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Abstract

Given a data set, a dynamical procedure is applied to the data points in order
to shrink and separate, possibly overlapping clusters. Namely, Newton’s equations
of motion are employed to concentrate the data points around their cluster centers,
using an attractive potential, constructed specially for this purpose. During this
process, important information is gathered concerning the spread of each cluster. In
succession this information is used to create an objective function that maps each
cluster to a local maximum. Global optimization is then used to retrieve the posi-
tions of the maxima that correspond to the locations of the cluster centers. Further
refinement is achieved by applying the EM-algorithm to a Gaussian mixture model
whose construction and initialization is based on the acquired information. To assess
the effectiveness of our method, we have conducted experiments on a plethora of
benchmark data sets. In addition we have compared its performance against four
clustering techniques that are well established in the literature.
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1 Introduction

With the advent of the Internet and the World Wide Web, scientific data from a wide

range of fields, have become easily accessible. The interest of the scientific community for

the problem of clustering is reflected by the growing appearance of related monographs

[1, 2, 3, 4, 5], journal articles and conferences. This convenience has further raised the

interest and expanded the audience of clustering techniques. Clustering can be viewed

as the identification of existing intrinsic groups in a set of unlabeled data. Associated

methods are often based on intuitive approaches that rely on specific assumptions and on

the particular characteristics of the data sets. This in turn implies that the corresponding

1



algorithms depend crucially on some parameters that must be properly chosen anew for

each problem.

A plethora of clustering approaches have been introduced over the past decades. Hi-

erarchical methods, arrange the data in a tree-like structure according to some similarity

criteria; an example is the “Single Linkage Clustering”. Methods based on partitioning,

relocate iteratively the data points into clusters until the optimum position of some cluster

representatives (e.g. centers, envelopes, etc.) is found; the popular “K-means” algorithm

for instance belongs to this category. Model-based methods, assume that the data are gen-

erated from a mixture of probability distributions with each component corresponding to a

different cluster [2, 3, 5]; in these methods the Expectation-Maximization (EM) algorithm

[6, 5] is the most frequent choice for tuning the mixture parameters.

A fundamental issue in clustering is the determination of the number of clusters, de-

noted from here on by K, in a given data set. The likelihood alone can not be used to

determine the number of clusters since it is a monotonically increasing function of K.

Most clustering methods assume that this number is a priori known, and then try to place

K clusters in the space defined by the data. In the literature quite a few methods have

been proposed for determining the number of clusters. A common approach is to apply a

clustering technique using a range of values for K and select the solution that performs

best according to certain evaluation criteria [7, 8, 9, 10]. Such criteria in common use,

are the Akaike Information Criterion [11], the Bayesian Information Criterion [12] and the

cross-validation criterion [13]. Under the Bayesian framework, K may be treated as a ran-

dom variable. This induces a posterior distribution for the model uncertainty that can be

used for model selection. Several numerical approximation schemes have been considered,

for calculating the posterior distribution, such as the Laplace approximation [14], Markov

Chain Monte Carlo (MCMC) methods [15, 16], and variational approaches[17]. Recently, a

modified EM scheme, that incorporates a model selection criterion (the minimum message

length - MML), has been proposed in [18].

The problem of determining the number of clusters in a set of data points, is still open.

Apart from being a challenging problem on its own, it appears as a recuring subproblem

in many applications from various fields, for instance in pattern recognition [2, 4], machine

learning [3], image analysis [19], bioinformatics [20], etc. We propose in this article a new

technique which in the data preprocessing phase, determines both the number of clusters

as well as the approximate location of their centers. During this phase in order to ”shrink”

existing clusters and obtain an estimate of their spatial spread, a ”Molecular Dynamics”
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(MD) approach is applied, by considering that the data points correspond to point particles

interacting via an attractive short range two-body potential, whose construction is of key

importance. The path traveled by each particle offers useful information for constructing an

associated underlying probability density function (pdf). The superposition of these pdfs,

results in a multimodal function, where each maximum corresponds to a different cluster

with its center approximately located at the position of the peak. To count the number of

clusters and retrieve their associated centers, stochastic global optimization methods, that

recover all the local maxima [21, 22, 23, 24, 25, 26] are proper. Having determined the

number of clusters and the approximate location of their centers, a local-based clustering

technique may be used for further refinement. We have tested our method on a suite of

benchmarks, taking in account a variety of cases, with excellent results. Comparisons have

been made in two directions. To test the performance in estimating K, we compared with

two methods that are well established in the literature, namely the ”quantum clustering”

[27, 28] and the “MML-EM” [18] technique. We have also made a comparison with the

“Greedy EM” [29, 30] and the “K-means-initialized EM” to test the quality of the solution.

In section 2 we present the rationale and the formulation of our approach, in section

3 we lay out an algorithmic description and in section 4 we report results obtained by

applying our method to several data sets. Finally in section 5 we summarize and conclude

with some remarks.

2 Rationale and Formulation

The clustering problem can be stated in the following manner:

Given a set of M data points A = {xi|xi ∈ RN , i = 1, · · · ,M}, find subsets Ak ⊂ A,

containing points with one or more common properties.

These subsets are called clusters. In this study we consider that the properties of a single

cluster, may be described implicitly via a unimodal probability distribution, i.e. a distri-

bution with a unique peak. Hence a pdf, that could reproduce a given data set, may be

expressed as a linear combination of these unimodal cluster distributions φj(x).

P (x) =
K

∑

j=1

πjφj(x), with
K

∑

j=1

πj = 1, and πj > 0 . (1)

Note that the number of terms K in the sum, corresponds to the number of clusters,

which in general is unknown. This corresponds to a mixture model with K distributions,
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where the data generation procedure is performed by first selecting a component j, with

probability πj and then sampling x from φj(x).

Now consider the function

f(x) =
M

∑

i=1

αiδ(x − xi) , (2)

with
∑M

i=1 αi = 1, and αi > 0, where the sum runs over all the data points xi, and δ(x)

is the Dirac’s delta function. This is an extreme case of a pdf that exactly reproduces

the data. Of course it conveys no feature information, since it corresponds to single point

clusters, i.e. to K = M . The delta functions can be approximated by narrow normal

distributions in Eq. (2) so as to have:

f(x) =
M

∑

i=1

αiN (x|xi,Σi) . (3)

The number of peaks of f(x) (initially M), decreases as the normal distributions become

wider, since the Gaussians will start to interfere. The spread of the Gaussians is dictated

by the parameters controlling the covariance matrices Σi.

Suppose that yjl denotes the lth point of the jth cluster. Hence the sets {xi, i =

1, · · · ,M} and {yjl, j = 1, · · · ,K and l = 1, · · · , nj} nj being the number of points be-

longing to the jth cluster, are identical. We may define for convenience a correspondence

between the single index {i} to the couple of indices {j, l} via the equality xi = yjl. Gaus-

sians centered at points that belong to the same cluster should have suitable Σ’s so as their

superposition to form only one peak. Namely the sum Bj(x) =

nj
∑

l=1

βjlN (x, yjl,Σjl) should

have a unique peak and hence the corresponding (jth) cluster may be represented by a pdf

proportional to Bj(x). Note that βjl, are the αi coefficients expressed in the double index

notation. By comparing Eqs. (1) and (3) we may readily deduce that

φj(x) =
1

∑nj

l=1 βjl

nj
∑

l=1

βjlN (x|yjl,Σjl) . (4)

This result is similar to that obtained by the Parzen window approach [31]; it simply

restates that the cluster pdf may be expressed as a linear combination of Gaussians. The

important additional information gained by the above analysis is that this combination

should be unimodal.
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Finding proper values for the Σ parameters is crucial. If the Σ’s are chosen so that

the Gaussians are too wide, one will end up with only one cluster, since the overlap of the

Gaussians will be significant. On the other hand, too narrow Gaussians will lead to too

many clusters since even closely lying points will contribute to different peaks. Note that a

similar problem exists in the quantum clustering [27, 28] approach, where the σ parameter

governs the performance of the algorithm. If the proper Σ’ s were known, then the number

of clusters would be determined by the number of peaks of f(x) in Eq. (3).

2.1 Shrinking the clusters via Molecular Dynamics

In order to overcome the above problem we apply a dynamic technique, inspired from

the MD simulation approach used in Physics and Chemistry to study many-body classical

systems. (See for instance D. W. Heermann’s book [32]). Consider that the data points

correspond to particles of unit mass, interacting via a two-body attractive, short-range

potential. Let the potential between particles located at points ri and rj be of a simple

Gaussian form given by:

Vij = −e−
1

2
||ri−rj ||

2
σ , where ||r||2σ = rT Λ−2r, and Λ = diag{σ1, σ2, · · · , σN}. (5)

The shrinking process is governed by σk which is taken to be the averaged (over all

points) kth component of the vector between a point and its mth nearest neighbor, and m

is chosen in a way to be explained in section 2.2.

Newton’s equations of motion are:

d2ri(t)

dt2
= −∇i

M
∑

j=1

j 6=i

Vij ≡ Fi, ∀i = 1, 2, · · · ,M . (6)

The initial positions are taken to be the data points, i.e. ri(t = 0) = xi (∀i = 1, . . . ,M)

and the initial velocities (vi ≡
dri

dt
) are set to zero. We integrate the equations of motion

in small time steps δt, considering that the forces Fi remain constant during this short

time interval. At each step we reset the velocities to zero in order to avoid artifacts due to

“heating”. Hence we obtain the following scheme:

ri(t + δt) = ri(t) +
1

2
δt2Fi . (7)

Since the interaction is attractive, after a time period T , the particles belonging to the

same cluster will concentrate around the cluster center. So an initially spread–out cluster
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is being “shrunk” as a result of the MD preprocessing. The simulation terminates, when

the steps become too small and further iterations hardly make any difference. The following

criterion is used:

∑M

i=1 |ri(t + δt) − ri(t)|
∑M

i=1 |ri(t + δt) − xi|
< η , (8)

η being a small positive number (η = 0.01 is being used in our experiments). The absolute

values of the components of the vector ri(T )−xi are used to construct a diagonal covariance

matrix Σi for each sample point, i.e. [Σi]kk = |ri(T )k −xik|, ∀ k = 1, . . . , N . The objective

function is constructed using the processed data ri ≡ ri(T ) in Eq. (3), instead of the

original xi, and by choosing ai =

√
|Σi|

∑M
j=1

√
|Σj |

. Therefore, apart from a constant overall

normalization factor, f(x) is given by:

f(x) ∝
M

∑

i=1

exp{−1

2
(x − ri)

T Σ−1
i (x − ri)} . (9)

The positions of the maxima of f(x) are the estimates for the cluster centers, while their

multitude determines the number of clusters. We mention in passing, that the value of

f(x) at a maximum, can distinguish outlier groups from real clusters, since the value for

an outlier group will be significantly smaller.

2.2 Determining the range of the potential

The range of the potential is crucial for the success of the method and has to be chosen

carefully. Sparse data sets require a longer range than dense data sets. Hence the range

depends on the data set. A measure for sparsity is offered by the various nearest–neighbor

(NN) distances. Setting σ equal to an mth order NN–distance averaged over all points, is

a way to take into account the density of the data set.

Let d
(i)
j be the distance between a point at xi and its jth NN. Clearly we have:

d
(i)
1 < d

(i)
2 < · · · < d

(i)
M−1, ∀i = 1, 2, · · · ,M − 1 . (10)

The mean and the mean squared jth NN–distance in a set of M points are given by:

< dj >=
1

M

M
∑

i=1

d
(i)
j , ∀ j = 1, 2, · · · ,M − 1 , (11)
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and

< d2
j >=

1

M

M
∑

i=1

(d
(i)
j )2, ∀ j = 1, 2, · · · ,M − 1 . (12)

We have studied the quantity

σ̃2
M,m =

1

m

m
∑

k=1

(

< d2
k > − < dk >2

)

∀ m = 1, 2, · · · ,M − 1 , (13)

using order statistics and, in the case of a single cluster we find that:

σ̃2
M,m = α(M)(m + 1)2 + β(M)(m + 1) . (14)

This result will be used to determine a proper value m∗ that serves our purpose. When

two or more clusters exist, σ̃2
M,m is given by a superposition of translated quadratics as

illustrated in Fig.1(b). Since
σ̃2

M,m

m+1
is linear in m, its second difference vanishes. Hence in

our experiments m∗ is taken to be the smallest value of m for which the second difference

of
σ̃2

M,m

m + 1
with respect to m vanishes. In practice we search for the smallest m such that:

| σ̃
2
M,m+1

m + 2
+

σ̃2
M,m−1

m
− 2

σ̃2
M,m

m + 1
| < ǫ | σ̃2

M,m

m + 1
| . (15)

To elucidate the analysis, consider ỹ1, ỹ2, · · · , ỹM−1 to be an i.i.d. sample from ρ(ỹ), ỹ ≥
0. If y1 ≤ y2,≤ · · · ,≤ yM−1 denotes the ordered sample, that is the order statistics of the

original sample, then yk is distributed according to the following pdf:

PM−1,k(y) = (M − 1)

(

M − 2

k − 1

)

R(y)k−1(1 − R(y))M−1−kρ(y) , (16)

where R(y) =

∫ y

0

ρ(t)dt, is the cumulative distribution function.

The first two moments are given by:

< yk >≡
∫ ∞

0

yPM−1,k(y)dy and < y2
k >≡

∫ ∞

0

y2PM−1,k(y)dy . (17)

Given ρ(y) one then can calculate σ̃2
M,m. We have calculated σ̃2

M,m for several choices of ρ(y)

(performing the required integrations numerically). In all cases the functional dependence

on m was in agreement with Eq. (14). Note that the coefficients α(M) and β(M) in

Eq. (14) depend on ρ(y). If ρ(y) is the uniform pdf in (0, 1) it is possible to integrate

7



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of nearest neighbors (m)

σ∼
2

M
,m

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of nearest neighbors (m)

< 
d

m
 >

(a)

0.5 1 1.5 2 2.5 3 3.5
−2

−1

0

1

2

3

4

5

6

7

8

C
1
 

C
2
 

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of nearest neighbors (m)

σ∼
2

M
,m

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

7

Number of nearest neighbors (m)

< 
d m

 >

(b)

Figure 1: Two data sets along with plots of σ̃2
M,m and < dm >.

analytically. After some algebra and using the result

∫ 1

0

xk(1 − x)ldx =
k!l!

(k + l + 1)!
, one

obtains:

α(M) = − 1

3M 2(M + 1)
and β(M) =

3M − 1

6M 2(M + 1)
. (18)

As an illustration we plot σ̃2
M,m and < dm > for the data sets shown in Fig.1(a) and

1(b). For the data set in Fig.1(a) that contains a single cluster, the expected quadratic

form is recovered. Note that < dm > in this case is continuous. In the case of Fig.1(b)

we observe two clusters, C1 and C2, with populations m1 and m2 respectively. Without

loss of generality assume that m1 < m2. Then, as m is approaching m1, we expect a jump

in < dm >, since points belonging to C1 will start having their mth-NN in C2 which is a

distance apart. Again when m approaches m2 another jump is expected in < dm >, since

points in C2 will have their mth-NN in C1. This effect is also apparent, not as evident

however, in the plot of the cumulative quantity σ̃2
M,m.
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2.3 Fine Tuning

In the above analysis we have shown a method for estimating the number of clusters K, as

well as their centers µj, j = 1, · · · ,K, through a global optimization procedure. Although

it is not really needed, we apply next a local-based clustering method for fine tuning and for

determining the geometrical characteristics of each cluster in the framework of Gaussian

mixture models. This final step is useful for reasons of comparison. In particular, we

consider the mixture of K Gaussian components:

p(x|ΨK) =
K

∑

j=1

πjp(x|µj , Σ̃j) , (19)

where the parameters 0 < πj ≤ 1 represent the mixing weights satisfying
∑K

j=1 πj = 1,

while ΨK = [π1, . . . , πK , {µ1, Σ̃1}, . . . , {µK , Σ̃K}], i.e. the vector of all unknown parame-

ters of the model. To maximize the resulting log-likelihood function we employ the EM

algorithm with initial values determined from our solutions.

3 Algorithmic Description

Input: X = {x1, x2, . . . , xM} with xi ∈ RN .

1. Calculate σ and set δt:

• If ωm
i is the position of the mth nearest neighbor of the point located at xi,

calculate the mean and the mean squared mth NN-distance:

< dm >≡ 1
M

∑M

i=1 ||ωm
i − xi|| and < d2

m >≡ 1
M

∑M

i=1 ||ωm
i − xi||2, and finally

σ̃2
M,m, for m = 1, 2, · · ·M − 1.

• Find m∗, the smallest m ≥ 2 satisfying criterion (15), with ǫ = 10−3.

Set σk = 1
M

∑M

i=1 |
(

ωm∗

i − xi

)

k
|, ∀ k = 1, 2. · · · , N .

• Set the time step δt to a small value (typically δt = 0.01) and ri(0) = xi ,

∀i = 1, . . . ,M .

2. MD procedure.

Perform the following steps until criterion (8) is satisfied.

(a) Compute forces according to Eq. (6).

(b) Update positions using Eq. (7).
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3. Let ri ∀i = 1, 2, · · · ,M be the positions upon completion of the MD procedure.

Estimate local diagonal covariances as:

[Σi]kk = (ri − xi)
2
k , ∀ i = 1, . . . ,M and ∀ k = 1, . . . , N .

4. Use a global optimization method to find all existing maxima of the function in

Eq. (9), in the space defined by the data. The number of maxima determines

K. The maxima positions are estimates for the locations of the cluster centers µj .

In particular, we have used the “Healed Topographical Multilevel Single Linkage”

(HTMLSL) global optimization method [26] which relies on the Merlin optimization

environment1 [33].

5. Apply the EM algorithm to a K-component Gaussian mixture model, with initial

parameter values taken from the constructed pdf (Eq. 9).

4 Experiments and Results

Several experiments have been conducted in order to ascertain the effectiveness of our

approach. We have considered both simulated multidimensional data sets as well as widely

used benchmarks. Our experimental study addresses the following three issues.

1. The stability of the preprocessing phase.

2. The robustness of the method.

3. The competitiveness of the overall approach.

4.1 Testing the preprocessing procedure

The spread parameters σk of Eq. (5), that determine the range of the attractive potential

used in the MD procedure to shrink the clusters, are quite important in our approach. For

instance small values will result in the formation of too many small clusters, while large

values will force neighboring clusters to fuse, underestimating so the number of clusters.

Our experiments show that the σk values obtained using the proposed criterion in Eq. (15),

are inside an interval of stability. This is illustrated in Fig. 2 for three simulated data sets,

each containing M = 500 points in two dimensions.

1Available also from: http://merlin.cs.uoi.gr
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Figure 2: A step-by-step presentation of the proposed Newtonian clustering approach,
using three simulated data sets in two dimensions.

In the first column of Fig. 2, we plot the second difference of
σ̃2

M,m

m+1
versus m. The dotted

vertical lines delimit σ’s interval of stability, in the sense that any value for σ within this

range leads to the same number of clusters. The point m∗ selected by the criterion of

Eq. (15) is depicted by an arrow. It can be clearly seen that m∗ always lies inside the

stability range. This is so not only for the presented cases, but for every single data set we

dealt with. The second column presents the original data (thin points), together with the

processed data (thick points) to illustrate the MD shrinking effect. In the third column,

contour plots of the pdfs constructed according to Eq. (9), are displayed. In the last column

we present the situation after the application of the EM algorithm, which is the final result.
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Figure 3: Three simulated data sets, each containing four clusters differing in the degree
of overlap.

4.2 Evaluating the robustness of the method

In order to examine the reliability of our approach, we performed additional experiments.

We created three data sets each containing M = 800 points, by sampling from a four-

Gaussian mixture model, shown in Fig. 3. Starting from a well separated data set (a), we

sequentially increased the level of overlap among the clusters producing so, two additional

data sets (b) and (c). Note that data set (c), due to substantial overlap, resembles the

structure of a single cluster. The MD preprocessing relocates the points towards their

associated cluster centers, however in the case of data set (c) this effect is diminished. In

spite of this, the information gathered during that phase, i.e. the Σ parameters, is sufficient

for the method to distinguish the four clusters. This can be seen in Figure 3, where both

the preprocessing and the final phase situations are shown with the original data in the

background.

Three more experiments have been performed in two dimensions (see Fig. 4 (a),(b),(c)).

The first two (with seven and four clusters, correspondingly) use simulated data sets while

the third employs the renowned CRAB data set of Ripley [34], that contains data belonging

to four clusters. Original CRAB data are in five dimensions, however here we have selected

their projections on the plane defined by the second and third principal components, in

order to make a comparison with ref. [28] possible. Figure 4, displays both the MD and

12



−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

−4 −3 −2 −1 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

−5 −4 −3 −2 −1 0 1
−5

−4

−3

−2

−1

0

1

2

−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

−4 −3 −2 −1 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

−4 −3 −2 −1 0

−4

−3

−2

−1

0

1

(a) (b) (c)

Figure 4: Experiments with two simulated data sets (a) and (b), and the CRAB data set of
Ripley (c). The initial (thin) and the final (thick) points are shown along with the refined
cluster shapes.

the fine tuning with the EM results, again with the original data in the background.

Additional experiments have been conducted in higher dimensions. We considered (Fig.

5(a)) the well known Fisher-IRIS [35] with M = 150 points belonging to three clusters in

N = 4 dimensions. In addition, four more sets were constructed by simulation using

Gaussian mixtures in N = 5 dimensions (Fig. 5(b),(c)) with 5 and 4 clusters, and in

N = 10 dimensions (Fig. 5(d),(e)) with 5 clusters each. Projections on the plane formed

by the first two principal components, are shown in Fig. 5, along with the preprocessed

via MD points and the final cluster centers as these were recovered by the EM algorithm.

4.3 Competitive comparison

The evaluation of a new method is traditionally obtained through performance comparisons

with established methods. In this direction we have conducted tests that allow for a fair

comparison. Two kinds of methods have been considered.

1. Methods that require the model order K, as input.

2. Methods that determine the model order K, by themselves.
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Figure 5: Experiments with high-dimensional data sets. Plotted is a projection of the
point positions and the recovered cluster centers on the plane of the first two principal
components.

In the first category we have employed two techniques, namely the K-means-initialized EM

and the Greedy EM [29, 30]. In the second category we have again selected two techniques,

namely the Quantum Clustering [27, 28], and the MML-EM described in [18].

4.3.1 Comparison with methods requiring K

For the K-means-initialized EM, K-means is first used to determine the centers of K

clusters. Subsequently, this information is used to initialize the EM algorithm to treat

the data set with a K-order mixture model. Since K-means depends on the initial cluster

centers that are uniformly selected from the data, 100 runs of this “K-means-initialized

EM” procedure were performed for each data set. We kept records of the mean value

of the log-likelihood function, and the number of steps required for EM to converge. The

second technique, i.e. the Greedy EM, starts with a single component and adds components

sequentially one at a time up to K. It employs an efficient combination of local and global

search every time a component is added. Greedy EM 2 is deterministic and hence it is run

only once for each dataset.

In Tables 1 and 2, we summarize the results from experiments with several data sets

that have been presented in previous sections. In the case of the K-means-initialized EM

we also report the number of cases it managed to recover our result, i.e. the same maximum

2The Greedy EM software was downloaded from http://staff.science.uva.nl/∼vlassis/software/

14



Data set K Newtonian clustering EM K-means-initialized EM Greedy EM

of Fig. 4 log-likelihood EM-steps log-likelihood EM-steps success (%) log-likelihood

(a) 7 −2452.33 40 −2473.05 80 80 -2452.33

(b) 4 −1409.91 56 −1445.85 167 4 -1441.26

(c) 4 −498.91 59 −500.57 67 95 -501.09

Table 1: Comparative results obtained by “Newtonian Clustering”, “K–means-initialized

EM”, and the “Greedy EM” techniques, applied on 2-dimensional data sets.

Data set K Newtonian clustering EM K-means-initialized EM Greedy EM

of Fig. 5 log-likelihood EM-steps log-likelihood EM-steps success (%) log-likelihood

(a) 3 −182.11 37 −187.22 51 79 -183.39

(b) 5 −2955.50 69 −3007.67 127 66 -2955.50

(c) 4 −2286.23 9 −2347.34 27 35 -2286.23

(d) 5 −3908.01 18 −3960.10 39 77 -3908.01

(e) 5 −4217.50 2 −4297.50 19 78 -4217.50

Table 2: Another series of comparative results using higher dimensional data sets.

of the log-likelihood function (denoted as “success” in the 7th column of Tables 1 and 2).

It is readily deduced that “Newtonian Clustering” performs clearly better than the K-

means-initialized EM. Greedy EM obtains results comparable to ours. However in all cases

where the two methods yielded different results, “Newtonian Clustering” was the one with

the higher log-likelihood value. Note that in the case of the Fig. 4(b) data set, the K-

means-initialized EM technique has reached the optimum value (found by our Newtonian

clustering approach), only in 4 out of 100 runs, while the Greedy EM converged to a lower

value. Observing the number of the EM steps, we can conclude that the preprocessing

not only determines the number of clusters properly, but in addition offers nearly optimal

cluster solutions. For example, in the case of data set (e) of Table 2, EM took only 2 steps

to converge.

4.3.2 Comparison with methods not requiring K

In this section we compare to two methods that they both determine K, one being de-

terministic and one stochastic, namely the “Quantum Clustering” (QC) [27, 28], and the

“MML-EM” described in [18].

QC is a method based on the properties of the Schrödinger equation, and determines

a potential V (x) associated with the pdf that produced the data. The minima of this
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potential correspond to the cluster centers. Schrödinger’s equation:

−σ2

2
∇2Ψ(x) + V (x)Ψ(x) = EΨ(x) .

contains a free parameter (σ). As discussed in [27], the value of σ is significant for the

performance of the method. The proposed way to determine σ is to repeatedly apply QC

for various σ values and search for a stability range as far as the number of clusters is

concerned. We have applied QC to the same data sets used to evaluate our method3. In

particular, for each data set we have applied the suggested procedure, using a range of

values for the parameter σ with a step of 0.02, and measured each time the number of

resulting clusters. Figure 6 illustrates the results obtained for eight data sets, by plotting

the number of retrieved clusters as a function of the σ parameter. This analysis reveals the

dependence of QC on the value of σ. There are cases, such as the data sets of Fig. 2(a),

Fig. 4(a) and Fig. 4(c), with a large interval of stability that renders the decision for the

number of clusters easy. Also, there are some other cases of data sets, such as those in Fig.

2(b) and in Fig. 5(b), where the lack of a distinguishably large stability interval, makes

the decision dubious. Note that for the data sets of Fig. 2(c), Fig. 4(b) and of Fig.5(a)

the proper range of σ values is a narrow interval and hence QC fails to determine the right

number of clusters. Our “Newtonian Clustering” approach, being parameter–free, has the

advantage of allowing for a unique, deterministic estimation of the cluster number.

The technique described in [18], is a stochastic type of method. It uses a modified EM

algorithm that incorporates the minimum message length (MML) criterion for model se-

lection. We have repeatedly applied this method4 100 times to each data set and measured

the number of clusters found. Full-covariance Gaussian densities have been used and K

was allowed to vary in the interval [1, 30]. The model order with the highest frequency, is

considered to be the preferred value for K. Figure 7 shows the frequency of the number

of clusters found in eight data sets. In most cases the number of clusters can be clearly

deduced. However, there are cases such as the data sets of Fig. 2(c) and Fig. 4(b), where

the described procedure for the selection of the optimal model order fails to yield the cor-

rect K. There are some failure conditions quoted in [18], and may well be the case that

the above data sets have happened to fulfill them.

3The QC software was downloaded from the web site http://neuron.tau.ac.il/∼horn/QC.htm
4The software was downloaded from the web site http://www.lx.it.pt/∼mtf/
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Figure 6: Plots of the number of clusters found using QC, versus σ, for eight experimental
data sets. The dotted vertical lines indicate the proper range of σ.
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Figure 7: Frequencies of the number of clusters found by applying the MML-EM method
on the indicated data sets.
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5 Conclusions

In this article we have presented the “Newtonian Clustering” approach that enumerates

and locates the clusters contained in a data set. The method consists of two phases. In

the preprocessing phase a dynamical transformation is performed that forces each point to

move towards the center of its host cluster. The distance traveled by each point is used

to adjust the width of an associated pdf, in a Parzen window approach. The number of

peaks of the superposition of these pdfs is shown to correspond to the number of clusters

contained in the data set, while their positions offer an approximation for the locations

of the cluster centers. In the second phase a local-based refinement is performed using

the EM algorithm to a Gaussian mixture model. In the conducted experiments on a

suite of benchmark data sets, the performance of “Newtonian Clustering” was found to be

superior among four tested established clustering methods. Therefore we recommend the

use of “Newtonian Clustering” on difficult clustering problems that recur in a plethora of

real world applications.
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