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Fuzzy Neural Network-Based
Texture Analysis of
Ultrasonic Images

Improving Accuracy of Computer-Assisted Characierization

of Diffuse Liver Diseases

n this article, the cfficacy of a novel

fuzzy neural network classifier for the
characterization of ultrasonic liver images
based on texture analysis techniques is in-
vestigated. Classilication [eatures are ex-
tracted with the use of image texture
analysis techniques such as fractal dimen-
sion texture analysis (FDTA), spatial
gray-level! dependence matrices
(SGLDM), gray-level difference statistics
(G1.DS), gray-level run-length statistics
(RUNL), and first-order gray-level pa-
rameters (FOP), These features are fed to
a ncural network classifier based on geo-
metrical fuzzy sets. Starting from the con-
struction of the Voronoei diagram of the
training patterns, an aggregation of
Voronoi regions is performed, leading to
the identification of larger regions be-
longing exclustvely to one of the pattern
classes, The resulting scheme is a con-
structive algorithm that defines furzzy
clusters of patterns. Based on obscrva-
tions concerning the grade of membership
of the training patterns to the created re-
gions, decision probabilitics are com-
puted through which the final
classification is performed.

Overview
Imaging Liver Tissue
with Ultrasound

Due to its ability to visualize human
tissue without delcterious effects, ultra-
sound (u/s) B-scan imaging has become
one of the most popular methods of imag-
ing human abdominal organs such as the
liver, spleen, and kidneys. The basic idea
of the techaique is to transmit short u/s
pulses (through the human body, tissuc)
successively in a fan-like scanning lash-
ion and to display the received echocs
along the scan lines. Ultrasonic B-scan
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images appear as textured images. The
pattern or speckle exhibited by biologtcal
tissues hag been in routine clinical use,
since the patterns for difTerent tissucs ate
cach different. Tissue pathology, which
causges change in tissue anatomical strue-
tures, may also result in a change in
speckle uppearance. Although the origin
of these patterns is still not well under-
stoad, it is bhelieved o be the result of a
wave interference phenomenon of the
echoes arriving at the transducer (scal-
tered by structures in the tissue) and to be
related to both lissue properties and the
system characteristies of the imager [1].

Liver diseases can be divided into two
main categories: (a) focal liver discases,
where the pathology is concentrated in a
small area, while the rest of the liver vol-
ume remains normal, and (b) diffused
liver discases, where the pathology is dis-
tributed all over the liver volume. Visual
interpretation of liver images by special-
ized physicians contribuics to the decision
of whether liver tissue is normal or abnor-
mal. The decision depends on the ability
of the physician to distinguish certain
characteristics of the image and to com-
pare them with those from different pa-
thologics. Sevcral studies have shown,
however, that the characterization accu-
racy of diffused liver diseases using only
simple visual interpretation by physicians
is around 70% [2, 3.

Computer-Assisted
Characterization
Computer-assisted Fiver tissue charac-
lerization can be defined as characteriza-
tion by a physician who takes into
congideration the results from a com-
puler-based image analysis system. Com-
puter-asststed lissue characterization has
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the advantage of providing useful infor-
mation that cannot be obtained by simple
visual interpretation, in addition to the
fact that these techniques are less opera-
tor-dependent than traditional techniques,

The presence of various granular struc-
tures, described as texture, within liver ul-
trasound images makes use of image
texture analysis techniques suitable for
computer-assisted characterization, A con-
siderable number of image texture analysis
techniques have been developed over the
years, The most common are the Laws tex-
ture energy measures (TEMs) [4, 5], the
Fourier power spectram (FPS) 5], the
gray-level difference statistics (GLDS) [5,
6], the gray-level ron-length statistics
(RUNL) [7], the spatial gray-level depend-
cnce matrices (SGLDM) [6, 8], parameters
based on first-order gray-level statistics
(FOP) [9] of an image, and several tech-
niques based on the estimation of the
fractal dimension from an image such as
the fractal dimension texiure analysis tech-
nique (FDTA) [5]. Texture analysis tech-
niques for liver tissue characterization
have been used in the past with very prom-
ising results [5, 9, 10].

Classifying Liver Disease with
Fuzzy Neural Networks

In this study, a fuzzy neural network
classifier has been used for the classifica-
tion of diffused liver diseases (fatty and
circhosis from normal images) using im-
age texture analysis data as classification
features. Several models combining
fuzzy systems and neural networks have
been developed that build efficient pat-
tern classificrs exploiting the particular
advantages offercd by each technique in
a synergistic manner. Most of these
methods use the training set to produce
geomefrical hyperboxes, and they then
compute suitable membership functions
in order to specify the decision bound-
aries of pattern classes. A popular ap-
proach to the partitioning ol the input
space given a set of points is based on the
construction of Voronoi diagrams., A
Voronoi diagram, also known as
Dirichlet tessellation or Thicssen poly-
gon, is a partition of the pattern space into
convex regions. Each of these regions
containg points with minimum distance
from a specific point (the region genera-
tor) compared Lo their distance from the
other points used for the construction of
the diagram. Voronoi diagrams have
been largely used in pattern-recognition
problems because they provide a topo-

0

logical division of the pattern space
based on the nearest neighbor property.
This property has been widely exploited
in pattern-recognition approaches.

The fuzzy neural approach considered
here [11] creates fuzzy sets from the
Voronoi diagram of the training patterns
and builds class boundaries in a statistical
manner. Given a set of points in the featurc
space, the resulting Voronoi diagram can
be viewed as a puzzle, and the Voronoi re-
gions as the pieces of this puzzle. We can
agscmble neighboring pieces according to
their position and class, in order to specify
appropriately the boundarics berween
ctasses. This formulation lcads to a re-
duced Voronoi diagram where the new
broader regions contain more than one ad-
jolning Voronoi region having the same
class label, The resulting agpregate regions
are no longer convex, and they may be con-
sidered as fuzzy sets by defining member-
ship functions indicating the degrec of
belongingness of points of the input space
to each region. Each fuzzy set is character-
ized by a sct of hyperplanes (separating the
cortesponding region from other regions)
and a class label,

After constructing the fuzzy sets, de-
cision probabilities are computed based
on the deunsity of membership values for
each region and the respective perfor-
mance in the selection of the correct re-
gion. Through discretization of the
membership axis, a probabilistic func-
tion js crcated that establishes a corre-
spondence between membership values
in a specific region and the probability of
correct classification, By wmapping the
above procedure into a neural architee-
ture, we are able to obtain an algorithm
for the design of fuzzy neural networks
for pattern classitication.

Methods

The analysis presented in this siudy
was performed in two main steps: (a) the
extraction of tissue characterization fea-
tures, and (b) the classificaiion of the im-
ages using a fuzzy nearal network
classiflier. .

Three sets of u/s liver images were
used:.normal, fatty, and cirrhotics. All ab-
normal cases were histologically proven.
All ulirasound images were captured us-
ing an Acuson28 XP/10 ultrasound scan-
ner with a 3.5 MHz transducer (Acuson
V328 phased array). Digital images were
captured using a Fast model Screen Ma-
¢hine frame grabber on a PC-AT personal
cormputer. Images were digitized with 320
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x 256-pixel and 256 gray-level
distribution. Texture analysis algorithims
were applied in each image on a 32 x
32-pixel region of interest (ROI) sclected
in a systematic way so as to avoid devia-
tion in image statistics:

i. All images were laken by the same
physician, using the same equipment.

ii. Ultrasound system settings, which
affect image texture, were kept the same.

iii. Fatty and cirrhosis images were
histologically proven.

iv. ROI were selected by expert physi-
cians so as to contain only liver parcn-
chyma (normal or abnormal), with no
major blood vessels, ROI were selecied
along the focusing area and along the cen-
ter-line of each image. A representative
image from each set can be scen in Fig. 1.
The techniques used for feature extraction
and classification are presented below.

Image Texture Analysis Technigues

Five different image texture analysis
techniques were used (FOP, GLDS,
RUNL, SGLDM, and FDTA) and are de-
tailed in this section.

First-Order Gray-Level

Parameters (FOP)

In this category, the parameters arc de-
rived from the gray-level histogram, and
they describe the gray-level distribution
without considering spatial independ-
cnce. As a result, they can only describe
echogenity of texture and the diffuse vari-
ation characteristics within the ROIL In
our study we used Kurtosis (KUR):

| 3 (el -y
KUR =— e

0,4

(
and Variance (VAR):

VAR = ¥, 31200, ) - MEAY
w5 @

where g{i, j) is the gray level of the pixel
(i, /), M is the total number of pixels in the
specified ROL and pand o are the mean
value and standard deviation of the total
number of pixels, respectively.

Gray-Level Run-Length

Statisticy (RUNL)

This technigue is based on gray-level run
length of the image. If we cxamine the
points that lie along some given direction
(run lengths), we will occasionally find
runs of conseculive points that all have the
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same gray level, In a coarse lexture, rela-
tively long runs occur more often, whereas
finc texture containg primartly short runs.
In a directional texture, the run lengths that
occur along a given line should depend en
the direction of the line. The feature used
was Run Pereentage (RP):

M N,

ZZQR—L(L A

RP=-"*+— —

P (3)
where Q, , is the number of run-lengths / for
eray level £, in some direction 8; N, is the
number of gray levels of the image; ¥ is the
number of different run lengths; and £ is the
total number of irage pixels. Run lengths for
0 =0°,45° 90°, 135° and the sample mean
and standard deviation were estimated.

Gray-Level Difference

Statistics (GLDS)

The GLDS algorithm is based on the as-
sumption that uselul texture information
can be extracted using first-order statistics
of an image. The algorithm is based on the
estimation of the probability density ol
image pixel pairs at a given distance
§=(A,,A), having a cerlain absolute
gray-level difference value, Coarse-lex-
ture images occur at low gray-level differ-
ence values, whercas fine-lexture images
result from interpixel gray-level differ-
cnces with great variances. The teatures
used are Entropy (ENT):

ENT = —Z p;(d log( p; (), 4)
Angular Second Moment (ASM):

ASM =Zp, (Y’ (5)
and Mecan (MEA):
MEA = (1 /m)Zip, (D) {6)

where 7 is two pixels gray-level differ-
ence, #1 is the number of gray levels, and
p, arc the individual probabilities. Fea-
tures were estimated for the following
distances & = (/00 (d, d),(—d, ), (O, ).

Spatiad Gray-Level Dependence
Martrices (SGLDM)

The SGLDM algorithm is based on the as-
sumption that texture propertics of an im-
age are contained in the overall or
“average” spatial rclationship between
the gray levels, SGLDM is based on the
estimation of the second-order
conditionat probability density p(f, j;d,0).
Each value p(f, jid,0) represents the prob-
ability that two different resolution celly
that arc on the direction specified by an
angle 8 and distance ¢ will have values §
and j, respectively. When texture is coarse
and ¢ is small compared to the texiure cle-
ments (“speckle pattern™), then the pairs
of points with distance  will have similar
gray levels, so the points on the main diag-
onal of the matrices p(i, jid,8) will have
large values. On the other hand, if texture
is smooth, the valucs of the matrices will

(a) Fatty

{c) Normal

(b} Cirrhosis

1. Ultrasonic liver images, representative from cach data set. 32-by-32-pixel regions
of interest systematically selected were nsed in the analysis.
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be more spread out. The features used in
this algorithm arc Sum Entropy (SENT):

N
N,

SENT == p,, (oglp,, ()},
P2 ' ’ ( )

Angular Second Moment (ASM):;
ASM=Y ¥ {p6i, N, (®)
P

Inverse Difference Mament (IDDM);

IDM = zxﬁ', — U, )

bl BY (B8 )
angd Contrast (CON):

CON =2 ng{iip(f,_/)}
i=

=1 j=1

F=i=% (o
where &, is nunber of gray levels, i, and
o, are the mean and standard deviation of
the row sums of the matrix p(/, f), and p |
and o, arc the corresponding statistics of
the column sums, with p., and p_,
given by: ' ‘
N, N,
P =N plp, k=0L.N, I

i1 j=1

=%

(n
N, N,

P =2 pli s k=23,0,0N,
=1 gl

i+j=k {12)

Cach measurce was cvaluated for d = 1,
2, 3 and 8 = 0°, 45°, 90°, 135°; lcatures
were obtained from the sample mean and
standard deviation of the estimated values.

Fractal Dimension

Texture Analysis (FDTA)

This technique is based on the fractional
Brownian motion (FBM) modcl devel-
oped by Madelbrot |12]. FBM, a
nonstationary stochastic process, can be
described by a single paramcter: the
fractal dimension Dwhere D = £ +1-H,
The parameter H is ealled the Hurst coet-
licient, and £ +1is the Euclidean dimen-
sion of the embedding spacc of the [ractal.
FBM and corresponding A and D parame-
ters can be used 1o desceribe the roughness
of different surlaces. Intensity of an vltra-
sonic image can be described by FBM, so
fractal dimension can be used to charac-
terizc ultrasonic images. Fractal dimen-
sion D, [3] is estimated from:
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sets from the

and builds class

E(Afz) — C(Arg)m—zn,)

(13)

where F() denotes the expectation op-
erator Al =T,y —1x,,y,),
Ar = ”(xz,yz),(xl,yl) . and ¢ is a constant.
The estimation of 1, can be done by caleu-
lating the parameter H{D, = £ +1-H),
where £ +1 is the Buclidean dimension
and A is estimated from the cquation:

E(AI) = M(AnH {14)

where & = E([Al],, -,

Fractal-dimension texture analysis, as
proposed by Wu, ct al. [5], is based on
computation of the Hurst coefficient of an
image region for different resolution lev-
els. Each resolution level is computed
from its higher resolution level using the
pyramidal approach:

190, y) =17 "2, 2y) + 1770
(2x +1,2y) + 147V
(20,25 + 1) + 140
(2x+1,2y + 1)}/ 4

0<i<m,0<x,y <2{(15)

[e.g., level 2% % 2% (16 x16) is extracted
from level 2° x 2° (32 % 32)] where /¢
represents the image intensity function on
level #2' x 2. The Hurst coefficient is
first computed for the original image re-
gion M % 2MH™N, then for
27 2D, and so on. In our
study, only the Hurst cocfTicients {or lev-
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cls 32x32 (original region) H,, and
16 x16 H, werc used.

Fuzzy Neural Network Classifier
Woe used a fuzzy neural network ¢lassi-
ficr to discriminate the three classes of im-
ages. The classificr creates fuzzy sets
from the Voronoi diagram of the training
patterns and builds class boundaries in a
statistical manner [ 11].

Voronol Diagrams and Neural Networks
The Voronoi diagram or Dirichlet
tessellation is a fundamental concept in
computational gecometry with many appli-
cations, Voronoi diagrams reveal proxim-
ity information about a set of given points
in a very explicit and computationally
uselul manner [14],

Let D{a,b) denote the Euclidean dis-
tance between iwo points @ and b in R,
Given afinite set A ={a,, ..., a, } of points
in R a Voronoi region V.in=1.,N)is
delined as the sel of points:

V =ire R”\D(x,a") < Dix,a )Yk # n).

(16

Fach Voronoi region V, contains thosc
points of B for which the point «, is the
closest. The partition of B implied by the
Voronoi regions V...,V is the Voronoi
diagram for the set A. Each element of A is
called a generator of the Voronoi dia-
gram. A common boundary of two
Yoronoi regions is the perpendicular bi-
seetor (hyperplane) of the segment join-
ing the pair of respective gencerators.
Thus, each Voronoi region is defined as
the intersection of a finite number of
hallspaces determined by the
hyperplanes, A point at which boundarics
of three or more Voronoi regions meet is
called a Voronoi point.

Several algorithms for the construc-
tion of Voronoi diagrams have been pro-
poscd. Classical Voronoi diagrams can be
constructed by obtaining the convex hull
of the given setof points [13, 14, 15} or by
incremental insertion of (he Voronoi re-
gions [16, 17, 18]. The application of
Voronoi diagrams (o the design of neural
networks has been reeently considered. In
| 19], two ncural networl construction al-
gorithms lor pallern classification are pro-
poscd that rely directly orindircetly on the
Voronoi tessellation of the input space
produced by the given Lraining patterns. A
systematic procedure for designing neural
networks following the same principle is
proposed in [20,21]. These methods spee-
ity the architecture of the ncural model
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based on the construction of the
corresponding Voronoi diagrams for the
training data. They also describe ways (o
specily the values of the conncction
weights and thresholds of each node at all
layers of the nearal architecture. The neu-
ral network design is robust and adaptable
in order to accommodate new training
patterns. It must be noted that these ap-
proaches essentially suggest ways to im-
piement a Voronoi diagram using a neural
architecture, and the classification behav-
tor of the resulting networks is equivalent
to that of ncarest ncighbor techniques.

In [22], an analogous construchion ap-
proach was prescited that incorporated
the idea of luzzy classification by defin-
ing luzzy decision boundarics lor the re-
gions of the tesscllation, This schermne was
based on an approximate incremental
construction of Voronei diagrams and al-
lowed on-line supervised learning using
appropriately defined fuzzy membership
functions,

Reducing the Voronoi Regions
Consider a classilication problem with
continuous attributes, such that N d-di-
mensional patterns belong o K distinct
classes. By constructing the Voronoi dia-
gram of these generators, the d-dimen-
sional feature space is divided into N
regions reflecting the proximiry property.
In pattern recognition, we are mostly
interested in dividing the input space into
a number of regions {clusters) character-
ized by the same class label. In gencral,
the number of clusters is much smaller
than the number of patterns. The Voronoi
diagram divides the space into the same
number of compartments as the input pat-
terns, which is not very convenient. Nev-
ertheless, if we managed to join Voronoi
regions that arc of the same class, we
would only consider clusters of patterns.
This can be achicved by removing all
those fyperplanes (boundaries) ol the
Vorenoi regions that biscet pairs of pat-
terns (generators) belonging o the same
class. In this way, the (eature space is di-
vided into regions larger than Voronoi re-
gions, where each of these regions is
associated with exactly one class label,
We shall refer to these major regions as
class regions, as they come from the union
of neighboring Voronoi regions whose
gencrators correspond (o the same class.
Figure 2 illustrates such a construction on
the 2-1 space for a set of 10 input points
belonging to two classes (dlotted lines are
present in a classical Voronoi diagram).
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2. Schematic representation of class re-
gions.

More specifically, we can define a
class region as the union of a set of
Veronoi regions, such that each region is
adjoining (has common boundaries) with
at least one other region of the set, and
their generators belong to the same class.
Each class region is characterized by a set
of equations that describe the hyperplanes
defining class borders. The number of
now tegions may be cqual to or greater
than the number K of classes. We only
keep large class regions, since small re-
gions containing few gencrators may be
considered as outliers or black holes in-
side large clusters, and they therefore can
be ignored.

In fact, the Voronoi ciagram can be
treated as an undirected graph, where ver-
tices represent generators (or equivalently
regions), and edges join veitices corre-
sponding to adjoining Yoronol regions.
This graph configuration is equivalent to
the constraction known as Delaunay tri-
angulation. In order Lo form class regions,
we slart with an arbitrary Voronoi region
and mark it as belonging to the first class
region. Then we perform a search of the
graph structure. The information avatl-
able from the original construction of the
Voronoi diagram is sufficient for per-
forming the scarch. (Depth-first or
breadth-first search could be used.) All re-
gions connected to the starting region and
bearing the same class label are marked as
belonging to the same class region.
Neighboring regions bearing a different
class label are left unmarked, to be in-
cluded in some subsequentaggregation. A
similar procedure is followed from any re-
gion marked during the search. When the
search is exhausted (i.e., no more Voronoi
regions can be included in the current
class region), a new unmarked region is
selected and the procedure is repeated to
construct a new class region, until there
are no more unmarked Voronoi regions.
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In order to encourage the formation of
nearly convex class regions, we impose
the following restriction during the above
aggregation phase. The scarch can only
proceed from the current Voronei region
if the number of neighboring regions
bearing the same class label as the current
one exceeds a given threshold value A, If
this criterion is not satisfied, the remain-
ing neighboring regions of the current one
are left unmarked (independently of their
class labels), and the search is continued
from some other region. The choice of the
value of Ais related to the average number
of boundarics of a Voronoi region, which
in turn depends upon the dimension of the
leature space, In our implementation, ap-
propriate values of the parameter A were
determined experimentally for the difter-
ent classification problems considered,

After construction of the reduced
Voronoi diagram, it is possible to exploit
proximity information for the purposes of
classification. In order to formulate the
problem as a fuzzy classification problem,
we must give an estimation ol how much a
new pattern belongs Lo cach class region,
thus considering class regions as fuzzy
sets, When a new input patiern
a=(da,,..a,) is presented, an appropri-
ate fuzzy membership value (in [0,1]) is
computed. The membership function
1 (e} for the ith class region must measure
the degree to which the given pattern falls
inside or outside the region. This can be
considered as a measurement of how far
the pattern is situated from all the
hyperplanes that define the boundaries of
the class region. When the pattern « is in
the interior of the region and far from the
hyperplanes, then the vaiue of [, (a) 1s
large, which mcans that the point is closc
to some generator having participated in
the formation of thal class region.

When the pattern [alls outside the re-
gion, then the membership value ap-
proaches zero, which means that the point
is close 10 some generator belonging to a
different class reglon,

A function respecting the above guide-
lines is the average value of the exponen-
tial diffcrences between the vertical
distances x, (&} of the input pattern from
all hyperplancs 4 supporting the class re-
gion{ and the distances £, of the respcctive
generators from each hyperplane A.
(Clearly, within cach class region, there is
a generator associated with each support-
ing hyperplane of the region.) It must be
noted that the information concerning the
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distances /, is already known from the
original Voronoi diagram and is stored Tor
each A. The vertical distance x,(a) of a
pattern @ =(é,...,a,) from a hyperplane
h (described by the equation
Ry X h ATy, X+, ,,, =0) is com-
puted as follows:

o
Zniljaj +T, a0
=1
xy(a) =" d
2,
=1 (17)
Each # divides the pattern space into
two halfspaces. Consider the quantitics
u,(a), which take the values 1 or ~1 de-
pending on whether or not the generator
corresponding to hyperplane A and be-
longing to region { is situated in the same
halfspace (defined by /) as the pattern a.
The membership function of class re-
gion / can be computed as follows:

_ 1 o1
W(o)=—=— » m/(a)+—
2 ,;t LT

where f1,is the set of hyperplanes defining
class region i (having cardinality ‘H,‘) and
m} has the following form:

u,,,(a)exp{m]

if x,(a) <1,

_‘xh(a) _lh
#; CXP T—

if x,(a)>1,and u,(a) =1
-1

| otherwise.

1

mi(ay=

(19)

A graphical representation of Eq. (20)
is shown in Fig. 3, which represents m * as
a function of the quantily u,(ea)x, (a).
Based on this quantity, we divide the
spuce into three zones with respect to the
hyperplane 4, with each zone being char-
acterized by different properties. In the
first zone, the pattern is close to the
hyperplane (x,(a) </,), independent of
the side of the region border on which it is
situated. Starting from the value —1 (when
&, (@)=1, andu, () = ~1), the value ofm;
increases with a steep slope until it
reaches the highest value of 1 (when
x,(ay =1, and u,(ay=1, The second
zone is related to the case where the pat-
tern and the generator are on the same
halfspace, but the patrern is far from the
hyperplane (x,(a) >, and u,(a) =1). Al-
though the pattern lies on the good side of
the hyperplane with respect to the class re-
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sion, we must be cautious to avoid ¢ir-
cumstances where the pattern is at a long
distance from the hyperplane and does not
belong to the class region. For this reason,
the value of m ," decrcases to zero (buat
with a smoother slope) as the vertical dis-
tance, x,{a). from the hyperplane grows.
From the above specification, it is clear
that the value of 6, in the first zone must
be higher than the value of 6, in the sccond
zone to achieve the desited slope. The
third zone represents the case where the
pattern is situated far outside the region of
interest and far from the hyperplane i
(xi,(tt) > 1, and i, (e} = ~1}. In this case,
m; takes its lowest value, —1.

1t must be noted here thatm '(#) does
not include precise information about
whether or not the pattern is situated in-
side the class region. Even when the pat-
tern and the generator are in the same
halfspace with respect to the hyperplane,
we are not aware of what happens with
other hyperplanes, as we individually ex-
amine each hyperplane and not the whole
region. After computing all them ;"(a.) val-
ues, we obtain a global estimation of the
degree of belongingness of pattern ato the
region { through the vatue of the member-
ship L, (a).

The above membership function takes
into account uscful proximity information
provided by the characteristics of the origi-
nal Voronoi construction, such as the equa-
tions describing hyperplanes, the position
of generators telative to hyperplanes, and
the vortical distances 1. In addition, it ex-
ploits information related to class regions,
such as the hyperplanes defining the
boundaries of cach class region,

Computing Decision Probabilities

In the previous sections, we have described
the first phase of the proposed approach to
patlern classification that incorporates the
constraction of the Voronoi diagram corre-
sponding to the training patlerns, the inte-
gration of Voronoi regions to a number of
class regions, and the definition of appro-
priate membership functions. With this
kind of preprocessing, the problem of se-
lecting the correct class is ransformed to
the problem of sclecting the correct region.
In this section, we describe how the mem-
bership values of the training patierns are
used to construct models providing deci-
sion probabilities that a pattern with a
given membership value can be assigned to
a specific region.

After having computed the member-
ship values corresponding to an input
pattern, we could perform the classifica-
tion procedure simply by selecting the
class of the region with the maximum
membership value. This is what happens
in most fuzzy approaches to pattern clas-
sification (e.g., in the fuzzy min-max net-
work). Unfortunately, this decision
scheme does not secm to provide good
classification results, since some regions
tend to exhibit constantly higher mem-
bership values compared to other re-
gions, [{seems more effective to evaluate
the membership of a given pattern to are-
gion by taking into account the distribu-
tion of membership valucs of the raining
patterns to this region, This leads to the
construction of a probability model for
each class region, which provides useful
information for the sclection of the ap-
propriate region during classification.

Hyperplane i1

upla)x(a)

3. Fuzzy decision boundaries.
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The construction of the probability
models is based on the scarch forranges of
membership valucs that have more
chance to lead to the successful selection
of a region. More specifically, consider-
ing class rcgion {, the interval [0,1] of
membership values is divided into a num-
ber L, of cqual-size cells. To each cell v
(v=1, ..., 1), we assign a probability value
p; computed as the percentage of the
training patterns belonging to region / that
have their memborship value in the cell v.

It should be observed that, after the
membership values of training patterns to
each region have been computed, it is pos-
sible to view the classification problem as
mapping from the space of membership
vectors to the set of classes, ei(fl ,...00,)
—{1, .., K} (where R is the number of
class regions and K is the number of
classes). Such a mapping can be easily con-
structed using, for example, a multilayer
perceptron trained by the backpropagation
algorithm or any of its variants. Although
this approach is intuitively more appealing
and exhibited excellent performance on
training sets, its performance on the test set
was inlerior (in all examined datasets)
compared with the approach based on the
probability model.

Neural Network Implementation

In the previous paragraphs, we have
shown how one can construct fuzzy sets
(corresponding to clags regions) starling
from a Voronoi diagram, as well as how a
maodel of probabilities can be built for
each fuzzy set using the distribution of
membership values. The proposed con-
struction algorithm can be summarized
into the following steps;

1. Construet the elassical Voronoi dia-
gram of a set of N patterns

2. A={a,,..a,}, in a d-dimensional
spacc.

3. Reduce the Voronoi diagram into a
number of class regions.

4. Discard small class regions and let 8
be the number of the remaining large class
regions.

3. For cach pattern ¢, J=1,. N, com-
pute the membership values W {a ),i=1,
s R

6. Fareachregioni,i=1,..., R, catego-
rize the membership values in a histogram
using a number I, of equal-size cells in
[O,1].

7. Compute selection probabilitics p!,
i=hL.,Rv=1.,L.

In order to use the method for the clas-
sification of a new pattern, the member-
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ship values of the patlern to each region {
are first computed. Then, the correspond-
ing probabilities p! are determined
(where v represents the cell containing the
membership value of the pattern) and the
region { with maximum p; is selected. The
class of this region is considered as the fi-
nal classificatiom decision.

The above decision approach can be
implemented by means of a neural net-
work architecture, as illustrated in Fig. 4.
The architecture consists of five layers,
and cotmections exist only between suc-
cessive layers. The fivst layer is the input
layer, having as many nodes as the dimen-
sion of patterns. The nodes in the second
layer represent hyperplanes that define
class regions, For each class region { there
are ]H,[ nodes, one for cach hyperplane
supporting that class. As a hyperplane
separates two regions, there will generally
be two nodes teferring to the same
hyperplane (except for hyperplanes sup-
porting small regions that were discarded
during construction). Each second-layer
node computes the value of the function
m}' for an input pattern using Eq. (19).

The third layer contains as many nodes
as the number R of class regions. The out-
put of each node / of this layer provides
the membership value [L, of the pattern to
the corresponding region, as computed in
Eq. (18). The connections between nodes
of the second and third layers assuie bi-
nary values | or O to associate regions
with their suppotting hyperplanes.

The fourth layer implements the mem-
bership histogram. Each region i of the
third layer is connecled to L, nedes of the
fourth layer, corresponding to the cells of
the histogram. Each such node v
(v =1,...,L) fires only in the case where
the p, value falls inside the corresponding
ccll and provides the respective probabil-
ity p;'; otherwise, the ontput of the node is
zero. This representation allows an elfi-
cient implementation of the histogram by
means ol simple nodes yielding a lixed
oulput on an on-otT basis.

The fifth layer embodies one node for
each of the K classes. If region { has class
label &, then the set of 7, nodes of the

fourth Jayer (representing the histogram -

of region f) is connected to node & of the
fourth layer. In other words, the connec-
tions between nodes ol the fourth and fifth
layers take binary values 1 or 0 to associ-
ate class regions (histogram cells} with
class labels. The output &, of each node &
of the last layer is taken equal to the maxi-
mum of the outpuls (probabilities p;) of
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the cell nodes connccted to that node,
Finally, the class & with the maximum &,
is the decision of the fuzzy neural classifi-
cation network,

When a new patlern g is applied (o the
network, the membership values U, (¢) of
the pattern to each class region i are ini-
tially computed. The computation pro-
ceeds by determining the probabilities p;
corresponding to the respective histogram
cells. The decision of the network is the
class of the region with the maximum
probability p; expressed by the quantity
E,- As is the case wilh other neural net-
work designs based on Veronoi diagram
information [20-22], the method has the
ability to define completely the neural
siructure, namely the number of hidden
layers and nodes of each layer, along with
the connection values between nodes of
successive layers, The proposed neural ar-
chitecture incorporates an additional layer
with respect to other approaches, account-
ing for the computation of decision proba-
bilities.

Results
To evaluate the performance of the
proposced computer-assisted tissuc-char-
acterization algorithm, we used a total of
150 images (normal, fatty, and citrhotic).

In the first phase, the 12 texture analysis
features described above were calculated
for all the images. Also as described
above, 32-hy-32-pixel ROl were selected
in each image, and the corresponding tex-
ture features were calculated, These fea-
tures have becn shown to contain uscful
information for characterizing liver tissue
pathology [10],

The second phasc consisted of using
the proposed fuzzy neural network classi-
fier to discriminate liver abnormalities.
For this task, a set of 75 images (25 from
each class) was used as the learning set for
the classifier, whereas another 75 images
(25 from each class) were used as a test
set. The performance of the classifier was
then evaluated using different combina-
tion of classification features (image tex-
ture analysis featurcs). Duc to the large
number of different subset combinations,
only those that resulted in a correct classi-
fication accuracy ratc of greater than 75%
are presented in this study. To reduce the
computational complexity in the training
and classification process, we decided to
limit the number of features used in the
classification down to six, In that sense,
combinations of 8ix or fess features (out of
the 12 presented previously) were used
for the classifications. Table 1 shows the

‘Clags

Inputs )
Regions

Hyperplanes

L

Histogra
Cells

Classes

4, Proposed neural network architecturc.
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712272+ Table 1, Correct classiicatlon rates-for the fuzzy neural network classifier) .~
Feature Set Normal Fatty Cirrhosis Total
(Features Presented in Text)
FOP_KUR, GLD_ASM, GLD_MEA, 80.00% 88.00% 80.00% 82.67%
SGLD_ASM, SGLD_IDM, RUNL_RP
GLD_ENT, SGLD_SENT, SGLD_CON, | 76.00% 84.00% 80.00% 80.00%
RUNL_SRE, FDTA_H4, FDTA_H5
—
FOP_KUR, GLD_ASM, 8GLD_SENT, | 80.00% 80.00% 76.00% 78.67%
SGLD_IDM, RUNL_RP, FDTA_H4
FOP_KUR, GLD_ASM, GLD_MEA, 76.00% 84.00% 68.00% 76.00%
SGLD_ASM, RUNL_RP
results of the proposed classifier in dis- Conclusions features that charactetize liver tissue ab-

criminating the different pathologies,

It is apparent that the proposed classi-
fier provides high classification accuracy
tor all different pathelogies. In particu-
lar, the <KYR, ASM, MEA, ASM, IDM,
RP> get achieves an overall 82.67% ac-
curacy in characterizing the different pa-
thologies, whereas individual accuracy is
80.00%, 88.00%, and 80.00% for nor-
mal, fatty, and cirrhotic liver, respec-
tively. Similar (although somehow
lower) accuracy is obtained with two
more feature sets of size six (accuracies
of 80.00% and 78.67%, respectively).
All these figures are higher than those
achieved by visual inspection by physi-
cians {approximately 70% for diffuse
liver diseases [4, 531). Furthermore, in all
cases the proposed fuzzy neural network
classificr achieved higher accuracy than
a conventional l-nearest-neighbor or
K-NN classitier).

In addition, the classification experi-
ment verified the usefulness of the pro-
posed image texture analysis features in
discriminating liver tissue pathology in
ultrasound images. Even subsets of tex-
ture features of size five (see Table 1)
were able to discriminate the different pa-
thologies with accuracy higher than the
75% accuracy limit that we have set for
the cxperiment. However, the reduced
classification accuracy achieved with less
than six features indicates that uscful in-
formation is lost when a smaller eature
sct is used for classification. Due to the
fact that the number of image texture fca-
tures that were used in this experiment is
only part of the image texture features
available, we can casily understand the
possibilities the proposed methodology
offers in computer-assisted diffuse liver
disease characterization.
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Computer-assisted characterization of
ultrasonic liver images using image tex-
turc analysis techniques and fuzzy classi-
fiers has been tested and evaluated. In
particular, we have implemented a neural
network classifier that is based on geo-
metrical fuzzy sets. The approach is based
on the construction of Voronol diagrams
in the pateern space and the creation of re-
gion aggregates inside the Voronoi puz-
zle, For the construcied class regions,
decision probabilities arc computed in
terms of the distribution of membership
values to these regions. The whole tech-
nique can be implemented by means of a
five-layer feedforward neural network ar-
chitecture,

Experimental results indicate that the
proposed method is effcetive in terms of
the rate of correct classification and that it
has the ability to overcome the difficulties
arising from the problem of overlapping
classes. Moreover, ithas the characteristic
of maintaining the powerful geometrical
features of the Voronoi structure, as well
as of creating cfficient decision bound-
arics through the statistical processing of
membership values. This work allows us
Lo experiment further with the use of prox-
imity-based approaches to the construc-
tion of fuzzy neural classifiers, and (o
discover more efficient techniques in the
area of soft decision making. Since the
complexity of the construction of Voronoi
diagrams becomes high as the dimension
of the feature space grows, we are inter-
ested in applying effective geometricai al-
gorithms that can suggest neighbors of a
given pattern (in the sense of the Voronoi
diagram) for large dimensional problems.

Furthermore, the resulis of this work
have demonstrated the ability of using un-
age texture analysis techniques to extract
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normalities, The proposed features, when
combined in a feature set of size six,
achieved a higher classification accuracy
for diffuse pathologies than that reported
for physicians and than those obtained by
nearest neighbor classification, Further-
more, the fact that a feature set of size six
obtained higher accuracy than all subsets
of features of size five or less indicates
that the feature is complementary in char-
acterizing the pathologies involved.

In conclusion, we should point out that
an ultrasonic image depends on many fac-
tors, and characterizing ultrasonic images
isnotatrivial task. [nitial results proved to
be very promising. Furthermore, we ex-
pect that further evaluation of the tech-
niques using larger image data sets and the
incorporation of additional algorithims
will improve the overall accuracy of the
methed.
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