parameter

λs = ksλ, where ks = [0.1, 0.2, . . . , 1.0] (level of percentage). It must be noted

that during the activation-based experiments another column has been added to
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the design matrix which describes the BOLD signal. Note that the time instances

xl were normalized before to [0, 1]. Finally, the linear weights of the multi-kernel

scheme were in all cases initialized equally to ujs = 1/S. Comparison has been

made using the SRM method which is a regression mixture model with only spatial

properties (and without sparse properties), and the k-means which is a well known

vector-based clustering approach. An extended experimental study can be found

in [22, 43], that present additional comparative results with the standard GLM

model [8] and various types of noise.

5.1. Activation-based fMRI experiments

The goal of this series of experiments is to discover the brain activation areas when

the human subject is exposed to a stimulus. At first we have studied the performance

of the proposed method using synthetic data, where the ground truth of activation

is known. Additional experiments were made using real fMRI datasets taken from

block design auditory and event-related foot movement studies.

5.1.1. Experiments with artificial datasets

During the experiments with simulated fMRI data, we have created 3 − D set of

time series using linear regression models with known design matrix and regression

coefficients. We have also added white Gaussian noise of various SNR levels accord-

ing to the formula: SNR = 10 log10

(
sT s
Nσ2

)
, where σ2 is the noise variance and s

is the BOLD signal. The spatial correlation among time series is achieved through

the regression coefficients. Figure 2(a) represents the spatial patterns used, while

the BOLD signal used to model the neural activity is shown in Fig. 2(b). Also, in

these time series we have added a slow varying component to model the drift in

the fMRI time series. This is done by using a linear regression model where the

regressors are the first ten basis vector of DCT basis and the regression coefficients

are sampled by the standard normal distribution N (0, 1). The size of the obtained

dataset was 80× 80× 84. Finally, for each SNR level we studied the performance of

the comparative methods by executing 50 Monte Carlo simulations, where we took

the statistics of the depicted results (mean and variance). To measure the qual-

ity of each clustering approach, we have used two evaluation criteria: the accuracy

performance (percentage of correct classifying data) and the Normalized Mutual

Information (NMI) [22].

Figure 3 shows the comparative results for our simulated dataset of Fig. 2. The

superiority of the SSRM is obvious based on two evaluation criteria, especially in

small SNR values (noisy data). Comparison with the SRM method that holds only

the spatial properties, has shown a significant improvement in terms of both evalu-

ation criteria. This proves the usefulness of the sparse term to modeling procedure.

An example of the activation maps as estimated by each method is shown in Figs.

4 in the case of SNR = −8 dB. Clearly, our method had better discrimination
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Fig. 2. (a) Spatial patterns and (b) the BOLD signal used in experiments with simulated data
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Fig. 3. Comparative results for our dataset of Fig. 2. Error bars for the two evaluation criteria

are shown in terms of several SNR values.
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Fig. 4. Spatial patterns as estimated by all methods in the case of -8 dB.

ability and achieved to discover more accurately the original spatial pattern, while

at the same time reduced significantly the false negative activation cases. A more

comprehensive experimental analysis can be found on [22].

5.1.2. Experiments using real fMRI data

We have made additional experiments using real fMRI data. In our study, we have

selected a dataset with a block-designed auditory paradigm. In this experiment, we
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have followed the standard preprocessing steps of the SPM package. The BOLD

signals for the experiment is shown in Fig. 2b. This dataset was downloaded from

the SPM webpage a and it was based on an auditory processing task as executed by

a healthy volunteer. Its functional images consisted ofM = 68 slices (79× 95× 68,

2mm×2mm×2mm voxels). Experiments were made with the slice 29 of this dataset,

which contains a number of N = 5118 time series. In this series of experiments we

have employed the incremental learning strategy of the proposed method SSRM [22]

which provided us with the proper number of clusters. We have found a number

of K = 5 cluster and then we have used this value in order to run the other two

approaches, SRM and k-means. Figure 5 represents the comparative results of all

clustering methods giving the resulting position of the activation area inside the

brain. Note that the activated areas are overlaid on grayscale T1 weighted anatom-

ical images. All methods have detected the auditory cortex as the brain activation

area. However, the SSRM methods have clearly detected only three distinct areas

of activation, while the rest two approaches have additionally detected other small

activated islands that may bring difficulties in the decision making process.

SSRM SRM k-means

Fig. 5. The binary activation map as estimated by each method in the case of the auditory
experiment.

Furthermore, we have studied the capability of our method to construct the 3D

activation model. In particular we have applied our method independently to all

available slices (68) of the auditory experiment. The resulting activation maps are

fed to the 3D Slicer toolkit [47] that sequentially produces the 3D head model with

the activation areas. Figure 6 illustrates the resulting 3D models of our method and

the standard GLM approach [8]. Obviously, both methods have detected a signifi-

cant activation on the temporal lobe. However our method have detected an extra

activated region into the frontal lobe which is expected to auditory experiments.

In the event-related foot-movement experiment we analyzed fMRI data consisted

ahttp://www.fil.ion.ucl.ac.uk/spm/
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(a) (b)

Fig. 6. The 3D head activation maps as estimated by (a) the proposed method SSRM and (b)

the standard GLM.

of images acquired from the University Hospital of Ioannina, Greece [48]. Details

about the protocol that was followed for constructing the fMRI data can be found

in [22]. Experiments were made with the slice 54 of this dataset, which contains

a number of N = 2644 time series. Figure 7 presents the comparative results in

this dataset overlaid on greyscale T1 weighted anatomical images. As expected, all

methods have detected the primary and the supplementary motor areas of the brain

as the activation cluster. Although there is no ground truth for the fMRI data on

individual cases the motor system in general is well studied and described in the

literature. The proposed regression mixture model gives more activated areas closer

to the established motor circuitry and therefore the results are more reasonable (at

least in this case).

SSRM SRM k-means

Fig. 7. Estimated motor activated areas of comparative methods in white overlaid on greyscale

T1 weighted anatomical images.
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5.2. Resting state fMRI experiments

SSRM SRM k-means

MRF 1 Eqs.16, 17 MRF 2 Eqs. 18, 19

(a) (b) (c) (d)

Fig. 8. Default Mode Network estimation from resting state fMRI data using two versions of

SSMR (a) and (b) that differ in the type of MRF-based spatial prior, (c) the SRM and (d) the

k-means approaches

We have also made experiments with resting state fMRI data obtained from the

Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) b under the

project name: NYU CSC TestRetest. A detailed description of the dataset can be

found in [49]. In our experiments we have selected a subject from this dataset, where

we have used the slice 34 (of 52). Two versions of the proposed SSRM method were

studied that differ on the spatial prior: (a) SSRM with the exponential potential

function of Eqs. 16, 17 and (b) SSRM with the softmax MRF prior of Eqs. 18, 19.

The task in these series of experiments was to estimate the Default Mode Network

(DMN), which is a resting state network that consists of precuneus, medial frontal,

inferior parietal cortical regions and medial temporal lobe. The DMN is expected

to be presented in almost every fMRI experiment.

The depicted brain images are shown in Fig. 8 that illustrate the DMN cluster

as estimated by each clustering approach. What is interesting to observe is that,

although all methods are able to properly identify the DMN, the other two methods,

SRM and k-means, tend to overestimate it and construct small islands (almost

uniformly the brain) not belonging to DMN. Clearly, the proposed SSRM method

seems to have better discrimination ability to discover more accurately the network.

Both versions do not show any significant difference, with the second version (b) to

appear to be more consistent producing slightly smoother regions. However, a more

systematic comparative study is required to evaluate effectiveness of them.

bhttp://www.nitrc.org
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6. Conclusions

In this chapter we have presented a regression mixture modeling framework for

the analysis of fMRI data. This model class is very flexible and can embody prior

knowledge of the nature of data. The key aspect of the proposed technique lies

on the superior sparse regression performance to model data of latent classes, as

well as the ability to evoke responses which are spatially homogeneous and locally

contiguous. It also includes a multi-kernel scheme for composing the kernel matrix

of each component that offers better fitting capabilities. Therefore, the proposed

method manages to incorporate significant physiological properties of human brain

and to tackle important issues that they are possible to deteriorate the performance

of fMRI data analysis. As compared to standard approaches, the sparse and spatial

regularization procedures of the method have been shown to increase the robustness

of detection and to result in inferences with higher sensitivity.

Further extensions of the finite mixtures are possible for the regression case.

Instead of using GLMs as component specific models, generalized additive models

can be used which allow to relax some assumptions we have made. Another future

research direction is to examine the possibility of applying alternative sparse priors,

as well as to assume Student’s-t type of distribution for modeling the noise (instead

of Gaussian) so as to achieve more robust inference and handle outlying observations

[24]. Finally, another possibility is to extend our model to 3−D cases and to group

analysis applications.
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