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Abstract 

Reinforcement learning schemes perform direct on-line search in control space. This makes them appropriate for 
modifying control rules to obtain improvements in the performance of a system. The effectiveness of a reinforcement 
learning strategy is studied here through the training of a learning classz$er system (LCS) that controls the movement 
of an autonomous vehicle in simulated paths including left and right turns. The LCS comprises a set of condition- 
action rules (classifiers) that compete to control the system and evolve by means of a genetic algorithm (GA). Evo- 
lution and operation of classifiers depend upon an appropriate credit assignment mechanism based on reinforcement 
learning. Different design options and the role of various parameters have been investigated experimentally. The per- 
formance of vehicle movement under the proposed evolutionary approach is superior compared with that of other 
(neural) approaches based on reinforcement learning that have been applied previously to the same benchmark prob- 
lem. 0 1998 Elsevier Science B.V. 
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1. Introduction 

Typically a trainable adaptive controller archi- 
tecture facing supervised learning consists of a 
teacher, the trainable controller and the plant to 
be controlled. The teacher may be automated as 
a linear or nonlinear control law, or it may be a 
human expert. However, in some learning tasks 
arising in control neither a designed nor a human 
expert is available. In these situations it may be 

possible to improve plant performance over time 
by means of on-line methods performing reinforce- 
ment learning [1,2], i.e. to adjust a control rule as a 
function of a measure that in some way evaluates 
the overall behaviour of the plant. Thus, based 
on performance-related environmental feedback a 
mapping is adaptively formed, that associates re- 
gions of the environmental state space with differ- 
ent control actions, i.e. the learning system has to 
discover the most appropriate actions correspond- 
ing to the state 
ceived through 
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of the environment as it is per- 
a set of sensors or detectors. 
learning has been effectively 
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applied to control tasks and, in particular, to the 
problem of autonomous vehicle navigation in un- 
known environments [3-61, assuming no prior 
knowledge about the task and the system to be 
controlled. 

Reinforcement learning addresses the problem 
of improving performance as evaluated by a mea- 
sure whose values are supplied to the learning sys- 
tem. In tasks of this kind, based on a scalar 
evaluation signal, the system has to determine 
the necessary changes that would lead to increase 
in the measure of system performance. A rein- 
forcement learning task mainly involves two prob- 
lems [7]. The first problem is to construct a critic 
capable of evaluating system performance in a 
way that is both appropriate to the actual learning 
objective and informative enough to allow leam- 
ing over time. The second problem is one of deter- 
mining how to teach the learning system to 
provide outputs that improve performance as it 
is measured by the critic. 

The task of providing useful performance infor- 
mation continuously over time is a difficult one 
and becomes harder when the learning objective 
is to achieve a terminal state with desired proper- 
ties. In designing learning systems to solve this 
problem, the biggest challenge is to account for 
the link between present actions and future conse- 
quences. In many tasks, actions selected earlier in 
a sequence may turn out to be the most important 
determinants of eventual outcomes. In such tasks, 
the information provided to the learning system 
must not be the immediate reinforcement signal as- 
sociated with the current action, but rather some 
cumulative measure of reinforcement obtained 
over many time steps (delayed reinforcement). 
The above problem is referred to as the temporal 
credit assignment problem and concerns the correct 
assignment of credit or blame to an action when its 
consequences unfold over time and interact with 
the consequences of other actions. The general 
class of temporal dlfih-ence algorithms developed 
by Sutton [g] aim at solving the problem by train- 
ing an adaptive critic to predict the consequences 
of an action in the future. Similar techniques are 
Holland’s Bucket Brigade algorithm [9] and the 
Q-learning approach introduced by Watkins 
[lO,ll]. 

A direct approach to adjusting control actions 
in order to improve system performance is to ac- 
tively explore control space. The need for active 
exploration stems from the fact that only the eval- 
uation signal is available and not its gradient as a 
function of the actions. Direct methods for rein- 
forcement learning perform gradient ascent on 
an evaluation surface whose values are directly 
available to the learning system. The precise na- 
ture of the computation of the evaluation signal 
by the environment can be anything appropriate 
for the particular problem and is assumed to be 
unknown to the learning system. In general, it is 
some function, deterministic or stochastic, of the 
input patterns produced by the environment and 
the output (action) received from the learning sys- 
tem. Since in this approach there is a need for ac- 
tive exploration among possible outcomes, there 
must be a source of variation allowing exploration 
of alternative actions. 

Our concern in this paper is the use of a direct 
reinforcement learning strategy to drive an auton- 
omous vehicle through simulated paths made of 
straight segments as well as left and right turns. 
The task of providing the proper control com- 
mands, so that the vehicle stays on the road and 
avoids collision, is assigned to a learning classifier 
system (LCS) [9,12-151. 

An LCS is a learning system in which a set of 
condition-action rules called classifiers compete 
to control the system and gain credit based on re- 
inforcement provided by the environment. Classifi- 
ers are generated and modified in an evolutionary 
process using a genetic algorithm (GA). Survival 
and evolution depend on the fitness (strength) of 
individuals, which in turn is based on the cumula- 
tive credit of classifiers. 

Previous work of ours on the autonomous nav- 
igation problem has been based on the use of pure 
connectionist reinforcement learning schemes as- 
suming no a priori knowledge, as well as on fuz- 
zy-neural approaches [3-51. In the scheme 
developed here, a classifier system is trained ac- 
cording to an immediate reinforcement algorithm, 
while the coverage of the rule-space is achieved by 
means of an appropriate genetic mechanism. 

The autonomous vehicle driving task, which is 
used here as a benchmark control application, is 
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presented in Section 2. The proposed evolutionary 
reinforcement learning approach is described in 
detail in Section 3. Experimental results and per- 
formance issues are covered in Section 4. Finally, 
Section 5 provides conclusions and discussion. 

2. The autonomous vehicle application 

Collision-free autonomous navigation of a ve- 
hicle in unknown grounds constitutes an interest- 
ing control problem. The objective is to give the 
proper driving commands as a response to the cur- 
rent state of the vehicle, so that it moves in a 
course without collisions. This task represents a 
sensor-motor association problem in the control 
area. Conventional approaches to solve the prob- 
lem use artificial intelligence methods (expert sys- 
tems), which are time-consuming and require 
much knowledge of the environment in which the 
vehicle is moving. In our approach very little a pri- 
ori knowledge is assumed. 

number must be sufficient to provide the necessary 
information. In our application, eight sensors seem 
to be adequate to describe the state of the vehicle 
at each time instant. Fig. 1 shows the location of 
the sensors on the vehicle, where four of them 
are placed at the front and two at each side. Each 
sensor can detect the presence of an obstacle situ- 
ated within a conic space in front of it and pro- 
vides a measure of the distance of the obstacle. 
Although the sensors provide a real-valued dis- 
tance measure, we have considered for encoding 
purposes a discrete representation of the distance, 
by partitioning the cone of each sensor into three 
logarithmically sized areas, numbered from 0 to 
2. A smaller area number corresponds to obstacles 
at a closer distance. An additional distance value 
of 3 indicates that there is no obstacle in the range 
covered by a sensor. Thus, the distinction of four 
different distance values is possible (very close, 
close, far, very far), requiring two bits for each sen- 
sor value (Fig. 1). Therefore, the environmental 
state of the vehicle is described by a 16-bit vector. 

The autonomous vehicle uses a number of sen- During navigation, the vehicle is able to per- 
sors to perceive its environment. The number and form one of five possible actions in response to 
the configuration of the sensors play a very impor- the current state. These driving commands are 
tant role in the control task. On the one hand they the following: 
cannot be too many, and on the other hand their 1. Ahead, 

I Dbtuwoencodlna I 

Fig. 1. Position 

6 7 

of sensors on the vehicle. 
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2. 30” right, 
3. 60” right, 
4. 30” left, 
5. 60” left. 

The movement of the vehicle is governed by a 
set of rules that relate states to actions. Each rule 
i has the form of a pair (ci, ui), where the represen- 
tation of the condition part ci and the action part 
ai is based on the encoding described above. Fig. 2 
illustrates a typical training ground. 

As already stated, in designing the reinforce- 
ment learning system we should effectively deal 
with the problem related to the performance eval- 
uation of the vehicle in a way that is appropriate to 
the learning objective, i.e. the movement of the car 
along a path without collision. Therefore, the eval- 
uation of the vehicle’s state should be based on 
how probable it is for the car to collide and go 
off the road. This probability can be estimated in 
terms of the positions of obstacles as they are de- 
tected by the sensors. In our application we shall 
assume that a scalar evaluative signal r (reinforce- 
ment) is provided by an external agent (the envi- 
ronment). The learning system is not aware of 
the mechanism used to compute the signal. The re- 
inforcement is real-valued ranging over [O,l], thus 
indicating a graded degree of success. One can 
think of r = 1 as “success” and r = 0 as “failure”. 
In the control task at hand, failure corresponds 
to the situation where at least one sensor detects 
an obstacle at its closest distance. Moreover, suc- 
cess relates to the situation where there is no obsta- 
cle in the range covered by any of the front 
sensors. 

The scalar reinforcement signal r is obtained 
as an average of the partial reinforcements 
rk,(k= l,... ,4), computed by the four front sen- 

,c, 
Fig. 2. A typical training ground. 

sors. These partial reinforcements are computed 
according to the rule rk = &/m where the <k’s 
take values from the set (0,. . . , m} and are ob- 
tained through a different (linear) discretization 
of the distances detected by the sensors. (We have 
used m= 27 in our implementation.) The value 
& = 0 means that sensor k has detected an obsta- 
cle right in front of it, while larger values of & 
correspond to obstacles at a longer distance. 
The case of failure is treated in a special manner. 
If at least one of the eight sensors satisfies the 
condition & =O, the global reinforcement as- 
sumes a zero value. It is obvious from the above 
description of the evaluation mechanism that the 
reinforcement signal takes values in the interval 
[O,l] and that large reinforcements correspond 
to actions leading to improved performance of 
the controlled system. 

3. The learning classifier system 

An LCS is a massively parallel, message-pass- 
ing, rule-based system that is capable of environ- 
mental interaction and reinforcement learning 
through credit assignment and rule discovery 
[16,17]. Such a production system consists of a 
set of rules representing a population which 
evolves through a GA-based learning process. 
The foundations of LCS were laid by Holland 
[18]. Typically this class of learning control sys- 
tems is based on the assumption that each member 
of the population represents an individual produc- 
tion rule and is referred to as the Michigan q- 
preach (as opposed to the Pitt approach where 
each member of the population represents a set 
of rules). Although the LCS presented in the liter- 
ature exhibits a variety of features, a typical LCS is 
composed of three main components, as illustrated 
in Fig. 3. 

The performance system is the component that 
interacts with the environment. It comprises input 
and output interface implemented through detec- 
tors and effecters respectively, and a set of rules 
(classifiers) represented as strings with a condi- 
tion-action format. A pattern-matching compo- 
nent identifies the classifiers whose condition 
part is matched by the current detector string 
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Fig. 3. A diagram of the general LCS approach. 

(environmental state). According to some local 
competition scheme a number of matched classifi- 
ers become active and an action is finally chosen 
that is realized by the effecters. The competition 
among classifiers can follow complex mechanisms 
and makes up an inference engine procedure. 

The credit assignment system is the component 
of the overall system which performs the activity 
of learning by means of environmental feedback 
through adjustment of the conflict-resolution pa- 
rameters (strengths) of classifiers. Among the vari- 
ety of credit assignment schemes proposed in the 
literature, the most widely used are the Bucket Bri- 
gade Algorithm (BBA) [9], a local incremental 
learning algorithm, and the Profit Sharing Plan 
(PSP) [19], a global learning scheme with higher 
performance and higher computational require- 
ments than the BBA. 

The third component is the discouery system, 
which develops a learning process by generating 
new classifiers from the existing classifier set by 
means of an evolutionary mechanism (GA). The 
GA is applied with a relatively low frequency 
and replaces a number of “bad performing” classi- 
fiers (typically a small portion of the classifier pop- 
ulation) by new ones formed through 
recombination of high fitness individuals. Tradi- 
tionally, the strength parameter serves both as a 
predictor of future payoff related to the credit as- 
signment component and as the fitness of a classi- 
fier for the GA, although other measures of fitness 

have also been considered [15]. Several options, 
which are related to the general GA optimization 
approach, such as niching and fitness sharing, 
can be adopted in the LCS context to accomplish 
the difficult task of the discovery component [20]. 

The LCS developed here for the vehicle naviga- 
tion task represents an adaptation of the general 
LCS framework, which features exceptions and 
specificities in several respects. In particular, the 
proposed scheme, which is described in detail next, 
incorporates various original characteristics with 
respect to typical LCS implementations regarding 
both the credit assignment component and the dis- 
covery system. 

A schematic representation of the proposed 
LCS is given in Fig. 4, where the interaction with 
the environment is performed via sensors for state 
detection and actuators for motor actions. Each 
classifier i has a condition part c; (match string) 
built upon the binary alphabet plus the “do not 
care” symbol #, representing a pattern of environ- 
mental state, and an action part ai encoding one of 
the possible actions. There is a scalar strength Sf 
associated with each classifier i in the current set 
of working classifiers at time step t. 

The system starts with a random set of classifi- 
ers (population) initialized to some default 
strength. The condition string of each classifier is 
initialized by assigning one of the values 0, 1 and 
# with equal probability to each position, while 
the action is selected following a uniform distribu- 
tion. Training of the classifier system consists of a 

I I 

Fig. 4. Classifier system architecture for the navigation task. 
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sequence of cycles, where each cycle begins with 
the vehicle at the same initial position and ends 
with a failure (collision) signal. 

At each step during operation, the condition 
of each classifier in the current set is compared 
with the detector string. If a classifier’s condition 
matches the detector string in all non-# positions, 
the classifier is considered close to the environ- 
mental state and is included in the current match 
set M. Next, an action is selected from among 
those recommended by the classifiers in M. The 
selection can be done based on the sum of 
strengths of members of M supporting the action 
ai, denoted by S,, either using a roulette wheel 
method (with sectors sized in proportion to S, 
for each action ai) or using a more flexible Bolt- 
zmann probability 

Prob(ai) = esM~/T/Ces~lT (1) 

following some “annealing” parameter T. We have 
adopted the latter scheme in our implementation. 
The temperature parameter T is decreased by a 
small fixed percentage each time the GA is applied 
to the set of classifiers. The appropriate range of 
values for T depends upon the order of magnitude 
of the quantities S,. To bound the behaviour of 
the exponentials we have restricted the values of 
the SM,‘s in [O,l] by normalizing in M. Accordingly, 
this implies relatively small values for T (initial 
value less than 10). After attaining some value 
close to 0 (e.g. the value OS), T is kept constant 
for the rest of the training experiment. 

All members of A4 advocating the selected ac- 
tion become members of the current action ser A. 
The selected action is performed by the actuators 
and a reinforcement signal r (0 < r < 1) is re- 
ceived from the environment. 

The operation step is concluded by appropri- 
ately doing credit assignment to the active classifi- 
ers. The algorithm adopted in our approach 
borrows from ZCS [14], a variant of the BBA, 
and from techniques used in immediate reinforce- 
ment learning schemes [2,3]. Let Si, S,!,l” denote 
the total strength of the classifiers present in the 
action set at time steps t and t + 1, respectively. 
Credit assignment is performed by means of the 
following update equation, where modification of 

the strength of a set implies suitable apportion- 
ment of the increment to all its members: 

sfi + (1 - fi)S:, + ?j(r - b)Sf, + y/?!S;+*. (2) 

The above formulation of the credit assignment al- 
gorithm must be interpreted as follows. First a 
fixed fraction B(O < /I < 1) of the current strength 
of each member of the action set is removed. The 
deducted total amount is divided by the number 
of classifiers in the current action set, thus yielding 
an average deduction (per classifier). This amount 
is then added to the strength of each member of 
the action set of the previous time step discounted 
by a factor ~(0 < y < 1). This mechanism, which is 
different from the usual “bucket” paradigm, has 
proved to be effective in preventing saturation of 
classifier strengths, thus enhancing the flexibility 
of the learning system. 

On the other hand, the strength of the current 
set is modified by an amount depending on the re- 
ceived reinforcement r, specifically the offset of r 
with respect to some baseline value b, with a learn- 
ing rate q. In this way, the reinforcement signal r is 
rewarding if it is greater than the baseline and is 
penalizing if it is less than the baseline. The 
amount q(r - b)Sf, is distributed equally among 
the classifiers participating in the current action 
set. The learning parameter v] generally assumes 
small values (v] K 1) to ensure smooth modifica- 
tion of strengths. 

For the baseline either a fixed value (e.g. 
b = 0.5) can be used or a trace r of past values of 
the reinforcement signal, computed as an exponen- 
tially weighted average 

r(t) = /qt - 1) + (1 - A)r(t), (3) 

where A is a decay rate positive and less than 1. 
This trace can be viewed as a prediction of the ex- 
pected reinforcement value and can be computed 
for the classifier system as a whole or for each in- 
dividual classifier separately. In the latter case, a 
trace T;i is kept for each classifier i, according to 
Eq. (3), and the respective quantity r - ri is used 
to multiply the portion of $$f4, which is equally dis- 
tributed among the classifiers participating in the 
action set. This option of taking individual base- 
lines is intuitively more plausible and has yielded 
better results in our implementation, since it 
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favours classifiers having better performance over 
time. 

Qualitatively, the above update rule has the ef- 
fect of rewarding actions which lead to better than 
usual reinforcement and penalizing actions leading 
to worse than usual reinforcement. In fact, the use 
of reinforcement comparison leads to faster and 
more reliable learning. Specifically, an a priori pre- 
diction of what reinforcement value to expect on a 
particular trial is used as the basis for comparison. 
This prediction computed as an exponentially 
weighted average of past reinforcement values, is 
itself adaptive. Convergence in the learning system 
is achieved because, as learning proceeds and the 
performance of the system is improved, the rein- 
forcement r received from the environment tends 
to be equal to the reinforcement trace 7. 

In the case of rewarding, the strengths of classi- 
fiers in the set difference M - A are decreased by a 
fixed small fraction 6, to enhance strength differen- 
ces while preventing unbounded growing of 
strength. We have taken 6 of the same order as j?. 

The genetic algorithm component of the classifier 
system operates in the background and is responsi- 
ble for generating a number of new classifiers by 
evolving the existing ones through crossover and 
mutation, while keeping the total number of classi- 
fiers constant. The GA is invoked at cycle ending 
instants (failure) provided that the interval be- 
tween two successive invocations exceeds a prede- 
fined number of training steps. We have 
considered both a “panmictic” and a “niching” 
approach to drive the population evolution. The 
latter technique is better adapted to the principle 
of the LCS paradigm. The effect of the GA compo- 
nent is supplemented by a covering operation, that 
is by the insertion of appropriately constructed 
new rules each time the match set is empty. 

The niching approach, that has been adopted in 
our implementation, is based on creating the same 
number of new classifiers for each action ai, and 
using offspring to replace existing classifiers of that 
action. Classifiers from each niche (subset advo- 
cating the same action) are selected for mating 
using the roulette wheel scheme (with probability 
proportional to the strength of each classifier). Sin- 
gle-point crossover is applied with a given proba- 
bility to the condition parts of the mates creating 

a new individual. Mutation is then applied with a 
given probability to each position in the offspring 
(assigning equiprobably one of the other allowed 
values). Thus, from each pair of mates a new pro- 
duction rule is created having the same action as 
its parents and strength equal to the average of 
their strengths. Each newly created classifier re- 
places a “badly performing” one from the same 
niche. The latter is again selected by roulette wheel 
with probability inversely proportional to 
strength. As reproduction is confined within niches 
corresponding to actions, the distribution of pop- 
ulation members to actions (which is generally ta- 
ken uniform) is not disturbed by the operation of 
the GA. Yet actions can be modified by other op- 
erations, such as covering and mutation upon fail- 
ure, that handle special events. These operations 
offer flexibility and result in a smooth adaptation 
of the distribution of rules to actions. 

Covering takes place whenever the match set M 
is empty. In such a case, a new classifier is con- 
structed whose condition is obtained from the cur- 
rent state vector by randomly setting some 
components to the “do not care” symbol (with 
probability less that one-third for each string posi- 
tion). The action part of the new classifier is deter- 
mined as follows. If the reinforcement received for 
the last move (which is evaluated as a function of 
the current state) is relatively large (e.g. greater 
than 0.7) the “move ahead” driving command is 
assigned, since it is likely that there are no obsta- 
cles in front of the vehicle. Otherwise, one of the 
remaining actions is randomly chosen. The new 
classifier then replaces an existing “bad” one se- 
lected at random with probability inversely pro- 
portional to strength, regardless of action. The 
strength of the new member is set equal to the av- 
erage population strength and the reinforcement 
comparison Fi is initialized to zero. 

Another case of action modification relates to 
penalization of the action set whenever a failure 
occurs. In this case, a mutation operator is applied 
to all members of the action set A, by randomly as- 
signing a new action (different from the current 
one) to each classifier in A. The classifiers keep 
their strength, which has been normally decreased 
through application of the credit assignment rule 
of Eq. (2) with r = 0. 
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4. Experimental results 

The performance of the proposed system has 
been investigated through computer simulation ex- 
periments. Each experiment consisted of a number 
of runs that differed only in the seed values for the 
random number generator. Each run consisted of 
a sequence of cycles, where each cycle began with 
the vehicle at the same initial state and ended with 
a failure signal. At the start of each run the vehicle 
was placed at a randomly chosen state. The 
strength of all classifiers is set initially to the same 
value (100). The condition and action part of each 
classifier is initially constructed at random (with 
uniform distribution of actions in the population). 
The discovery system is invoked at failure instants 
with a minimum of 100 training steps between suc- 
cessive invocations. 

Statistical results of the effectiveness of learning 
during each run were obtained as follows. For 
smoothing purposes, at the end of each cycle an 
average value of the number of steps per cycle 
was computed by averaging over all cycles from 
the beginning of the run up to that point. Finally, 
curves were plotted at the end of each experiment 
by averaging over all runs. This representation 
aims at giving an overall view of the progress of 
learning without being affected by random fluctu- 
ations. Of course, under this style of presentation, 
the contribution of high scores is not readily visu- 
alized, since it slowly affects the average value. 
Several training grounds of varying difficulty have 
been employed. 

The purpose of our experiments is first to study 
the general behaviour of the proposed evolution- 
ary reinforcement learning mechanism in different 
grounds and to investigate its dependence upon 
several critical parameters. On the other hand, 
we have tried to compare the navigation perfor- 
mance of the vehicle with another reinforcement- 
based learning approach so as to obtain a better 
idea on the effectiveness of the proposed scheme. 

4.1. Parameter considerations 

The learning classifier system described in Sec- 
tion 3 represents an adaptive control model for 

the collision-free navigation of a vehicle. It in- 
volves a number of user-defined parameters which 
must be appropriately tuned, so as to achieve the 
best performance. Some of them can be experi- 
mentally determined. In general, the range of val- 
ues of each parameter is specified by constraints 
depending upon its physical interpretation. 

Parameter p, the fixed fraction deducted from 
the current strength of each classifier in the action 
set, must be close to 0. On the other hand, the dis- 
count factor y must take a relatively high value but 
not very close to 1, to prevent unexpected rewards 
to classifiers which receive small environmental re- 
inforcement. We have found that the best values 
for the application were /I = 0.2 and ‘/ = 0.8. 

The GA parameters are the probabilities of 
crossover and mutation used to generate offspring. 
Following the natural rules of genetic behaviour 
typical values of these probabilities which have 
proved to be very efficient are 0.8 and 0.002, res- 
pectively. In all the experiments, the annealing pa- 
rameters T started with an initial value T = 5.0 and 
was reduced by 4% at each application of the GA. 
After attaining the value 0.5, the parameter T re- 
mained unchanged until the end of the experiment. 
Also, the value of the parameter 2 used for the 
computation of the reinforcement comparison 
i’(t) (Eq. (3)) was set to II = 0.9. 

An important issue in classifier systems is the 
size of the classifier working set (population). As 
it is difficult to estimate a priori the proper number 
of rules for a control application, some rules may 
remain apathetic during the performance stage of 
system operation. It must be noted here that in 
our approach this problem is reduced by opera- 
tions carried out upon collision, where a classifier 
can change its action, as well as through genetic 
procedures which can change its condition part. 
The effect of the choice of population size N is il- 
lustrated in Fig. 5 for navigation of the vehicle in 
the test ground of Fig. 2. The curves represent 
the average number of steps per cycle as a function 
of the number of cycles and were obtained for dif- 
ferent values of rule population size. The number 
of the rules cannot be very small (N = 50) because 
this leads to the creation of general-purpose rules 
which are not able to store sufficient steering 
information for all possible situations, and, as a 
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Fig. 5. Performance of LCS for different population sizes. 

consequence, the rule discovery mechanism falls 
into a looping behaviour. On the other hand, a very 
large value of population size (N= 150) has not 
proved to be efficient, since this directs the system 
towards a slow learning behaviour. An appropriate 
value found for the number of classifiers was 
N= 100. 

The learning rate q plays an important role in 
the LCS approach. As can be observed from 
Eq. (2), this parameter specifies the amount of re- 
inforcement added to the strength of the current 
action set. This amount must not be excessively 
high or low because this will lead to an unstable 
behaviour during learning. The modifications of 
strengths must follow a smooth and steady update 
process. Fig. 6 shows the effect of the rate r to the 
navigation of the vehicle in the ground of Fig. 2. 
The three curves represent the average number of 
steps per cycle as a function of the number of cy- 
cles for three values of q. The driving performance 
in the case q = 0.1 is too slow, while it is unstable 
in the case q = 0.2. The best behaviour was ob- 
tained for q = 0.15. 

4.2. Comparative results 

The above parameter values have proved to be 
very effective for the performance of the learning 

classifier system during collision-free movement 
of the vehicle through different test grounds. In or- 
der to evaluate the overall performance of our 
model in the given control task, we have compared 
it with a connectionist reinforcement learning ap- 
proach [3]. The latter is a modification of a general 
class of reinforcement learning algorithms, called 
REINFORCE algorithms, that have been devel- 
oped by Williams [2]. It is used to train the weights 
of a neural network consisting of Bernoulli logistic 
units with no hidden layers, whose outputs take 
values in {O,l } . The weight update rule is given 
by the following equation assuming that wij indi- 
cates the weight between input xj and output yi 
of the connectionist network 

Aw, = a(r - b)Fij, (4) 

where a is a learning rate factor, r is the reinforce- 
ment signal delivered by the environment and b is 
a reinforcement baseline. The factor Zii denotes a 
trace of the characteristic eligibility eii of wij. The 
latter is defined as eij = din gi/&u, where gi is 
the probability distribution function of the output 
yi of the ith unit. 

In the case of Bernoulli logistic units, the prob- 
ability pi that unit i will produce an output equal 
to 1 (parameter of the Bernoulli distribution) is a 
logistic function of the weighted average cjwV~j 
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Number of cycles 

Fig. 6. Performance of LCS for different values of 9. 

that constitutes the input to unit i. Computation of 
the characteristic eligibility yields 

ejj = fji -J?i)X,. (5) 

The trace Zij can be computed as an exponentially 
weighted average of recent values of eij by means 
of the difference equation 

Zij(t) = pZij(t - 1) + (1 - p)eU(l), (6) 

where p is a decay factor positive and less than 1. 
The above learning rule, which constitutes a 

modification of the REINFORCE model as origi- 
nally defined, produces a kind of temporal credit 
assignment in the network behaviour. As a conse- 
quence, it succeeds in changing the weights of the 
network in a smoother manner than in the original 
REINFORCE algorithms, thus improving perfor- 
mance. 

Number of cycles 

Fig. 7. Performance comparison of LCS (a) and eligibility trace algorithm (b) 
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Fig. 8. Performance of LCS in a dificult ground. 

Fig. 7 illustrates the behaviour of vehicle nav- 
igation under the learning classifier system (a), 
and under the eligibility trace version of the 
REINFORCE algorithm (b), in terms of the av- 
erage value of the number of steps per cycle. 
The two curves were obtained from experiments 
on the ground depicted in Fig. 2. In the case of 
the eligibility trace scheme, the values of the pa- 
rameters were b =OS, a =0.9 and p = 0.9. The 
parameters for the learning classifier system as- 
sumed the best values found in the experiments 
described previously. As can be observed from 
this figure, clearly the proposed evolutionary ap- 
proach performs better. The learning classifier 
model is more powerful and has the ability to 
construct appropriate control rules with no a pri- 
ori knowledge of the dynamics associated with 
the steering behaviour of the vehicle. Moreover, 

through its genetic aspect, it has the advantage 
to explore effectively the rule space and avoid 
the problems of convergence related to the pure 
reinforcement learning schemes. 

Fig. 8 displays the performance of the proposed 
learning classifier system in the ground shown 
in Fig. 9, which can be considered a “difficult” 
one. It is obvious from this curve that the model 
is able to create effective driving rules for naviga- 
tion of the vehicle in this kind of “hard-to-learn” 
ground. It must also be noted that in such test 
grounds the eligibility trace algorithm has bad 
performance and is not able to attain a steady 
behaviour. 

5. Conclusions 

We have addressed the problem of autonomous 
vehicle navigation using a LCS approach. Starting 
from the formulation of the problem our study 
focused on the development and exploration of 
the appropriate learning model for control. The 
proposed evolutionary learning scheme borrows 
both from genetic learning classifier systems and 
reinforcement learning and aims to construct effi- 
cient rules associated with the steering behaviour 
of the vehicle. In addition, it has the capability 
of using the reinforcement learning aspect in a 

Number of cycles 

Fig. 9. A “difficult” training ground. 
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more efficient way than other learning classifier 
approaches, obtaining characteristics that enhance 
its learning performance. 

We have experimentally evaluated the proposed 
system on several training grounds of varying 
difficulty and obtained statistical results of the ef- 
fectiveness of learning during each experiment, by 
computing a moving average of the number of 
steps per cycle. These experiments allowed us to in- 
vestigate the role of several parameters that affect 
the behaviour of the system, and determine their 
most appropriate values for the application. To il- 
lustrate the effectiveness of our evolutionary ap- 
proach we have compared it with a neural 
network scheme based on reinforcement learning 
that had been applied to the same benchmark ap- 
plication in previous work of ours. The results have 
shown that the evolutionary reinforcement learn- 
ing mechanism exhibits clearly superior perfor- 
mance and offers a particularly promising 
alternative in adaptive movement control. 

Several extensions and modifications to the pre- 
sented approach may be considered in the future in 
order to further investigate the use of learning clas- 
sifier systems in this type of application. On the 
one hand, we can explore the reinforcement learn- 
ing aspect by selecting among several known tech- 
niques, in order to achieve better credit assignment 
mechanisms. On the other hand, we can improve 
the behaviour of the discovery system by consider- 
ing hybrid techniques that can be effectively ap- 
plied to overcome the weaknesses of GA. 

An interesting alternative is to consider the use 
of a fuzzy learning classljier system (FLCS), i.e. a 
type of generic-based machine learning system 
whose classifier list is a fuzzy rule bank and 
which creates fuzzy rules working in a fuzzy envi- 
ronment . 

Another direction of future investigation is to 
incorporate an adaptive critic element (ACE) into 
the system. This element can be a neural network, 
that learns to produce a prediction of future rein- 
forcement for each state. Thus, the network may 
evaluate the action suggested by the classifier sys- 
tem by computing an internal reinforcement sig- 
nal, which is taken into account upon updating 
the strengths of classifiers in the action set. Refer- 
ring to the general schema of Fig. 3, which 

presents an abstract view of the learning classifier 
system, we can add a box describing the effect 
of the ACE which can communicate both 
with the environment and the learning classifier 
box. 
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