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Abstract

A diagnostic system is presemted that employs morphometry combined

with & TUZZy nieuial network approach, for the discrimination of benign from
malignant gastric lesions. The input to the system consists of images of
routing processed gastric smears stained by Papanicolaou technique. The
analysis of the images provides a data set of cell features. The fuzzy min-
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max neural network classifier, an efficient pattern recognition approach, is
used 1o ciassify benign and malignant cells based on the extracied
morphometzic and textural features. The fuzzy min-max classification
network is based on hyperbox fuzzy sets and can be incrementally trained
requiring only one pass through the traiming set. The application of the
fuzzy min-max neural network vields high rates of correct classification at
both the cell level and the patient level. These results indicate that the use of
intelligent computational {echniques along with image morphometry may

offer very usefu! information about the potential of malignancy of gastric
cells.
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1, Introduction

The diagnostic process used in Image Cyiometry aims to exploit
information extracted from medical images. In usual real life situations,
cytopathologists Iook through the microscope and make a diagnosis probably
using a subconscious process based on pattern recognition. Therefore, in
practice it is quite difficult to extract and formulate the expert knowledge
used by 2 cylopathologist during diagnosis. The problem in diagnosis is to
map the morphomeiric quantitative descriptions measured to the known
qualitative pathological entities.

The application of intelligent computational techniques, such as neural
--networks and fazey gystoms, seems to provide a solution to the above
situation and constitutes 2 new emerging field in Diagnostic Cytology.
Pattern recognition, data base search, knowledge extraction and decision-
making, are some of the most important applications of neural networks in
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and Wilding, 19926,Tm0§1g? 195;5) Up io now neural networks have been
successfully applied for the mass screening of Gynaecological Cytology
samples (Rosenthal and Mango, 1994), ‘

Gastric Cytology has not reached wide acneptance in the investigation of
gastric lesions because of the difficulties in the discrimination of benign
lesions with severe régeneraﬁve alterations from well differentiated cancer
cells (Kasugai and Kobayashi, 1974; Husain, 1991). However the same
diagnostic dilemmas are also present in tissue sections from gastric mucosa
biopsies with dysplastic or regenerative changes.

The diagnostic system described in the present paper exploits the
potential of morphometry combined with fuzzy neural networks in the
discrimination of benign from malignant gastric celis in routine prepared
gastric smears, and provides a useful medical expert fool that can be very
heipful to cytopathologists,

Fuzzy min-max neural networks (Simpson, 1992; Simpson, 1993; Likas
el al., 1994) constitute one of the many models of computational intelligence
that have been recently developed from research efforts aiming at
synthesizing neural networks and fuzzy logic (Bezdek, 1992; Kosko, 1992;
Kartalopoulos, 1996). ‘

The fuzzy min-max classification neural network (Simpson, 1992) is an
on-line supervised learning classifier based on hyperbox fuzzy sets, which
are regions of the pattern: space that can be completely defined by the
minimum and the maximum points along each dimension. In the case where
a pattern is not completely contained in any of the hyperboxes, a properly
computed fuzzy membership function indicates the depree to which ihe
pattern falls outside of each of the hyperboxes, Learning in the fuzzy min-
max classification network is an expansion-confraction process that consists

the field of Cyiclogy (Dawson. 1991, Astion and Wilding, 1992a; Astion .

of creating and adjusting hyperboxes and also associating a2 class label to

eac“*cfuthe%Dumng@peraum"r,ﬂm Class associated with the hyperbox

having maximum membership is taken as the decision of the network. An

extension of the origina! definition and operation of the model has been
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developed (Likas ef g, 1994) in order io apply the.method to patiern- . ..
recogaition problems that involve both discrste and continueons attributes. |

In the following section the application sstup and study design are
described. In Section 3 2 brief description of the operation and training of
the fuzzy min-max classification network is provided. Section 4 represenis
results from the application of the forzy min-max methed to the
classification of gastric cells. Evaluation of the proposed approach and
discussion are provided in Section 5.

2. System Description and Study Design

2.1, System Components

The diagnostic process is complex and can be split into several stages.
Figure 1 displays a general schema of the process characterizing the
operation of the diagnostic system. It is actually coroposed of four stages,
namely: Imsge Acquisition, Imapge Processing, Feature Selection and
Classification.

The first stage involves the capturing and analysis of the microscopic
images and is very difficult because of the presence of noise and the
compiexity of the image. The elimination of noise is essential for the cell
image acquisition module. The source of the noise is either the sample itself
and/or the miss-calibrated microscope parameters. The process applied for
the elimination of noise is median fltering which reduces the image random
noise, while keeping a1l the initial information.

Cell Image

Feature

Image Classification

Acquisistion Processing Selection (Diagnosis}

Fig. 1:  System description
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During median wﬁ};};@g&g}g&h&.iﬁ@qa@gg&is scanned using 3x3 temylates
(line by line and comnln by mcdlum). For each tempiate, the girey values
included in this 3x3 emplate are sorted and the central pixel of the iemplate
is replaced by the median value of the sorted Iigt. Noisy values (if present in
the template) are placed at the edges of the sorted list. The median valye of
the list, that teplaces the central pixel of the template, is most probably a
true value (not noise) which wag Initially contained in the image,

The noise that comes from the MiCToscope parameters (i.e. Boise on the
MICroscope optical paris) can only be reduced by carefuily clearing the
corresponding parts using special liguids.

The correct calibration of the microscope is another essential siep for
successfl classification of the cells. The methed used is based on the
digitization of a standard sample through the microscope. This sample dosg
Tiot contain any cells in the field of view (empty field). The System analyses
this sample and sxtracts various baramelers that characterize the neise

percentage of the microscope system, lighting and focusing conditions ele.
The extracted parameters are compared with the predefined calibration ones
resulting to a measure that identifies the captuiing behaviour of the system.

Segmentation of cytoplasm and the cell muclei is performed during the
second stage. To achieve this, a suitable preprocessing of the image is
applied in such 2 way that a global threshold based on the hﬁstngram can
segment the cell nuclei and the cytoplasm. The preprocessing  involves
image filtering a7id enibanceiisnt of the ceil muciei. Enhancement of the cell
nuclei increases the contrast between the nuclei and the background. Thig

enhancement is carried out using min filtering,

The characteristics for the discrimination of celis involve two generat
categories: geometric characteristics and characteristics that are based on
individual pixel values (optical or density features). The foliowing sub-
section provides a more detailed description of the sbove characteristics,

2.2 Specimens and Extracted Features

Sixty eight patients with gastric lesions were investigated in studying the
propesed  diagnostic approach. The siudy was performed on brushing
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cytology smears taken during,_gndqsgqpy&_'rhe smears were routinely ﬁx_;;d in
96° ethanol for 30 minutes and stamed ‘with Papanicolacu technique; The
cytological diagnosis was made by at least two cytopathologists with 10
years experience in gastric cytology and was also confirmed by the hisiologic
examination of biopsies and/or surgical specimens. The output of the
cytological examination assigns a cell to one of five classes (cancer, gastritis,
inflammatory dysplasia, true dysplasia and ulcer). The correlation of the
cytological with the final diagnosis (referring to three classes, namely
cancer, gastritis and ulcer) is presented in Table 1.

Table 1
Correlation of final and cytological diagnosis

Final diagnosis
Cytological diagnosis || cancer | gastritis | ulcer
cancer 19
gastritis 18
inflammatory dysplasia 3
true dysplasia 4
ulcer 24

The basic measurements/features that are extracted from every cell can
be grouped according to their physical characteristics into two main
categories: geomeltric and densitomelric}.

The geomelne faiiies are exbracied both Frow the mucieus and the
cytoplasm, according to the computational method and the mathematical
models reported in the lterature (Bask, 1991; Baxes, 1994; Sonka ef ol
1994}, These characteristics describe properties relative to the size (e.g. area,

 perimeter, diameter etc.) or properties that give information about the shape
{e.g. Form area, Form perimeter ¢tc.) as well as the relative position of the
nuciei inside the cell. When the cytoplasm is absent the geometric features
of the cytoplasm are considered equal to the geometric features of the
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value of the mean radzus of all the mclez mcluded in the cell; for a cell with
ore mucleus or for a naked nucleus it is considered equal to the mean radius
of the nucleus,

Other features that are also extracted are: a) the number of nuclei per
cell; if it is a naked nuclevs this feature is taken equal to one, b) the mean
value of the Eeng&h of the axes that connect the cell center of mass and the
nuclel centers of mass; if it is 2 naked nuclens this feature has a value of
zero (as if one nucleus is in the center of the cell), and finally c) the nncleo-
Cytoplasmic ratio, which is considered equal to one if the cytoplasm is
absent.

The densitometric features provide textural information about nuclei.
From the various methods that have been proposed for the description of
Chromatine texture, it was preferred to implement four models: Histogram,

Differences Histogram, Run Length and Co-occurrence Matrix. The first fwo

medels have the advantage of computationai simplicity at the cost of poor
texture  discrimination, while the last two medels give more precise
information on the nuclei structure. The histogram of an object represents
the relative frequency of occurrence of the various gray levels in the i image,
while the differences histogram method provides features by computing the

difference of each pixel value from the neighbouring pixels that lie at a
specific distance. The run length method reveals directional and COoarseness
information about the téxtute, Finally, the co-cocurrence matrix gives the
joint probability of two pixels lying at a specific distance in the image.
During this study never was a cell enccuntered with more than one
nucleus, so each cell was represented by & voctor with 41 elernenis: 17
geometric features for the nucleus, 12 geometric features for the cytoplasm,
the number of nuclei, the mean value of the length of the axes that connect
the cell center of mass and the muclei cenmters of mass, the nucleus

CYIODIsTIIC 1afic, and 14 densiiomeiiic feafires 167 ils uclens Thege
features are displayed in Table 2, while their descriptive sﬁ:atnstics are

sumimarized in Appendix A.
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o Table 2
7" "Features of data N B
| Type i Feature
Geometric Areas of Cells
for {treularnities of Cells
cytoplasm Major Axis of Cells
 Minor Axis of Cells J
Perimeter of Cells . I

Form area of Cells
rorm perimeter of Cells
Cl of Cells ;
Contour Ratio of Cells
Roundness Factor of Cells
Diameter of Cells
Mean Radius of Cells

(Geometric Areas of Nuclei
for Circularities of Nucle:
nuclens Major Axis of Nuclei

Minor Axis of Nuclei
Perimeter of Nuclei
Form of Nuclei
Form perimeter of Nuclet
CI of Nuclei
Contour- Ratio of Nucler
Roundness Factor of Histogram i
Diameter of Nuclei
Mean Radius of Nuclei in Cell ;
Densitometric Mean of Nuclei Histogram i
(textural Std of Nuclei Histogram :
information | Var of Nucle: Histogram
about Run Length Short Run of Nuclei
nuclei) Run Length Long Run of Nuclei
Run Length Gray Level of Nucle
Run Length Distribution of Nuclel
Cooccurrence Matrix Maximum of Nuclet
Cooccurrence Matrix Entropy of Nuclel
Cooccurrence Matrix Inertia of Nucle;
Mean of Differences Histogram
Variance of Differences Histogram |
Contrast of Differences Histogram ]
Entropy of Differences Histogram J
Other Nuclei Cytoplasm Ratio
Nuclei per Cel! :
Mean Distance of Nuclei in Cell :
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3. The Fuzzy Min-Max Classification Network

We have selected a fast and efficient mechanism for the classification
part of the diagnostic system, the fuzzy min-max neural network classifier.

The fuzzy min-max neural network is an on-line supervised learning
clagsifier whose operation and training are based on the concepts of
hyperbox fuzzy sets. Consider a classification problem with » continuous
attributes that have been rescaled in the interval {0,1], hence the paitern
space is I” ([0, 1}7). Moreover, consider that there exist P classes and B
hyperboxes with corresponding minimum and maximum values v; and wy,
respectively (7=1,...,B, i=1, --h) (Figure 2). Let also ¢ denote the class
label associated with hyperbox B,

When the 4” input pattern 4 »= (@, ....0n) I8 presented to the network,
the corresponding membership function for hyperbox B; is (Simpson, 1992)

bi(An) = ‘l‘i[l = flan — wii, v) ~ floy — ang,7)] (H

n ta=l

where fix, 7) = xy, F0sxy<), v, =1 HFxy>1 and fx, =0ifxy<g
If the input pattern 4, falls inside the hyperbox B; then b; (Ap) = 1, otherwise

? max point

min point { O 2 T
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Fig. 2:  Fuzzy hyperboxes
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the membership decreases and the parameter v 2 1 regulates the decrease
rate. As already aoted, the class of the hyperbox with the mammmm
membership is considered as the output of the network.

In 2 neural network formulation, each hyperbox B; can be considered as a
hidden unit of a feedforward nevral network that receives the inputl pattern
an& computes the corresponding membership value. The values vy and wy
can be considered as the weights from the input to the hidden layer. The
output layer containg as many ouiput nodes as the number of classes. The
weights uy (=1, .., B, k=1, ..., p) from the hidden to the output layer
express the class corresponding to each hyperbox: u; = 1 if B; is a hyperbox
for class ¢, otherwise it is zero, Figure 3 represents the architecture of the
fuzzy min-max classificztion neural network.

Input Nodes Hyperbox Nodes Class Nodes
Fig. 3:  Neural network formulation of the fuzzy min-max classifier

During learning, each traiming pattern 4, is presentsd once to the
network and the following process takes place. First we find the hyperbox b

with the maximum membership value m&% these that correspond to the
same class as pattern 4, and meet the expansion criterion:

né > 3 (max(w;, ak;) — Min{vs, an)) @

i=1
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The parameter 6 (0 < 8 < 1) is a user-defined vaiue that imposes a bound
on the size of ﬁ%@%&ﬂéﬂd its value sz.gﬁ&ﬁ"éaﬁﬂyﬁao‘is the effectivencss
of the training algorithm. In the case where an expandabie hyperbox (of the
same class) cannot be found, then a new hyperbox B, is spawned and we set
Wi = Vi = ay; Tor each i Otherwise, the hyperbox B; with the maximum
membership value is expanded in order to incorporate the new pattern Ay,

ie,foreachi=1, .. ,m

v = min(v;’f‘i, ahi) (3>
Lonew old 4
wir™ = max(wl”, an) 4)

Fellowing the expansion of a hyperbox, an overlap fest takes place to
determine if any overlap exists between hyperboxes from different classes. In
case such an overlap exists, it is eliminated by a contraciion process} during
which the size of each of the overlapping hyperboxes is minimally adjusted.
Details concerning the overlap test and the contraction process can be found
in (Simpson, 1992). The effectiveness of the training algorithm generally
depends on two facters: the valve of the parameter O and the order with
which the training paiterns are presented o the network,

4, Results

The image analysis part of the system is composed of an IBM compatible
Pentium 133MHz computer, eguipped with a 1MB Matrox MVP-AT frame
grabber and g3 SONY DXC-151P color CCD camera. The camera is attached
to a Nicon Labophot 2 microscope through a C-mount adapter and to the
frame grabber by proper cabling. The CCD sensor of the camera has a
resolution of 756x5381. All images were captured using a 40x objective and

digitized to 5122512 pixels.
The imaging software operates under MS-Windows and is nsed for the
segmentation of celis and their nuclei and for the extraction of the
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measurements that correspond to the features. The S/W is in a high degree

customized. A commercially available image processing product s used

(OPTIMAS from BioScan Inc.) which sepplies 2 variety of image processing
fanctions and the ability to extract basic geometric and densitometric
characteristics from images or parts of images. On the top of this package is
applied a library of custom functions. These are written in C (mainly for the
segmentation and for texture estimation) and in the macro language that
OPTIMAS supports (ALI=Analytical Language for Images) for the user
interface, for image storage/retrieval, storage of measurements and for the

extraction. of texture features.”
The study group of our system consisted of data from 68 patients with

gastric lesions. Using the custom image analysis described above, these
cases provided a data set of 5933 cells (see Table 3). Before entering the data
st into the fuzzy nmeural network classifier the feature values were
normaalized to the interval [0, 1}, as prescribed by the classifier model.

In order to evaluate the overall performance of our system four different
geries of experiments were carried out with respect to the level of
examination and the number of classes.

. With resinect 10 the level of examination experiments were conducted
considering both individual cells randomly selected from the total cell

Table 3
Data set
[ 5 classes 2 classes
Caneer T Gastmitis | I-dyspl | t-dyspi | Ulcer i Malignant | Benign
Cells 851 2078 143 171 2685 1022 4911
Patients 19 18 3 4 24 23 45
i-dyspl : Inflammatory dysplasia Malignant Cancer and T-dyspl
) T-dyspl : True dysplasia Benign : Gastritis, l-dyspl and Ulcer

“The development of the imaging system has been financially supported in
part by 01-Pliroforiki SA under EC Project VALUE/CCS.
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collection (celinlar} level) and the total number of celis beimgmg ta

e L R

specific patient (patiert} 16‘/@3}, in order to charatiEerize 4 patient case] At

the patient level the input pattern presented to the system consisted of the
mean and standard deviation of the values of the 41 featuzes regarding the
cells obtained from that patient. At the cellular level 1785 cases were used as
the training set for the fuzzy min-max neural network classifier, while the
remaining 4148 celis were used as the testing set. At the patient level 23
patient cases were used as training sef and the other 45 as testing set.

From another point of view, we can divide the above two datasels into
either five or two classes. In other words we may represent the problem
either as the discrimination of five classes (cancer, gastritis, inflammatory
dysplasia, true dysplasia, and ulcer) or as z more coarse classification
problem involving only two classes: malignant and benign, that can be
obtained from the union of the cancer and true dysplasia cases to one class
(malignant), and the three other cases to another class {benign).

From the above analysis it is clear that we can examine the performance
of our system in four different classification problems. Table 4 shows the
training set for the four cases that was randomly composed by selecting
30\% of the entire dataset, while Table 5 represents the n‘especﬂve testing set
for the same classification problems.

Table 4
Training set
5 classes 2 classes
Cancer | Gastritis | I-dvspl [ T-dyspl | Ulcer | Malignant | Benign
Celis 257 | 626 44 50 308 307 1478
Patients | 6 G 2 2 T 3 15
Table 5
Testing set
5 classes 2 classes
Cancer | Gastritis | I-dyspl [ T-dyspl | Ulcer || Malignant Benign
Cells 594 1452 104 121 1877 715 3433
Patients 13 12 1 2 i7 15 30
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The performance of the fuzzy min-max neural network classifier was
evaluated for all four Glassification problems. The :G:jag?éms' in Figures 4 and
5 concern the problems of five classes and two classes respeciively and draw
up the correct classification vate at the cellular level, Different values of the
parameter 8 are considered in the range of [0.09, 0.20] with a 0.01 step. For

all the obtained rates the nmmber of comstructed hyperboxes (B) is also
repﬁ‘esemted. Ag shown by the diagrams, in the case of five ciasses the best
classification rate was 95.18% and was obtained for the value 6 = 0.1, where
the nevral network contzined 537 hyperboxes. Table 6 fllustraies the success
rate at the cellular level obtained by the best fuzzy min-max neural network
constructed, by providing the classification rate for each of the five classes
together with the distribution of misclassified cases. For example, the correct
classification rate in the case of cancer is 90.74% and erroneous

95 1 1 T ¥ T T ) 1 H 1 T ¥
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B=137
R i
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B
3
© el :
R=10)
o B=X
90 i i i i i 1 1 i 1 1 i ]

603 01 011 012 013 oM 035 036 047 048 GiE 02
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Fig. 4:  Classification performance for 5 classes
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Fig. 5:  Classification performance for 2 classes

Table 6

Percentages of success and failure (celiular level) of fuzzy min-max

Fuzzy Min-Maz Classification Neltwork
Distribution of fallure
Success || Cancer | Gastritis | I-dyspl | T-dyspl | Ulcer
- Cancer | 90.74% 65.5% | 6.9% 5.2% | 22.4%
I Gastritis | 96.90% || 17.8% 11.1% | 2.2% | 68.9%
I-dyspl |91.35% | 11.1% | 33.3% 11.1% | 44.5%
: T-dyspl | 56.20% § 30.2% 7.5% 20.8% 41.5%
Ulcer | 98.14% || 20.0% | 40.0% | 25.7% | 14.3%




Volume 8, Nos. 1-2 Cytological Diagnosis Based on Fuzzy
Neural Networks

classification. cases’ are assigned to gastritis at 635.5%, inflammatory
dysplasia at 6.9%, true dysplasia at 5.2% and ulcer at 22.4%. -

Experiments of the two-class problem considering different 0 values gave
a best clagsification tate of 98.0% at the value © = 0.1 with a network of 392
hyperboxes. The neural network classified the malignant cells with a correct
cate of 91.75% while the benign cells were almost perfectly classified
(99.30%).

At the patient level the fuzzy neural network classifier was trained and
tested in the same mazner comsidering five classes and two classes. In the
two cases the network gave & correct overall classification rate of 93.34%
and $7.78% respectively, almost irrespective of the © values taken in the
range [0.09, 0.2]. The number of constructed hyperboxes was 2C in the case
of five classes and 17 in the case of two classes. Considering five classes the
network confused only the two dysplasia classes (inflammatory and frue)
matching them as ulcer class. During the testing operation with two classes
(malignant and benign) the neural network responded almost perfectly,
making only one erroneous diagnosis of malignant class. It must be noted
that in all the sbove experiments the value of the pammeter v was the same
(egual to 2.0).

In order to assess the potential of the fuzzy min-mex algorithm, we have
also applied learning vector quantization 0 the four clagsification cases
using the same data. For that reason we have selecied the LVQ1 algorithm
(Kohonen, 1990). A sufficient number of ‘codebook vectors’ for the four
classification problems (2 for the cellular level and 2 for patient level) was
found to be 40, 20, 10 and 10 respectively. The learning parameter o was sel
initially to a small value 0.04 and was lincarly decreased with time. Table 7
shows the performance of the LVQ1 algorithm in comperison with the
results of the fuzzy min-max method, i.e. the classification rate of the testing
 set for 2il four casegu.“Mox‘eovez, Table & provides an analysis of the success
rate obtained by theLVQl aigomhm at the cellular level, in confrasi o
Table 6 which concerns the fuzzy min-max network. The superiority of the
fuzzy min-max algorithm is apparent from the above tables that illustrate
the capability of the method to eliminate overlapping in the feature space.
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Tabiﬁe 7

i o g - [,
o L g Y .

Corparison of fu'Zij min-max and LVQ St

Fuzzy Min-Maz || LVQ1

Cells | 5 classes 95.18% 87.73%

| 2 classes 98.00% 92.02%

] Patients | 5 classes 93.34% 64.44%

2 classes 97.78% 95.56%
Table 8

Percentages of success and failure {cellular level) of LYVQ

Learning Vector Quantization

Distribution of failure

Success || Cancer | Gastritis | I-dvspl T-dyspl | Ulcer
Cancer | 78.28% 41.1% 4.6% |, 21.7% | 32.6%
Gastritis | 91.25% 1| 42.5% 4.7% | 20.5% | 32.3%
I-dyspl | 92.30% | 37.5% | 0.0% 62.5% | 0.0%
T-dyspl | 76.03% 1| 48.2% | 3.5% | 34.5% 13.8%
Ulcer | 88.49% || 274% | 44.9% | 6.9% | 20.8%

5. Discussion

Cytology has not reached a wide acceptance in the investigation of
gastzic lesions because of the relatively high rate of false negative and false
positive results. However the same problems may also occur in histologic
cxamination of tissue biopsies (Kasugai and Kobayashi, 1974; Husain,
; 1991).
: The aim of this study was to investigate the potential ole of a diagnostic
system in the area of gastric cytology. We have tried to apply effective
methods from the fields of medical analysis and patfern recognition in order
{o overcome the difficulties usually encountered by cytopathologists. The

71




Volume 8 Nos. 1-Z Cytological Diagnosis Based on Fuzzy

Neural Networks

" dizgnostic system is a combination of morphomstry with fuzzy newral

networks and he objective is to discriminate benign from malignant gastric
cells in routine prepared gasiric SIEaLs.

An important phase of the process was the selection of the data. The
features used in our study were selected because they represemt classical
morphometric and textural characteristics, which correspond to objective
estimation of cellular characteristics examined by the eye of a skilied
cytopathologist during routine screening. Although the importance of each
individual feature is out of the scope of this study, it was decided that several
features be extracted from the systers, as it is accepted that texture gives an
indication of the DMA activation, and that changss in the nuclear and

celiular size, shape and texture reflect alterations which may be accounted
for in the Behaviour of celis.

According to the results, the performance of the fuzzy rmin-max heural
network was excellent in the discrimination of benign from malignant cells.
Actually, at the cellular level, the network could discriminate either five
classes or two general classes with a high success rate. From the results of
Table 6 we can extract some significant information sbout the behaviour and
the Ievel of accuracy of our system. The fuzzy meural classifier responds
successfully in the cases of ulcer, gastritis, inflammatory dysplasia and
cancer. The low correct classification rate in the case of true dysplasia is
very reasonable since this kind of cells corresponds to well differentiated
carcinomas. When considering only two classes (bemign, malignant) we
obtained higher classification performance, $1.75% of malignant and almost
100% of benign cells, The last rate is very imporiant for cytological
diagnosis because it could reduce unceriainty.

At the patient level the results were analogous. Even though the number
of data available for training was relatively smail and the number of features

_was twice the fumber conszcﬁered at the celiular level (by adding standard

deviation), the system exh&hxtecﬁ an excellent behaviour in both imter-
pretations of classes, making only four and one mistakes respectively.

The inability of perfect (100%) classification of benign and malignant
ceils and lesions arises from the fact that in the feature space the borders of
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. the fwo classes are-not-always clear. This fac is.displayed in Figure 6 . .
showing benign ceﬁs ﬁr‘o}n' ulcer cases and correspomzﬁhg cancer cells which
arg very similar,

Due to the overiap observed in the feature space the discrimination
between benign and malignant cells using statistical classifiers has not been
successful, althcugh a statisticelly significant difference was observed
(Danno, 1976; Boon et al., 1981; Tosi ef al,, 1987). The daia set considersd
in our experiments has also been used to train 2 neural nstwork classifier by
means of the backpropagation algorithm (Karakitsos ef al., 1995), Although
the neural aetwork exhibited high success rates in the discrimination of two
classes, it showed poor performance when fested in the classification of data
into 5 classes. Back pmpagaﬁon suffers from the inability to build very
efficient discriminating rules for significant cases of data overlapping, Alse,

gn cell
it ‘i e,

C. benign cell D. cancer cell

Fig. 6:  Sample benign and cancer cells from ulcer cases
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7 it has 6 disddvantage of reguiring a large amount of time to leam.the.. ... .
decision boundaries of the classes. On the other hand, the fuzzy min-max ;
neural network classifier bears some desirable features which ave due to the
expension, oveslapping test and contraction operations. Thus, it succeeds in
determining efficient building blocks (hyperboxes) and eliminating
overlapping in the feature space between hyperboxes of different classes,
yielding a fast learning procedure. Another impertant advantage of the fuzzy
min-max classifier is its robustness with respect to the selection of the value
of the © parameter. As can be observed from Figures 4 and 5, the classifier
shows high classification performance all over the range {0.09, 0.2] of 6.

Maoreover, the effectiveness of the fuzzy min-max newral network inm

overcoming difficulties that arise from overlapping has beem shown by
means of its superiority over LVQ. It must be noted that in order to assess
problem difficulty we have preferred to perform experiments with LVQ
rather than consider data analysis or visualization techniques (like the one
based on SOM proposed in (Mao and Jain, 1995}). The inability of methods
tike LVQ to achieve high recognition rates suggests that the classification
problem is hard and we did not expect to obtain any significant information
by verforming data visaalization (which is mainly based on clustering
techmigues).
As the experiments indicated, the fuzzy min-max classification neural 4
- network constitutes a very promising method for pattern recognition and, ‘
more s;peci:ﬁcaﬂy,' for medical diagnosis applications. Indeed, through the
use of fuzzy logic the system can extract useful information, such as the
degres of membership of a cell data to each concerned class. Thus, a

* cytopathologist may obtain diagnostic opinions about whether a cell or the
collection of a patient's cells belong to each category. Building efficient
decision regions and fuzzy geometric structures, the fuzzy min-max neural

_ .'_qlggksijﬁgr‘deﬁnes fuzzy internal rules providing a powerful diagnostic tool.
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APPENDIX A oo o T

Table 9
Statistics of the data set
) Feature Class Mean Std Feature Mean - Std -
Cancer 215.80 202.91 14.31 19,47
\roas of Gastritis | 196.95 LI P— 781 152 d
; Sreas o [ dvspl. 92709 SST.a4 )| -lvewantbies Ty 351
Cells T ayspl | TBE+3 | o0 | of Cells §.03 557
; Ulcer [17.252 11359 $45.39 107100
Cancer 19,11 13.76 1158 14,52 -
. I Gastritis 103 106 , . 24 276 S
Major :-\.\'15 Tdvsp. 904 T Minor Axis 0 G n :
of Celis Tdvspl | 5.3 i53g ) of Cells 553 5.04
Ulcer CB 548 740 3.83
Cancer 53.52 51.05 0.05 2,11
Perimeter | CRSHIES 137 EXTIE 0.50 0.50
¥ T dyspl. 1306 3944 7 0.02 19,51
of Cells T dyspl | ST.o4 T35 of Cells 0.00 300
Ulcer §.35 7.55 23.39 33,03
. Cancer 0.93 0.84 3T 3.63
’ Form Gastritis 0.38 0.38 1.36 .86 :
perimeter I dvspl. 0.31 0.3 I of Cells 1.31 0.33 -
3 of Cells T dyspi. ~0.07 -0.08 1Ay 144
: Ulcer 0.01 -0.03 .42 0.27
; Cancer 113 1.28 1.06 1.07 -
. Contour Gastritis 1.39 1.40 Roundness 124 124 ]
Ratio of T dyspl. .41 L3 || Factor of 0.37 041 .
Cells T dyspl. 0.80 078 || Cells 0.7l 0.70
; " Ulcer 1.50 1.55 111 1.07
Cancer 15.98 15.11 701 3.07 '
, Gastritis 3.01 3.02 || Mean 137 1.35 .
Diameter ot 710 352 ] Radius of 3709 6.65 '
of Cells - T el T 1005 T 705 Colls 300 X))
: Ulcer 1.54 133 .65 176
Cancer 148.33 134,04 14.53 15.40
5 Gastritis 974 35,67 . sy 4 4,78
- Areas of I T II0s | Tos9 ) Circularities| 1397 _
h Nuclet Tdyapl | o208t 1 siisg j of Nuclei Y ENT I
: Ulcer 16.02 1478 : 45T 223,10 "
4.‘ Cancer i5.:5 15.47 1207 e
: Gastritis 3.00 3.09 . , 2,53 201
: Major Axis Tt n G| Minor Axds |37 w12
of Nuclet =T =0 5.5 of Nuclei 55 153
; Ulcer 153 5 3.95 3.02
j Cancer 4434 315 .06 L16 M
] , Gastritis 1121 11.18 ) 0.46 0.46 5
; Perimeter | qeer——T575 Tg.00 | Form area 0.09 1336 -
of Nuclel el T30 rgp ) of Nuckd 0.02 T3
- Ulcer 5.12 4,34 13.23 14.37
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Lo - Table 9 (continued) T S
Statistics of the data set

Cancer 0.37 0.33 3.30 3.64
Form Gastritis 0.39 0.23 Ol of - L33 .34
perimeter { dvspl. 0.32 (.05 ol 1.9 0,42
of Nuclei | T dvepl. | 0.2 Bz Nuce 37 L3S
. Ulcer 0.81 -0.02 043 0.27
Cancer 115 1.28 107 Lo7
Contour CGastritis 1.37 1.37 Roundness 1.2] 1.21
i Ratio of [ dvspl. 047 1.30 Factor of 0.39 .39
! Nuelei T dvspl. 0.7 0.5 j| Histogram 00 050
: Ulcer 1.57 1.02 .09 1.05
1 Cancer 13.28 12.49 144,39 135.67
| Diameter Grastritis 2.36 2.35 Mean of 23‘3.94 233.56
: ameter el 3.63 T84 || Nuclei DLH LS
of Nuclel o T "5 70 166 || Histogram || 31036 | 2077
Ulcer L.39 1.14 55.92 33.87
! Cancer 13.14 18.37 217.20 208.76
‘ Std of Gastritis 17.82 17.84¢ | Var of 2.5E+d | 2.3E44
Nuclei I dvspl. 14.05 59.46 Nuclei T.50E43 TAE+3
Histogram | T dyspl. 20.04 19.57 Histogram LAE+4 4B 44
Ulcer 18345 219.80 ) 850.23 943.36
Cancer L.9E 4 1.TE+4 .01 295.43
Run Gastritis | 8.0845 | 83E+5 | fun 3.51 351
Length Tdyspl. | TAESS | L3E+7 | Leneth Bl 53653
i Sort Run S TR == Long Run o el
i f Nuclei T dyspl. 29E+7 2947 Nuclei 0.7 .67
of Nuclei Ticer | L7E+6 | LoE+e | of Nuclei TEFE6 | GEELO
Cancer 1.3E+6 30E+6 | Run 8.4f-+4 8.3E+4
Rua Gastrits | L2E+10 | T.2ET10 ] Length TAETT T T4E+T
Length Tdyspl. | 73E+9 | 7.3E48 | Distribu- 34846 | 4.0E+6
Gray Level | o O EF 1L [ 97E+11 | tion of T0E+9 | 10E59
of Nuclei Olcer || 9.2E48 | 89848 | Nuclei TSEFIT | LOE+1I
Cancer 0.00 308,27 0.001 :.001
Cooccurrenciry T Ti56 [66 | Cooccurrency—z7 51
iia“_"\' Tdyepl, 0.00 [78ELd iél‘“;t“x o b1 50t
Aaxlmum e .61 061 RLTOpY © 0.56 0,58
of Nudel [ T 33858 | Sabgs ] Nuckei T35 L35
(Cancer L.g2 179 18.98 15,28
booceurrenet e T 586 | 6.09 | Mean of AN 55.57
e I dvspl, 17.31 16.41 Differences 28,53 23.02
Inertia of o T 5998 951 Histogram | 36.81 3716
Nuclel Tlcer 305 354 JENTS JER
Cancer 33322 325,33 319.25 805.65
Variance of || Gastritis 52544 5.2E+4 i Contrast of 6.88+5 6,885
Differences || [ dyspl. 5.2k 5.1E+3 §i Differences 8. 3E¢4 8. 354
wvnrnes | Hisbograra. | Cdyspl JL_23Exd 7 23E+4 || Histogram_ || LoE+5 L3E+5
Ulcer 66307 6606.41 1L.3E4+1 19K
Cancer 3.66 31.92 0.73 3.87
Entropy of || Gastritis 1.05 1.05 Nuclel 0.16 0.15
Differences || [ dyspl. 1.35 341.50 || Cytoplasm 0.11 1.30
Histogram | T dyspl. 0.80 0.90 Ratio 0.34 .45
{cer 3.7E+H 3.0E+3 G.79 0.78
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_ Tfai!_hzﬁe 9 (continued)

T Sististics of the data set
Cancer LOG 7o M ) 0.38777TEE3 !
‘ Gasiritis 0.22 T 0§35 7 Meen 042 7D
Nuclei per oy 033 [0a§ | Distance of st I 0.43;;
Cell Tdyspl 035 "7 hag | Nuelei in 033 | 0]
Ulcer 009 o5 7 Cell 024 | 03 ]
Cancer 6.37 76,18
Mean Gasirlis | 145 102
E}ad;“.s."f T dyspl. 134 0.68
M O cee 347 195
Cell Ulcer 136 124




