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FUZZY Neural Network-Based 
Texthe Analysis of 
Ultrasonic Images 
improving Accuracy o f  Computer-Assisted Characterization 
of Diffuse liver Diseases 

i i  this arliclc, the efficacy of a i iovcl I f u 7 q  , '  neural network classifier Sur the 
characterization of ultrasonic liver images 
bascd on texkire malysis techniques i s  in- 
vestigated. Classification l'catures am cx- 
tfiicted with (lie use oC image kxturc  
analysis techniques such as fractal dimeii- 
sioii texlurc analysis (FDTA), spati;il 
g r a y  - 1 eve  I d c  l i e  i d c  ii ce mat r i ces  
(SGLDM), gray-level dilfcrcnce slatistics 
(GI.DS), gray-level run-length slatislics 
(IIUNL), and first-ordcr gray-level pa- 
rameters (FOP). These fealurcs are Scd to 
ii neural network classifier lxisccl on gcu- 
metrical I'umy scts. Sk~l l ing Srom llie cow 
slructiun of Ihc Voronoi diagram of the 
m i n i n g  patterns, an aggregatioii o f  
Voroiioi regions i s  perlbrmed, Icadiiig tu 
the identificnlion of larger regions bc- 
longing cxclusivcly to one of the pattern 
classes. Thc resulling scheme i s  a coli- 
siructive algorithiii that defines fuwy 
clusters of pauerns. Based on ohscrva- 
tioils concerning Ihc grade olmeinhership 
ol  lhc training patterns to the created re- 
gions, decision Ixuhabilil ics are coiii- 
pu ted  t h r o u g h  w h i c h  l l i c  Sinal 
classilicatioii i s  performcd. 

Overview 
Imaging Liver 'I'issue 

with Ultrasoiind 
Due to its ability LO visualize liuinaii 

tissue without delclcrious effects, u l t ~ i -  
sound (ids) B-scan iinaging has hecoine 
one of Ihc most popiilar methods of  iinag- 
ing human ahdoininal organs such as Ihc 
liver, spleen, and kidneys. The hasic idea 
of the technique i s  to rialisinit sliorl i d s  
pulses (through the liiiinaii body, tissue) 
successively iii a Rin-like scanning liisli- 
ion iind to display the received echoes 
along the scan lines. Ultrasonic R-scan 

iinagcs q~pc:ir as lcxturetl images. The 
patleril o r  specklc exhihited by biological 
tissues has been in routine c l in icd use, 
sincc the [J2ittel'liS Sor difScrcnt iissucs arc 
each different. Tissue pathology, which 
causes change in tissiic aiiiitomiciil struc- 
tures, may iilso rc~ult  in a change in 
speckle appcarancc. Allhough llic origin 
of llicsc patkrns  i s  still not well undcr- 
stood, i t  i s  believed LO he Ilic restill of ii 
wave inler~crcllce phcnolllcnoll o f  Lhe 
echoes arriving at Ihc transducer (scal- 
tcred by struclurcs in the tissue) and tu he 
related lo both lissuc properties and lhc 
system chiiraclcristics 01 [lie imager [I I. 

1,ivcr diseases can be divided into two 
main categories: (a) focal l iver diseases, 
wlicrc the pathology is  concciitraled i n  a 
sinal l  arm,  while thc res1 cif the liver vul- 
uine rciiiiiiiis iiormal, i ind (b) diffused 
liver discascs, where the pathology i s  dis- 
lrihuted al l  over llic liver volume. Visual 
interprctation 0 1  liver images by spccial- 
izcd physicians coiitrihulcs lo  lhed 
olwhelhcr liver Lissuc i s  iiurnial or abnor- 
mal. The decision depcnds or tlic ahilily 
US tlic physician LO distinguisli cerkiiii 
characteristics of the image and to con -  
pare thcin with those froin diffcrenl pa- 
thologics. Several sludics have shown, 
Ihowcver, that the characterization w c w  
rzicy ofdiff i ised liver discnses using only 
simple visuiil interprctatioii by physicians 
i s  arouiid 70% 12, 31. 

Computer-Assisted 
Characterization 

Coniputcr-assistcd liver tissue char;ic- 
Icrizit ioii ciin he defined a s  characIcriza- 
t ion by a physician who takes i n l o  
considenition the rcsiills Srom a cnm- 
puler-based image analysis system Com- 

.isted tissue characterization has 
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the advantage of providing useful iiifor- 
mation lhat cannot be obtained by simple 
visual interpretation, in addition to lhc 
fact thal these techiiiques arc less opera- 
tor-dependent than traditional techniques. 

The presence of various granular striic- 
turcs, described as texlui'e, within liver uI- 
trasound images makes use of image 
texture analysis techniques suitable for 
computer-assisted charactcrization. A con- 
siderable number oiiinage texture analysis 
techniques have been developed over the 
years. The mosl coinnion are the Laws tex- 
ture energy incastires ('TEMs) [4, 51, lhe 
Fourier power spectrum (FPS) [SI, the 
gray-level difference statistics (GLDS) [5 ,  
61, the gray-level run-length statislics 
(RUNL) (71, the spatial gray-level depend- 
ence matriccs (SGLDM) [6,81, parameters 
based on Sirst-order gray-level statistics 
(FOP) 191 of an image, and several tcch- 
niques based on the estimation of the 
fractal dimcnsion Srom an image such as 
the fractal dimension tcxlure analysis tech- 
nique (FDTA) [5]. Textiirc analysis tech- 
niques for liver tissue characterization 
have been uscd in the past with very prom- 
ising results [5 ,9,  IO]. 

Classifying Liver Disease with 
Fuzzy Neural Networks 

In this study, a fuzzy neural network 
classifier has been used for the classilica- 
tion of diffused liver diseases (fatly and 
cirrhosis from norinal images) using i n -  
age texture analysis data as classification 
features. Several models combining 
Suurzy systems and neural networks have 
been devcloped that build cfl'icicnl pat- 
tern classifiers exploiting the particular 
advantages offercd by cadi  technique in 
a syncrgistic manner. Most of these 
methods use the training set to produce 
geometrical hyperboxes, and they then 
compute suilahlc meinhership fuiiclioiis 
i n  order to spccil'y the decision bound- 
aries OS pattcrn classes. A popular ap- 
proach to the partitioning of the input 
space given a set of points is based on the 
construclion of Voronoi diagrams. A 
V o r o n o i  d i a g r a m ,  a l so  k n o w n  as  
Dirichlet tcssellation or Thicssen poly- 
gon, is a partition of the pattcrn space into 
convex regions. Each of thcse regions 
conlains points with minimum distance 
from a specific point (the rcgion gcnera- 
tor) compared to their distance from the 
other points used for the construction of 
the diagram. Voronoi diagrams have 
been largely used in patlern-recognition 
problems because they provide a lopo- 

logical division of the pattern space 
based on the nearest neighbor property. 
This property has been widely exploited 
in pattern-recognition approachcs. 

The fuzzy neural approach considered 
here [I I1 creates fumy sels from the 
Voronoi diagram of the training pattcrns 
and builds class boundaries in a statistical 
manner. Given a set of points in the featurc 
spice, thc resulting Voronoi diagram can 
be viewed as a puzzlc, and the Voronoi re- 
gions as the pieces of this puzzle. We can 
asscinble neighboring pieces according to 

appropriately the boundaries between 
classcs. This formulation lcads to a re- 
duced Voronoi diagram where the new 
broader regions conlain more than one ad- 
joining Voronoi region having the same 
class Libel. The resulting aggregate regions 
are no longer convex, ancl they inay be con- 
sidered as fuzzy sets by deiiiiing member- 
ship functions indicating the degree of 
bclongingness of points of the input space 
to each region. Each fuzzy set is cliaracler- 
ized by a set of hyperplanes (separating the 
corresponding region from other regions) 
and a class labcl. 

Aftcr constructing the fuzzy sets, de- 
cision probabilities are coinputcd hilscd 
on the density of membership values Cor 
each region and chc respective pcrCor- 
mancc in the selcction of the correct re- 
gion. Through discrelizalion of tlic 
membership axis, a probabilistic func- 
tion is created that establishcs a corre- 
spondence between inembcrship values 
in a specific rcgion and thc probability of 
corrccl classification. By mapping the 
above procedure into a neural architec- 
ture, we are ahle to obtain an algorithm 
for thc design of fumy ticural networks 
Sor pattern classiSication. 

Methods 
The analysis presented in this study 

was performed in two main stcps: (a) h e  
extraction of (issue characteriaalion fca- 
tures, and (b) the classification of tlie i n -  
ages using a fuzzy  neural network 
classifier. 

Three sels OS i l l s  liver iinagcs werc 
used: normal, fatty, and cirrhotics. All ab- 
normal casts were histologicolly pmveii. 
All ultrasound iinagcs were captured us-  
ingan Acusoii128XPlIOultrasoundscan- 
ncr with a 3.5 MHa lransduces (Acuson 
V328 phased array). Digital images were 
captured using a Fast modcl Screen Ma- 
chine framc grabbcr on a PC-AT personal 
coinputcr. Images wcredigitized wilh 320 

x 2 5 6 - p i x e l  a n d  2 5 6  g r a y - l e v e l  
distribution. Texture analysis algorithms 
were applied in each image on ii 32 x 
32-pixcl region of intcrest (ROI) sclected 
in a system& way s o  as to avoid devia- 
tion in image statistics: 

i. All images were laken by the sninc 
physician, using the same equipment. 

ii. Ultrasound system settings, which 
affect image texture, were kcpl the same. 

iii. Fatty and cirrhosis iinagcs were 
histologically proven. 

iv. ROI were selected by expert physi- 
cians so as to contain only liver parcn- 
chyina (normal os abnormal), with no 
major blood vcssels. ROI were sclectcd 
along the Focusing area and along the cen- 
ter-line of each image. A representalive 
image from each set can be see11 in Fig. 1. 
The techniques used for fcaturcextraction 
and classification are presented below. 

Image Texture Analysis Techniques 
Five different image texture analysis 

tcchniques were used (FOP, GLDS, 
RUNL, SGLDM, and FDTA) and are de- 
lailcd in this section. 

First-Order GruyLevel  
f'amr1leJer:S (I'OPJ 
In this category, the parameters nrc de- 
rived from the gray-level histogram, and 
they describe the gray-level distribution 
without considering spatial indcpend- 
cnce. As a rcsult, they can only describe 
echogenity of texture and the diffuse vari- 
ation characteristics within the ROI. In 
our study we used Kurlosis (KUR): 

and Variance (VAR): 

whcre g(i,,j) is the gray level of thc pixel 
(i, .I>. N is the total number of pixels i n  the 
specified ROI, and @ and a arc tlie incan 
value and simdard deviation of thc lotnl 
number of pixels, respectively. 

C;ruy-Levd I<uri-I,enptk 
Statisfics (KUNLI 

This technique is based on gray-levcl run 
length of the image. If we examine the 
points that lie along some given direclion 
(run lengths), wc will occasionally find 
runs of conseculive points that all havc tlie 
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sanic gray level. In a coarse Lcxturc, rela- 
tively long r i l l i s  occur iiinrc often, whereas 
fine texture contailis primarily shorl rutis. 
In iidirec~ional texlurc, ~lic  run lengths tlial 
occur along a given line should depend on 
the tlirec~inii vf the line. The renlurc iised 
was Run Percentage (RPj: 

whcrcQ,* ,, i s  llic ii~iiiiberufriiii-lcngllis,j lor 
gray level i ,  in mine dircction A;  N, is tlie 
number ofgray levels ofthe image; N,  is tlic 
number ordiffcrcnl run Iciigths; iiiid 1' i s  Lhc 
mkil niiinbcrof imagepixcls. Run lengths Ibr 
0 = 0", 45", XI", 135" and tlic samplc inean 
and skindard tlcviiitioii were esriinalcd. 

Grq-Level /)iffererice 
Stiiri.rrics (Gl.DSj 
l'hc GLDS algorithm i s  based 1117 tlic its- 
sumption ~ l i a l  uscl'iil tcnIure inlbrin;uion 
caii he ex~r;icted using first~ordcrsta~islics 
o f i i n  iinagc. The algorithm i s  based on l l ic 
esliination 0 1  tlic Iprnbability dcnsity 01 
image pixel pairs at a given dislance 
S = ( A z , A , , ) ,  hti!,iii& a cerlain nbwlutc 
gl-ay-level diflerencc value. Coarse-lex- 
LLII'C imiges o c c i i r ~ t  low gray-level differ- 
ence values, wlierciis Fine-kxturc iinagcs 
result rrom interpincl gray-level d i l ' h -  
crices with great viirianccs. The Imitures 
used ;ire b;nlropy (ENT): 

ENI' = -C p,(i) log(pa(i)), 

Aiigul;ir Sccoiid Mnmcnt (ASMj: 

(4) 

ASM E Cpi(i)' (0 
ar id Mciiii (MEA): 

MFA 3 (I /rn)Ci[ih(ij (6)  

whcrc i i s  two pincls gmy-lcucl dirlcr- 
encc, i i i  i s  the nuinlier o lyray levcis, iiiid 
pa iirc the individual probabililics. Fca- 
Iurcs were cstiinatcd for the following 
tlisLaiiccs S = (d,O),(d, i / ) , ( -d ,  d) , (O,d) .  

Sprrrinl Grq- l , iwc l  Dqi~riderm 
Mriniws (SGl.DM) 
'l'lieSGLDM algorithiii i s  bascdoii Lhcas- 
siiiiiptioii Lhat texture properlies nf an i n -  
age arc containcd i n  ~ l i c  overall or 
";ivcragc" spatial rcl;itioiiship hctwccn 
(lie gl-ay Icvels. SGLDM i s  based un the 
c s t i 111 a t  i 0 11 o l 1 li c s eco II c l  - o 1.11 c r 
coiiditioiial prob;ibility ilcosity p(i, .j; (/,e). 
E;icli valuc p(i, , ; ; d , R )  rcpresencs Lhc prnb- 
ability that two i l i f fercn~ rcsolulion cells 
~ l i a l  iirc 1111 the dircclion specified by an 
angle A iind tl i~taiicc d wi l l  lhavc viilues i 
anil,j, respcclivcly. When tcntiirc is  coarsc 
aiid d i s  s i n a l l  compared 10 l l ic texture clc- 
iiienls ("spcckle pattern"), llicii the pairs 
oSpvii i~s with disLanccrlwilI liavc siiniliir 
gray IcvcIs, s o  Llic poiiih nii the t i i i i i i i  diag- 
onal nf the miltrices /i(i,,j:d,AI will havc 
large valucs. On ll ic iitlicr hand, i S  Lcxtiirc 
is sinnoth, the v~ducs of  he iliatrices wi l l  

(a) Fatty (b )  Cirrhosis 

(c) Normal 

1. Ultrilsonic liver imagcs, representative from cadi data set. 32-by-32-pixel regions 
of interest systematically selccted w r c  used in tlic analysis. 
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be irinrc spread w t .  The features used in 
this algorilhm arc Sum Entropy (SENT): 

Angular Sccond Moiiiciil (ASM): 

ASM = ccl/i(i, jjl ' .  ( X I  

Inverse Dil'fcrencc Moment (IDM): 

aiitl Coiitrasl (CON): 

wlicrc Mp i s  nuinber of gray I c v c l ~ , ~ ~  and 
ox arc l l ic ineaii and slandard deviation of 
the row slinis of the Iilatrin p(i,.j), and 
iind b ~ arc the ciirrespoiicling slntistics o f  
l l ic  coluiiii i sunis, with p,,, and /I,,-,, 

given by: 

i + , i = k  (12) 

2, 3 allci e = 00, 450, 900, IW; ~catllrcs 
Each iiieasurc was cvaloatcd lor (1 = I, 

were obtaincd from ~ l i c  sainplc iiieaii and 
stiii id~irtl clcvialioii nf the cstiiiialed viilucs. 

Frcicrcrl D i i i i ~ r i ~ i ~ i i  
T(cmxtu,.i, Ano/wis (FD7Aj  
'l 'his Icchiiiquc is  hased on the fractional 
Brownian inotion (I'BM) i i iodcl dcvcl- 
oped  by M;idclhrol 1121. P B M ,  a 
tnoiisk~~iunary stochastic prncess, ciiii he 
described by a single par;imcter: tlic 
f ~ i c ~ i l ( l i m e n c i o i i / ~ w I i c r c I ~  = b.'+l -H. 
The parameter 11 i s  c;illed l l ic Mursl cod-  
licicnl, and E + I is  tlie Eucliile;in dirneti- 
siuti olLhc ciiibedding spacc iifthc I i i ictel.  
FBM and corresponding Hand U parmc- 
tcrs caii be i isetl LO describe Lhe roughncss 
ol'dif~ercnt surraccs. Intensity of aii iiI1r:i- 
svtiic im;igc can be dcscribcd hy FBM, so 
lractal dimension ciiii be used to clinrac- 
t e r i x  iiltl.aotiic images. Fractal dimcn- 
sioii U,  131 i s  cstiiiialcd irom: 
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E ( A / ' )  ~ c ( ~ r ? ) ~ ~ ' + 2 " , )  

(13) 

where E(.)  denotes t l ie  expectiitioii op- 
e r a t o r  AI = I (x , , J ' , j  - 1(X2,yJ 
~r = ~ ~ ( . ~ ~ , y ~ j , ( . ~ - , , ~ ~ , j ~ ~ ~  and c i s  a coIistmt. 
Thcestiiniiiion d ' D ,  ciin be &,ne by ailcu- 
laling the piramctcr H(l1, = E + I - H) ,  
where 1: +I i s  tlie Euclidcan dimension 
and H i s  estimated lroin tlie equation: 

E(1AIl) = h(Ar.)H (14) 

where h = E(lAl[)A,=, .  
Fraclal-dimensir,n texture irnalysis, as 

proposed by Wu, et til. LSl, i s  bescd 011 

compulation ofthc Hurst coefficient of an 
image region for diffcrenl rcsoliitioii lev- 
els. Each resolution level i s  coinpuled 
Srom its higher resolution l c ~ c l  using the 
pyramidal approach: 

I ' " ( x , y )  = 11"+"(2x,2)'j +I"*" 

(2.r + 1,2)') + 11' + " 

(2x,2.y + I) + I " ' "  

( 2 s  + 1,2y i- I ) ) /  4 

0 5 i cn1,n 5 r , y  < 2'(15) 

[e.g., lcvcl 2' x 24 (16x16) i s  extracled 
from level 2' x 2' (32 x 12j] where I"' 
Kcpresents the imagc inlensiiy lunction on 
level i(2' x 2'j. The Hursl coefficient i s  
first computcrl for the original iinage re- 
g i o n  2"' x2" ' (H'"" j ,  t h e n  f u r  

and so on. In our 
study, only lhe flurst cocfllcienis for Icv- 

42 

2"'-' x 2 " ' - 1 ( H ' " ' - " ) ,  

CIS 32x32 (original region) HI, and 
16 x I6  H,, were used. 

Fumy Neural Network Classifier 
Wc used ;ifuzzy neural nclwork classi- 

llcrlo discriniinnte lhc three cliisses of in i -  
ages. 'The cliissificr creates fuzzy S C ~ S  

from the Voronoi diagram of the Iraining 
patterns a n d  builds class boundaries in a 
statistical manner 1 I I I. 

Vororroi Lliiigriiim mil Neiiriil Meh.vork.s 
T h c  Voruno i  d iagram o r  D i r i c h l e t  
tesscllation i s  ii fundiimeiital conccpl in 
computaiionel gcoinclry with many appli- 
catiiins. Vomnoi diagram reveal proxiin- 
ity inforiiialion about ii sei o i  givcii poinis 
i n  a very explicit and crxnpii(alioilally 
useful iiianncr 114). 

Let U(rr,hj t lc i iot~ the Euc1idc;in dis- 
liiiicc hclwccii two points ( I  and b in /<I. 

Civcnal l i i i tesc lA=( i i ,  ,..., i i , j  ofpoinls 
iii R", 21 Voronui region b',(ii = I 
dcllncd tis the scl of points: 

v,, = {J t lqn(r,il,,j 5 l l ( X , N i ) v k  t nl. 

(16) 
Each Voronoi region V,, contains thosc 

points of K'' for which the point U,, i s  the 
closcsl. Thc partilion of K" implied by the 
Vorwioi rcgions V,,.,.,Vh, i s  Ihc Voroiioi 
diagram SnrrIicsciA. Eachclcment ofA i s  
callcd a jieneriilor of  the Vol-onoi dia- 
grain. A coii imoii boundary 01 two 
Voronoi regions i s  thc perpciidicular bi- 
sector (hyperplane) of llic segment join- 
ing the pair of rcspccti\'c generators. 
Thus, each Vorunoi region i s  defined as 
ihe intersection of a f in i te  number of 
h a l f s p a c c s  d c i e r m i n e d  b y  the 
hyperplanes. A poinl a1 which houndarics 
of three or iniorc Voronoi regions meci is  
callcd a Vomnoi point. 

Several algorithms f(1r the construc- 
tion of Vuroiioi diagl.;ims have been pro- 
posed Cl iss ica l  Voronoi diagl.ams caii he 
conslruclcd by uhinining the convcx litill 
ofthc given sciofpoink 113, 14, 151 or by 
iiicreineiital insertion (i1 the Voronoi re- 
gions (16, 17, 1x1. The application of 
Voronoi diagrams to the design of neural 
networks lins been rcccnlly considcrcd. In 
1191, lwo iicuI.uI ic lwork conslruclioii ill- 
gorithms lor pattern classilicalion arc pro- 
posed lhatrclydirccllyiirindirccilyon the 
Voronoi tcsselliition nf the input space 
produccd hy the given training patterns. A 
systcmalic procetlorc for designing neural 
nclworks following the same principle is  
proposed in [20,2I].Thcscinethods spcc- 
i fy  l l ie iirchiteclure of l l ie  neural inodel 
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h, r i s L d  .. o n  t he  cons t ruc i i on  11f Llic 

corresponding Voronoi diagrams for the 
training (lala. They also describe ways 10 
specify the values of  the cnnncction 
weighis and thrcsholds of eiicli nodc iil all 
layers of the nciilal architcclurc. The iicii- 
ral network design is  robust and adaptahle 
in order to accommodatc new training 
piiiierns. Ii iiiiisi be noted lhiit lhesc zip- 

proachcs essentially suggest ways to i n -  
plcment a Voronoi diagram using ii neural 
archiicetiire. aiid the chssi fication bchav- 
ior of tlie resulting networks i s  equivalent 
lo ilia1 o f  ic;irest neighbor lechniques. 

In 1221, a i  aniilugoiis ciinslroclioii a p  
proiich w a s  1Jl.eSClitCd lhai incorpuratcd 
the idca nf liiz7.y classificalion by delin- 
ing fiizzy decision houndarics for the rc- 
gions of the teascllation 'This scheme was 
lxiscd on an approximale incrcmcnlal 
constroclion of Voronoi diagrtiiiii iind al- 
lowed on-line supervised learning using 
appropriately dclincd fiizzy mcmhcrship 
t'unctinns. 

Keiliicinfi the Vnrorloi Refiion.s 
Consider a cliissificntion problem wiih r l  
conliiiuous ettrihuics, such thin N &di- 
mensional patterns belong to K [listincl 
classes. By consiructiiig the Voroiioi dia- 
gran o f  thcsc gcncrators, lhc il-dimcn- 
sirma1 feature space i s  divided into N 
regions reflecting thcprosiniiry property. 

In pitterii rccogniiion, we arc inoslly 
intcrcskd in dividing the input space inln 
a niiinbcr of regions (clustcrs) chmacler- 
izcd by the sainc class labcl. In  gencral, 
the number nf clusters is much smaller 
tliaii the number of palleriis. l h c  Voronoi 
diagram divides tlie sp;icc into the same 
numbcr o f  compiirinicnts as Ihc input p i t -  
terns, which i s  not very convenicni. Ncv- 
erthclcss, if we maniiged ti) joii i  Voroiioi 
regions iliat arc o f  the sainc cl 
would only consider clusters of pallenis. 
'This caii he iicliicved by removing all 
ihose lhyperplanes (boundiiries) o f  the 
Voronoi regions that bisect piirr of pal- 
icrns (generators) hclonging to tlic w n c  
class. In t h i s  way, ihc feature space i s  di- 
vided into regions larger than Voronoi rc- 
gions, whcrc each of these regions i s  
associated with cxectly one class label. 
We shal l  rcfcr lo these iiiaior regions as 
cliiss regions, 21s Ilicy come from the uiiioii 
of neighboring Vornnoi regions whosc 
gencralors corrcspund to the sane cliiss. 
Figure 2 illustrales such a construclion on  
tlic 2-D space fnr a set of 10 input points 
belonging to two classes (dotled l ines are 
prescnl i n  a classicill Vorunoi diagram). 
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2. Schematic representation of class re- 
gions. 

More specifically, we can define a 
class region as the union of a set of 
Voronoi regions, such that each region is 
adjoining (has common boundaries) with 
at least one other region of thc set, and 
their generators belong to the same class. 
Each class region is characterized by a set 
of equations that describe the hyperplanes 
defining class borders. The numbcr of 
new regions iiiay be cqual to or greatcr 
than the number K of classes. We only 
keep large class regions, since sinall re- 
gions containing few gencrators may he 
considered as outliers or black holes in- 
side largc clusters, and they thcrefore can 
be ignored. 

In fact, the Voronoi diagram can be 
treatcd as an undirected graph, where ver- 
tices rcpreeseiil generators (or equivalently 
regions), and edges join vertices corre- 
sponding to adjoining Voronoi regions. 
This graph configuration is equivalent to 
the construction known as Delnunuy fri- 
angulatiori. In order lo  form class regions, 
we start with an arbitrary Voronoi rcgion 
and mark it as helonging to 1hc first class 
region. Then we perForrn a search of Ihc 
graph struclurc. The information avail- 
able from the original construction oS the 
Voronoi diagram is sufficicnt for pcr- 
forming the search.  (Depth-f i rs t  o r  
brcadlh-first search could be used.) All re- 
gions connected lo the starting region and 
bearing the same class label are marked tis 
helonging to the same class region. 
Neighboring regions b a r i n g  a differenl 
ckiss labcl are left onmarkcd, to be in- 
cluded i n  some subscquern aggregation. A 
similar procedure is followed fromany re- 
gion marked during the search. When the 
search is exhausted &e., no more Voroiioi 
regions can be included in the current 
class rcgion), a new uninarked region is 
selected and the procedure is repeated to 
coiistriict a new class region. until there 
are no more unmarked Voronoi regions. 

In  order lo  encourage the formation of 
ne;irly convex class regions, we impose 
the following reslriction during the above 
aggregation phase. The sciirch can only 
proceed from the current Voronoi region 
if tlie number of neighboring regions 
bearing the same class label as the current 
one excccds a givcii threshold value h. If 
this criterion is not satislied, the remain- 
ing neighboring regions of lhe current one 
are left unmarked (independently of their 
class labels), and the search is continued 
from some other region. The choice of the 
value of h is related to the average number 
of boundarics o f a  Vuronoi region, which 
in turn depends upon the dimension o l  the 
Ceatme space. In our implemcntiition, ap- 
propriate values of the piirameter h were 
determincd experimentally for the differ- 
ent classilicatioii problems considered. 

After construction of the reduced 
Voronoi diagram, i t  is possible to exploit 
proximity information for  the purposes of 
cl assification. . . '  In order to formulate the 
problem as a Ihazyclassification problem, 
we inust give an estimation of how iiiuch a 
inew pattern belongs Lo each class region, 
thus considering class regions as f t m y  
sets.  W h e n  a n e w  i n p u t  patlei-n 
U = ( a  ,,..., a,,) is presented, an appropri- 
ate fuzzy membership value (in [O,l]) is 
computed. The  membership Function 
$ , (a )  Iortheith cl;issregionmustinc;isure 
the degree to which tlie givcii pattern falls 
inside or oulsidc the region. This can be 
considcrcd as a nicasureiiicnt of how far 
the pattern is situatcd f rom iill the 
hyperplanes that define the houndaries US 
Ihc class region. When the pattcrn ( I  is in 
[he interior of the region and Far from the 
hypcrplancs, then lhc value of p,(u) is 
largc, which iiicaiis that the point is close 
to some generator having participated in 
thc formalion of that class region. 

When the pattern Palls oiitsidc the re- 
gion, then the membership value ap- 
proaches zero, which iiieans that the point 
is close to some generator belonging to a 
different class regiun. 

/\function respecting thc above guide- 
lines is tlic average value o f the  exponcti- 
tial d i l k r e n c e s  between the vertical 
distances x, , (u)  of the inpul patterii frum 
all hyperplanes h supporliog thc class re- 
gion land the distances /,, ofthe respcctive 
gzncrators From each hyperplane h. 
(Clearly, within cacbclassregion, thcreis 
a generator associated with each support- 
ing hyperplane of the region.) It must be 
noted that the inforination concerning the 

distances l,, is alrcady known from the 
original Voronoi diagram and is stored for 
each h. The vertical distance x,,(a) of a 
pattern n = ( a  ,,..., a,,) from a hyperplane 
h ( d e s c r i b e d  by  t h e  e q u a t i o n  
IC,,, x,+ ...+ R , , , ~  n,, + x , ~  ,,,*, = 0) is cum- 
puted as follows: 

Each h divides the pattern space into 
two halfspaces. Consider the quantities 
u,,ia), which take the values I or  -I de- 
pending on whether or not the generator 
corresponding to hyperplane h and bc- 
loiiging to region i is situated in the same 
halfspace (defined by h) as the pattern U .  

The membership function of class re- 
gion i can be computed as follows: 

where If, is the set of hyperplanes defining 
class region i (having cardinality ~ H J  and 
m," has the following form: 

i f  xI (c i )  > 1 ,  and u,,(a) = I 
- I  
otherwise (19) 

A graphical representation of Eq. (20) 
is shown in Fig. 3, wliichrepresentsm,"as 
a I'unctioii of the quantity u,,,(fi)x,,(n). 
Based on this quantity, we divide the 
space inlo three auncs wilh respect to the 
hyperplane h, with each zone bcing char- 
acterized by different properties. In the 
f i rsr  z m e ,  the pattern is close to the 
hyperplane (* , , (U)  5 /,,), independent of 
the side of the region horder on which it is 
situated. Starting froin (he viiliie-l (whcn 
x,,(fi)=/,, andu,,,(a) = -]),the valueofm:' 
increascs with a steep slope until it  
reaches the highest value of 1 (when 
x, , (a)  =I,, and L I , , , ( ~ )  = I ) .  The  second 
zone is related tu the casc where the pat- 
tern and thc generator are on the same 
halfspace, but the pattern is far From the 
hyperplane ( x , ( a )  > l,, andir,,(a) =I). Al- 
though the pattcrn lies on the good side of 
the hyperplane with respect to theclass re- 

Jonuory/Februory 2000 IEEE ENGINEERING I N  MEOICINE AND BIOLOGY 43 



gion, we must he cautious to avoid cir- 
cumstances where the paltcrn is at 21 long 
distance froin the hypcrplane anddocs not 
helong to the class region. For this reason, 
the value of in," decrcases to zcro (bot 
with a smoother slopc) as the vertical dis- 
tance, x,,(u), from the hyperplane grows. 
From the ahovc specification, it is clcar 
that the value olo,  in thc lirst zone must 
hcliighertliantheviiliie(i102in thesccond 
zone to achieve the dcsired slopc. Thc 
tliird zone represents the case where the 
pattern is situated far outside the region of 
interest and far from the hyperplanek 
( x , , ( u )  > I , ,  and u,,,(a) = -1). In this case, 
in," takes its lowest value, -1. 

It must he noted here thatin;(a) does 
not include precise information about 
whether or not the paltern is situated in- 
side the class region. Even when thc pat- 
tern and the generator are in the same 
halfspace with respect to the hyperplane, 
we are not aware of what happens with 
other hyperplanes, a s  we individually ex- 
aininc each hyperplane and not the whole 
region. Alter computing all them;(a) val- 
ues, we obtain a global estimation of the 
degrcc olhclongingness of pittern a to the 
region i through the value of the mcmber- 
ship ~ ~ ( c i ) .  

The ahovc membership function takes 
into account useful proximity information 
provided by the characteristics of the origi- 
nal Voronoi construction, such as the equa- 
tions describing hyperplanes, the position 
of generators relative to hyperplanes, and 
die vertical distances I,,. In addition, it ex- 
ploits information rclated to class regions, 
such as the hyperplanes defining the 
boundaries of each class region. 

'h . . 

Coinpuiing Decision I'r~ohahilities 
In the previous sections, wchavcdescrihetl 
the first phase ofthe proposed approach to 
piittern classification Lhat incorporates the 
construction ofthe Voronoi diagram corrc- 
sponding to thc training patterns, the inte- 
gration of Voronoi regions to a immber of 
class regions, and the dcfinition of appro- 
priate membership functions. With this 
kind of preprocessing, the problem of se- 
Iccting the correct class is translbriiicd to 
lhe problem of sclecting the correct region 
In this section, we describe how the mein- 
bership values of the training pallerns are 
used to coii~truct models providing deci- 
sion probabilities that a pattern with a 
given meinbership valuc can he assigned to 
a specific region. 

After having computed the meinbcr- 
ship values corresponding to an input 
pattern, wc could perform the classifica- 
tion proccdurc simply by selecting the 
class of the region with the maximum 
inenihcrship valuc. This is what happens 
in most  Fuzzy approachcs to pattern clas- 
sification(e.g., inthefuasyniin-man net- 
work).  Uni'ortunatcly. this dccision 
scheme does not seem LO providc good 
classification results, since some regions 
tend to exhibit constantly higher mcni- 
bership values compared to other re- 
gions. ltsccms moreeffectivc to evaluate 
themenihershipofagivenpatterntoarc- 
gion by taking into account the distrihu- 
tion of inenihcrship valiics oFthc training 
patterns to this region. This Icads to the 
construction of 21 probability modcl Cor 
each class region, which provides usefill 
information for the sclection of the ap- 
wowiate reaion during classification. 

XI, Zone 3 : Zone 1 

. , .'h .. . 

. . .. . . . -1 

The construction of the probability 
models is based on Ihe search forranges of 
memhcrship values that  h a w  more 
chance to lead to the successful sclection 
of a region. More spccifically, consider- 

s region i ,  the intcrval [O,I I 0 1  
membership valucs is divided into a nun-  
her L, of equal-size cells. To each cell v 
(v= I ,  , . . , I , > ,  we assign a probability value 
13,'' computed as the percentage of the 
trainingpattcrns bclonging to region i that 
havctheir inembcrshipvalueintlieccll v. 

It should be observed that, after the 
membership values of training patterns to 
e ~ c h  region have hcen computed, it is pos- 
sible to view thc classification problem as 
inapping from the space uf membership 
vectors to the set of classes, C:(K ,,,,., pe) 
-11 I, ..., K )  (where R is lhc nuinbcr of 
class regions and K is the number of 
classes). Saichamappiogcan bccasilycon- 
strucled using, for example, a multilayer 
pcrceptron trained by the backpropagatioii 
algorithm or any of its variants. Although 
this approach is intuitively more appealing 
and exhibited excellent pcrtorinance on 
training sets, its pcrCorniance on the tcst set 
was inferior (in all examincd datasets) 
compared with the approach based on the 
probability model. 

Nrurvrl Network hnpleinenlntiun 
In the previous paragraphs, we have 
shown how one can construct fuzzy sets 
(corresponding to class regions) starling 
h " V o r o i i o i  diagram, as wcll as how a 
model of probabilities can be built For 
each fuzzy sct using the distrihulion or 
membership values. The proposed con- 
struction alaorithin can be summarircd 

'h . . 

I . .  I I I 

into the following steps: 
1 I, Construct the classical Voronoi dia- 

XI, Zone 3 : Zone 1 

. , .'h .. . 

. . .. . . . -1 

Hyperplane h 

I 

uth(a)xh(a) -Ih 0 'h 
I ,  L " , , , L J U L "  >CICCL,IIII LJ"'U'L",,1,LC" I,,,, 

In order to nsc the method fbr the clas- 
i = I ,,.., R, li' = I ,.,,, L,, 

gram of a set of N patterns 
2. A = {U ,...., 0 . ~ 1 ,  in a d-dimensional 

spacc. 
3. Reduce the Voronoi diagram into a 

number of class rcgions. 
4. Discard sniall class regions and let R 

he the~iumheruftlrercmaininglargeclass 
regions. 

5.Forcaclipalternuj,.j=1 ,..., N,cotn- 
putc the membcrship values p , ( u , ) , ;  = I, 
..., R. 

6. For each region i ,  i = I ,  ..., R, catego- 
rize the mcmhership values i n  a histograin 
using a numhcr L, of equal-sizc cells in 
1O.ll. 



ship values of the pattern to each rcgion i 
are first coinputcd. Then, the correspond- 
ing yrohabi l i t ies  p,! are dctcrmined 
(whcrc v reprcscnts the col1 containing the 
membership value of the pattcrn) and the 
region i with maximum p,' is selected. The 
class ofthis rcgion is considered as the fi- 
nal clilssificalion dccision. 

The above decision approach can hc 
implemented by means of a neural nel- 
work architecture, as illustrated in Fig. 4. 
The architccture consists of five layers, 
and coiinections cxist only bctween suc- 
cessive layers. The First layer is the input 
layer, having as many nodes as thedimen- 
siun of pattcrns. Thc nodes in the second 
layer represcnt hyperplanes that deline 
class regions. For each class rcgion i Lhcre 
are IH,I nodes, one for each hyperplane 
supporting that class. As a hyperplane 
separates two rcgions, there will gcnerally 
be two nudes refcrring to the same 
liypcrplaiie (except for hyperpkioes sup- 
porting small regions that were discarded 
during construction). Each second-layer 
node computes thc value or the function 
m," lor an input pattern using Eq. (19). 

The third layer contains as many nodes 
as the inurnbcrl~ of class regions. The out- 
put of each nodc i of this layer provides 
thc meinbcrship valuep, o f thc  pattcrn to 
tlie corrcsponding region, as coinputcd in 
Eg. ( 18). The conncctiotis bctween nodes 
of tlic second aiid third layers assume bi- 
nary values I or 0 to associate regions 
with their supporling hypcrplanes. 

Tlic fourth laycr iinplctneiits Llic iiicin- 
bersliip histogram. Each region i of the 
lhird layer is connected to L, iiotles of tlie 
fourth laycr, corresponding to the cells of 
the  h i s tog ram.  Each  such  node v 
( v  = l,...,L,) fires unly in the case where 
tlie p, Yalue falls inside the corresponding 
ccll and provides the respectivc probabil- 
ity p,"; othcrwise. thc output of tlie tiode is 
zero. This represenlation allows an efli- 
ciem implementation o l  llic Inistogl-ain by 
incans of simple nodes yielding a lixed 
output oil an on-off basis. 

The filth layer embodies one iiodc for 
each of the Kclasses. Ifrcgion i has class 
label k ,  thcn the sct of I., nodes of the 
fourth layer (rcpreseiiling the histogram 
of region i )  is connccted to node k of the 
fourth layer. In uther words, tlie connec- 
tions between nodcs olthe fourth and fifth 
layers take binary valucs I or 0 to assuci- 
ate class rcgions (histogram cells) with 
class labels. Thc output 5, of'cach iiode k 
of the lust layer is taken eqod to tlic maxi- 
iniiin of the outputs (proobabilitics ,I,:) of 

tlic cell nodes connccted to that nodc. 
Finally, the class k with tlie maxiiniiiii 5, 
is rlie decision of thc fuzsy ncural clwsifi- 
cation inetwork. 

When a ncw pattern ci is applied to the 
network, the membership valuesp ,(a) of 
the pattcrn to each class rcgion i ere ini- 
tially coinputcd. The conipulatioii pro- 
ceeds by determining thc probabilities p)' 
corresponding to tlic respective histogram 
cells. Tlic decision uf thc nctwork is tlie 
class of the region with tho maximum 
probability 11,'' exprcsscd by the quantity 
5,. As is the case with other neural net- 
work designs based on Voronoi diagram 
information [20-22], the method has Lhc 
ability to define complctcly the neural 
structure, namely thc number uf hidden 
layers and nodes of each layer. along with 
the connection values between nodes of 
successive layers. The proposed neural ar- 
chitccture incorporates an additional layer 
with rcspect tootherapprmiches, account- 
ing for the computatioii or decision proba- 
bilities. 

Results 
To evaluate the performance o l  the 

proposcd compoter-assisted tissuc-char- 
acterization algorithm, we iiscd a total oE 
I SO images (normal, kitty, and cirrhotic). 

In the first phasc, the I2 texturc analysis 
fcatures described abovc were calculated 
for all the images. Also ;is described 
above, 32-by-32-pixel KO1 were selccted 
i n  each image, and the corresponding tcx- 
ture features were calculatcd. Tliesc fca- 
tures have hecn shown to conrain useful 
inrormatioii for characteriziiig livcr tissue 
pathology [IO]. 

Thc second phasc consisted of  using 
the proposed luazy neural nctwork classi- 
fier to discriminate livcr abnorinalities. 
For this task, a set of 75 images (25 from 
each class) was used its the Icarning set for 
thc classificr, whcreas another 75 images 
(25 from each class) were used as a test 
set. The percormancc of thc classifier was 
then evaluated using different cornbina- 
tion of classification features (image tex- 
ture analysis fealurcs). Duc to tlie Iargc 
number of diflercnt subsct combinations, 
only those that resulted in a correct cliissi- 
fication accuracy ratc of greater than 75% 
are presented in this study. To  reduce thc 
computational complexity in thc training 
and classification process, we decidcd to 
limit thc number of fcatures used in thc 
classification down to six. In  that sense, 
combinations of six or less Sciitures (out of 
thc 12 prcsented previously) wcre used 
for the classifications. Table I shows the 

b 
B 

Inputs Hyperplanes Class Histogram Classes 
Regions Cells 

4. Proposed iieiiral iictwork architecture. 
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T a b l e  1. Correc t  classlflcatlon r a t e s  for the fuzzy neural network classifier. - - - .- - - - - - - - 

Feature Set 
(Features Presented In Text) 

FOP-KUR, GLD-ASM, GLD-MEA, 
SGLD-ASM, SGLD-IDM, RUNL-RP 

GLD-ENT, SGLD-SENT, SGLD-CON, 
RUNL-SRE, FDTA-H4, FDTA-HS 

FOP-KUR, GLD-ASM, SGLD-SENT, 
SGLD-IDM, RUNL-RP, FDTA-H4 

FOP-KUR, GLD-ASM, GLD-MEA, 
SGLD-ASM, RUNL-RP 

Normal Fatty Cirrhosis Total 
~ 

80.00% 88.00% 80.00% 82.67% 

76.00% 84.00% 80.00% 80.00% 

80.00% 80.00% 76.00% 78.67% 

76.00% 84.00% 68.00% 76.00% 

results of the proposed classifier in dis- 
criminating the different pathologies. 

It is apparent lhat the proposed classi- 
fier provides high classification accuracy 
for all different pathologies. 111 parlicu- 
lar, the <KYR, ASM, MEA, ASM, IDM, 
RP> set achieves an overall 82.67% ac- 
curacy in characterizing the different pa- 
thologies, whereas individual accuracy is 
80.00%, 88.00%. and 80.00% for nor- 
mal, Catty, and cirrhotic liver, respcc- 
t ively.  S imi la r  (although somehow 
lower) accuracy is obtained witli two 
more feature sets of sire six (accuracies 
of 80.00% and 78.67%, respectively). 
All these figures arc higher than those 
achieved by visual inspection by physi- 
cians (approximately 70% fhr diffuse 
liver diseases [4, 51). Furthermore, in all 
cases the proposed fuzzy neural network 
classifier achieved higher accuracy than 
a conventional I-nearest-neighbor or 
K-NN classifier). 

In addition, the classificalion experi- 
ment verified thc usefulness of the pro- 
posed image texture analysis features in 
discriminating liver tissue pathology in 
ultrasound images. Evcii subsets oS tex- 
tiire features of size five (see Tahlc 1) 
were able to discriminate the diffcrent pa- 
thologies with accuracy higher than the 
75% accuracy limit that we have set for 
the experiment. However, the reduced 
classificatioii accuracy achieved with less 
than six fealiircs indicates tllal useful in- 
formation is Ius( when a smaller lbature 
scl is uscd for classification. Due to the 
fact that the number of image texture fca- 
tures that were used in this experiment is 
only part of the image tcxlure features 
available, we can easily undersland the 
possibilities the proposed methodology 
offers in computer-assisted diffuse liver 
disease characterization. 

Conclusions 
Computer-assisled characterization of 

ultrasonic liver images using image tcx- 
turc analysis techniques and faizzy classi- 
fiers has been tested and evaluated. In 
particular, we have implementcd a neural 
network classifier that is based on geo- 
metrical fuzzy sets. The appruacli is based 
oii the construction of Voronoi diagrams 
in the pattcrii space and the creatioii of re- 
gion aggregates inside the Voronoi puz- 
zle. For lhc constructed class regions, 
decision probabilities arc computed in 
terms of the distribulion 01 membership 
values lo these regions. The whole tech- 
nique can he iinplcmentcd by means of a 
five-layer feedrorward neural network ar- 
chitecture. 

Experimental results indicate that the 
proposed inclhod is effcclivc in  terms of 
thc tale of correct classirication and that it 
has the ability lo overcome the difficulties 
arising kom lhe problem of overlapping 
classes. Moreover, it has thccharaclerislic 
of maintaining the powerful geometrical 
features of tlie Voronoi slructure, as well 
as of crcating cfficicnl decision bound- 
aries lhrouglr tlic statistical proccssing of 
membership values. This work allows us 
loexperiincnlfurther with the use ofprox- 
iruity-based approaches to the construc- 
tion of Itizzy neural classifiers, and to 
discover inorc efficient tcchniques in the 
area of soil decision making. Since thc 
complexity of the construction of Vuronoi 
diagrams becomes high as the dimension 
VI' thc feature space grows, we are inter- 
ested in applying effective gcometrical al- 
gorilhms lhal can suggest neighbors of a 
given paltern (in the sense of the Voronoi 
diagram) for large dimensional problems. 

Furthermore, the results of this work 
have demonstrated the ability of using iin- 
age texture analysis tcchniques to extiacl 

features that characterize liver tissue ab- 
normalities. The proposed features, when 
combined in a feature set of size six, 
achieved a higher classification accuracy 
for dirfusc pathologies lban that reported 
for physicians and than those obtained by 
nearest neighbor cl;issil'ication. Furthcr- 
more, lhe facl that a feature set of sire six 
obtained higbcr accuracy than all subsets 
of fcalures of size five or less indicates 
thal the featurc is complementary in char- 
acterizing the pathologies involved. 

In conclusion, we should point oul that 
an ultrasonic iniage depends on many fac- 
tors, and characleriaing ultrasonic images 
is not atrivial task. Initial results proved to 
he very promising. Furthermore, wc ex- 
pect that further evaluation of the tech- 
niques using larger imagedata sets and the 
incorporation of additional algorithms 
will improve tlie overall accuracy or the 
inclhod. 
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