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Abstract

In this study1, a novel algorithm for recognizing pornographic images based on the analysis of skin color regions
is presented. The skin color information essentially provides Regions of Interest (ROIs). It is demonstrated that the
convex hull of these ROIs provides semantically useful information for pornographic image detection. Based on
these convex hulls, the authors extract a small set of low-level visual features that are empirically proven to possess
discriminative power for pornographic image classification. In this study, we consider multi-class pornographic
image classification, where the ”nude” and ”benign” image classes are further split into two specialized sub-
classes, namely ”bikini” / ”porn” and ”skin” / ”non-skin”, respectively. The extracted feature vectors are fed to an
ensemble of random forest classifiers for image classification. Each classifier is trained on a partition of the training
set and solves a binary classification problem. In this sense, the model allows for seamless coarse-to-fine-grained
classification by means of a tree-structured topology of a small number of intervening binary classifiers. The overall
technique is evaluated on the AIIA-PID challenge of 9, 000 samples of pornographic and benign images collected
from the Web. The technique is shown to exhibit state-of-the-art performance against publicly available integrated
pornographic image classifiers.
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I. INTRODUCTION

With the galloping evolution of the Internet during the last two decades, pornographic images can be
readily accessed even by certain sensitive groups of people, such as adolescents. Moreover, the ability
to distribute and share images through public HTTP services without an autonomous content supervision
process intervening in the content sharing loop encourages circulation of illicit images. For instance,
pornographic content distributors may often exploit unprotected Web services in order to circulate or
exchange child pornography and general pornographic content. The impact of pornography to people
has long become a rising issue of concern and was under the spotlight of psychologists decades ago.
Psychological research dated back to the 80’s stressed out that the exposure of children to pornography
effectively impedes the smoothness of their behavioral evolution. In the same direction, similar studies
have indicated that intense exposition to pornographic material affects human behavior and mood in
adults. For some representative papers dealing with this problem see [BAW76], [Pie84], [CFP71], [LW05],
[Mey72], [PBSN89]. The premier source of pornographic information on the Web has traditionally been
pornographic images and video. We assert that the semantic load of such images is essentially the primal
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carrier of pornographic information to effectively engage the focus of attention of the end user, e.g., when
browsing pornographic web pages. Thus, we contend that pornographic image detection is a crucial aspect
in the loop of effectively identifying pornographic web pages.

A system tailored towards identifying pornographic images should exhibit a robust capability in distin-
guishing between regular benign images and assorted pornographic images. In a real world content filtering
scenario, zero-error categorization is still an unrealized goal. That being said, systems proposed in the
literature are characterized by certain strengths and weaknesses in detecting pornographic content. Among
many challenging problems in this computer vision problem, the difficulty in constructing an accurate
algorithmic framework for detecting pornography is often attributed to varied photometric conditions
(which often occur in the form of bad illumination), unconstrained clutter, occlusions and variation in
the poses of involved human subjects. Thus, it is intrinsically difficult to construct a precise algorithm
that encodes accurate prior information about what a pornographic image really is. To the best of our
knowledge, many content filtering systems operate satisfactorily in identifying pornographic web pages
by means of pornographic image detection. Despite the abundant availability of textual and structural
information in common pornographic web pages, a system can exhibit more robust accuracy by being
able to tell pornographic and benign images apart. Later, we review some previously proposed systems
in the literature aimed at pornographic web page detection.

In previous works [KNB11], [KPN12], we tackled the problem of identifying pornographic web pages.
To the best of our intuition, by constructing an algorithm that can tell pornographic and benign images
apart at a satisfactory rate (of, e.g., 80% of the time), we can further mine and employ different web
page cues in order to come up with a stronger decision mechanism that can reliably tell if a web page
is either pornographic or benign. In fact, by naively imposing a threshold on the ratio of the number of
pornographic and benign images detected in a given web page, we can readily achieve a meaningful trade-
off between detection accuracy and turnaround time [KNB11]. We have observed that the probability of
generating a false positive can be significantly lowered down when limiting our focus on web pages that
are indeed of pornographic nature. At the same time, true positive can be effectively boosted. However,
this naive heuristic decision making criterion can plausibly suffer from artifacts when assessing web pages
containing only a limited number of images in their document object model (also being referred to as
the DOM model). In this class of web pages, the probability of false categorization can be relatively high
depending on the underlying image classifier. Obviously, the presence of a large number of candidate
images in the categorization pipeline poses a burden towards the user-perceived turnaround time in real-
world content filtering systems. In the literature of pornographic content-filtering system design, many
systems have employed techniques to reduce the computational burden induced by the high availability of
pornographic images in regular web pages. For instance, in the design of the Wavelet Image Pornography
Elimination (WIPE) system [WLWF98], a more statistically sound algorithm for sampling only a limited
fraction of candidate images is formulated and further investigated analytically.

In the computer vision community, understanding the semantics of an image accurately is still a
non-trivial, illusionary task. Previous pioneering works focused on representing visual scenes using low-
dimensional representations that extract essential information to capture the nature of a scene. The work
of [OT01] proposed the GIST descriptor which attempts to capture certain dominant parameters of the
so-called spatial envelope of visual scenes framed by a color image. In the course of describing scenes,
direct segmentation of regions and inspection of individual segmented regions in an image is bypassed
effectively by probing a holistic representation of the entire image. In the direction of probing low-
dimensional representations of pornographic scenes, we study the effect of combining low-dimensional
feature extraction (of a limited set of low-level visual features) with categorization ensembles of random
forest classifiers.

In a practical content filtering application, a pornographic image classifier must as well meet computa-
tional efficiency constraints in terms of the observed turnaround time it attains. In a typical scenario where
millions or billions of images are naturally required to be processed in the filtering loop, a classifier that
can achieve a meaningful trade-off in assigning correct labels to input and demanding low computational
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time towards classification is also preferable. To this end, we discuss an algorithm that can efficiently
categorize pornographic images in a meaningful amount of time by localizing regions of interest. The
proposed technique for identifying pornographic images is benchmarked against the state-of-the-art open
source pornographic image classifier of the Public Open-source Environment for a Safer Internet Access
(POESIA) project2.

II. RELATED WORK

The first attempt at devising an autonomous system for screening pornographic images is the work of
[FFB96]. In their detection method, skin-colored region segmentation is performed as a pre-processing step.
Then, skeletons are found on the segmented skin colored regions. This specialized skeleton identification
technique, however, exhibits a combinatorial nature, which significantly slows down the overall image
analysis pipeline. It has specifically been reported that ”over six minutes are required in order to screen an
input image even on a workstation”. Although the method in [FFB96] exhibits high recognition accuracy,
it cannot satisfy the stringent time-efficiency requirements in real-world systems, where millions or even
billions of images may routinely be screened.

A system to recognize pornographic web pages by assessing each image in a web page is presented
in [WLWF98], [WWF97]. In order to classify images, a technique employing wavelet and histogram
analysis is employed [WWF97]. In this pipeline, an input image is first screened as either being a
benign figure or a pornographic image. If the input image is not classified as benign, then more elaborate
processing takes place by extracting wavelet domain features. In order to classify an incoming image, its
corresponding feature vector is matched against a database of training feature vectors that are computed
off-line [WWF97].

In [HZW+11], an integrated pornographic web page detection system capable of detecting nude images
and videos is presented. Pornographic image categorization is performed by computing a number of global
image features, combined with a random forest classifier. In the case of pornographic video detection,
video classification is cast as a problem of identifying pornographic video shots, enhanced by interval
frame sampling which reduces processing time. Additionally, prior knowledge acquired by a video sound
stream in alignment with the video frame sequence is exploited in order to more accurately categorize
a video by means of a Gaussian mixture model. Finally, Web page categorization is achieved by fusing
different types of features mined from objects in a web page (i.e., images, video, text and link structure)
using a multi-instance learning framework.

More recent works on pornographic image detection employing the widely celebrated idea of visual
words, [DPN08], [US11], attempt to identify pornographic images by learning vocabularies of visual
words often present in pornographic images.

In this work, we develop a computationally efficient algorithm for recognizing pornographic images. We
build up on our previous work on the InFeRno3 framework [KNB11], [KPN12], which tackles pornographic
web page detection by means of pornographic image recognition. A large body of previous research
efforts in porn detection relies on the hypothesis that the presence of skin color information in images can
provide discriminative information that can assist in the pornographic versus benign image classification
pipeline. In our work, we build on the assumption that skin information is an important cue, in order to
generate hypotheses for the presence of pornographic content in an image. More specifically, a region
splitting scheme is proposed for skin region segmentation, inspired by the geometric localization technique
proposed by Yang et al [YSX07]. The criterion to identify skin-colored regions of interest (ROIs) is based
both on the accumulation of connected skin-colored pixels and on the spatial coherence of homogeneously
textured image patches. By performing feature extraction over the image pixels delimited by an uncovered
ROI, we employ a tree-structured ensemble of Random Forest classifiers (called RF-tree herein) in order

2The source code of the POESIA filter can be obtained at http://sourceforge.net/projects/poesia/
3InFeRno source code can be accessed at http://www.github.com/brigr/InFeRno for review, development and use. It is released as open

source software under a GPL license.
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to categorize the input image. The overall method yields better performance in porn recognition accuracy
versus state-of-the-art pornographic image detection systems.

Due to the lack of standard published data sets for pornographic image detection and the difficulty in
sharing pornographic data to conduct experiments for porn recognition, we have resorted to compiling the
AIIA-PID4 pornographic data set containing 9, 000 manually annotated pornographic and benign training
image samples collected from the Web. In AIIA-PID, the benign and nude categories are split into two
semantic categories each, namely ”skin”/”non-skin” and ”bikini”/”hard porn”, respectively. Thus, finer
discrimination can be made within the benign and porn image classes. The proposed classification model
in the AIIA-POD technique follows a top-down approach in the course of classifying input feature vectors.
Our classification scheme receives as input a 15-dimensional feature vector for each convex hull, in
contrast to more complex feature extraction-based categorization techniques that compute a large number
of features. In a first assessment test, the technique classifies the feature vector as either corresponding
to the pornographic or benign semantic category. This is achieved by querying the root node of the tree-
structured ensemble (originally being a regressing unit), which provides us with the likelihood p that the
input is of pornographic nature. In contrast, the probability that the input feature vector is benign is 1−p.
This step constitutes the coarse-grained phase of the overall technique, in which the categorization model
acquires a general first-step assessment on the nature of the input feature vector. The decision control is
then delegated to a leaf classification node (called unit herein). In the first level of processing in the RF-
tree model, an input image feature vector is characterized as either ”nude” or ”benign”. In the intervening
refinement step, the input feature vector is passed to either a ”bikini”/”porn” or to a ”skin”/”non-skin”
subclass classifier, in the case of ”nude”/”benign” classes, respectively. The overall pornographic image
recognition scheme was evaluated on the AIIA-PID image database and attained a high classification
accuracy. A discussion on the comparison between the proposed technique and the POESIA pornographic
image classifier is also provided herein.

III. SKIN ROI LOCALIZATION

In this section, we describe a geometrical planar decomposition algorithm for detecting skin colored
ROIs in a color image. Although the proposed technique is inspired by the work of [YSX07], we impose a
simplification over the latter method that results in a less computationally intensive localization algorithm.
The algorithm is of recursive design and shares much in common with quad-tree image segmentation
[Pit00]. In practice, the algorithm captures sufficiently well an underlying ROI by performing only a
limited number of recursive calls, thereby retaining a limited computational overhead.

The skin ROI localization algorithm relies on the uncovering of regions of interest. In this paper, these
regions will simply be referred to as ROIs for the sake of simplicity. At the first level, skin pixel detection
is performed according to the RGB thresholding technique discussed in [VSA03]. Then, the skin ROI
detection algorithm considers the whole image as one skin ROI. The gray-level version of the color image
and the gray-level histogram are then computed. Then, the following statistical descriptors of each ROI are
computed: a) the ratio r of skin-colored pixels to non-skin pixels, and b) the kurtosis k of the gray-level
histogram of the corresponding ROI. Both measures r and k are defined in the following manner. Let I be
the normalized gray-level histogram of an image region, that is, the total sum of bin values in histogram
I equals 1. We generally assume that I contains a sufficient number N of quantization bins (obviously,
N must not exceed the value of 256). In our experimental derivation, we set his parameter to the largest
possible value, namely N = 256; however, smaller values of N are also capable of representing histogram
peaks reasonably well. In this sense, each bin value p(i) of a bin indexed by i can be regarded as the
approximate probability mass of intensity value occurrence in the gray-level region. Note that bin indices
count from zero. Then, the kurtosis value of this region is expressed as

4To obtain a copy of the AIIA-PID data set, please contact the corresponding author.
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Algorithm 1 Pseudocode of algorithm for uncovering regions of interest on the image plane
1: procedure DETECTSKIN(I)
2: R← initialize empty zero integer matrix of size Width×Height
3: maxI ← widthOf(I)
4: maxJ ← heightOf(I)
5: for i← 1,maxI do
6: for j ← 1,maxJ do
7: if isSkinP ixel(I(i, j)) then
8: R(i, j)← 1
9: else

10: R(i, j)← 0
11: end if
12: end for
13: end for
14: end procedure
15: procedure COMPUTEROI(I, currentLevel,maxLevel)
16: ControlPoints← ∅
17: S ← DetectSkin(I)
18: if currentLevel = maxLevel then
19: ControlPoints← ControlPoints ∪ controlPointsOf(I)
20: return ControlPoints
21: end if
22: while currentLevel < maxLevel do
23: for p ∈ QuadPartitions(I, currentLevel) do
24: kurtosis← computeKurtosis(p)
25: skinProportion← computeSkinToNonskinRatio(S, p)
26: if kurtosis > TK and skinProportion > TS then
27: computeROI(p, currentLevel + 1,maxLevel)
28: end if
29: end for
30: end while
31: end procedure
32: procedure LOCALIZEREGIONOFINTEREST(I,maxLevel)
33: M ← 3
34: Q← computeROI(I, 0,M)
35: H ← compute convex hull of I
36: P ← stack all pixels in I bounded by H
37: return P
38: end procedure

k = σ−4(
255∑
i=0

(i− µ)4P (i))− 3 (1)

where σ and µ are the standard deviation and mean over all bin values in I . Respectively, µ and σ are
defined5 as µ = 1

N

∑N−1
i=0 P (i) and σ = 1

N−1
∑N−1

i=0 (P (i)− µ)2. Likewise, r is defined as the ratio of

5Note that for N � 0, σ = 1
N−1

∑N−1
i=0 (P (i)− µ)2 ≈ 1

N

∑N−1
i=0 (P (i)− µ)2. In effect, for a sufficiently large value of N , both

multiplicative factors of the finite sum have an insignificant numerical effect to the computation of the statistic, that is only observable in
the more insignificant fractional digits.
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(a) bikini image (b) skin-colored pixels (c) skin ROI

Fig. 1: Skin ROI detection and localization. We are interested in finding skin regions that have high skin-
color pixel ratio and are fairly homogeneously textured, that is, they have sufficiently large values of the
kurtosis measure. The testbed image above is courtesy of J. E. Ramspott (reproduced with permission).

skin pixels over the inspected image region to the total number of pixels in the region.
In order to decide on either splitting or ignoring an image region in the region decomposition scheme,

we introduce two upper bounds TS and TK on the ratio r and the kurtosis k, respectively. We decide to
further split the current quadrant into four equal quadrants, if r > TS and k > TK holds true. A region
that passes this test is expected to possess a strictly homogeneous texture and contain a fair amount of
skin-tone pixels. In this sense, such a region can be assumed to correspond to a true body part patch
depicted in the image. This recursive operation is repeated up to an explicitly defined level of maximum
recurrences. According to our experience on the technique, there is not a single choice in the value of
the maximum recurrence level that suits optimal body contour capturing. Therefore, both TS and TK and
the recurrence level are chosen empirically. However, we impose an indicator step function that maps
the actual dimensions of the input image to empirical recurrence level values that we obtain through
experimental observation. Figure 1(c) illustrates the results of skin ROI segmentation. The original color
image for which skin ROI segmentation is performed is depicted in Figure 1(a), while the skin segmented
binary image of the color image is depicted in Figure 1(b). The computations entailed in localizing a skin
ROI essentially depend on the raw image data and the segmented image. In Figure 1(c), localized regions
in the image are shown as green rectangles overlapping the original image. Note that we are generally
interested in obtaining dense segmentations of such rectangular-shaped images patches, thereby ignoring
”holes” exhibited by general background enclosed by homogeneous skin regions. In listing 1, we provide
pseudocode detailing the computational process of localizing a skin ROI.

IV. IMAGE FEATURE EXTRACTION

In each suspected porn image, we initially calculate the convex hull [DBCVKO08] of the obtained
skin ROIs. In our experimental setup, we employed the convex hull computation algorithm of Sklansky
[GFY83], which is implemented internally in the Open Computer Vision framework [Bra00]. Given a set
of n points (in our case, this set of points lies on a discrete image lattice), Sklansky’s algorithm computes
the (unique) convex hull in O(nlog(n)) time, which in practice is fast enough for our application. In our
case, the points to be considered for convex hull construction are the corners of the skin-colored image
ROIs obtained during the localization of a skin ROI. The use of convex hulls can meaningfully represent
skin regions, without introducing significant noise in the spatial representation of localized skin regions.

The image features that we collect within the convex hull are the following:
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1) The ratio of the total skin to non-skin pixels within the convex hull (1 feature). This feature provides
significant discriminant information for pornographic image content detection.

2) The arithmetic means (namely, mR,mG and mB) and variances (σ2
R, σ

2
G and σ2

B) of the R, G and B
color channels in the convex hull (6 features). These features provide discriminant information on
the color properties of the convex hull of the skin ROI.

3) The seven spatially invariant Hu moments [Hu62] of the pixels within the computed convex hull
(7 features). These features provide discriminant information on the shape properties of the convex
hull corresponding to the uncovered skin ROI.

4) The angle of the principal axis of the convex hull versus the horizontal axis (1 feature). This
feature aims at providing discriminant information in order to separate upright human figures (for
instance, naked models or frontal facial images) from pornographic images; human bodies tend to
be horizontal.

In the abovementioned features, the proportion of the count of skin pixels to the count of non-skin pixels
encodes predominant information on the skin tone dominance of an input image. Images of pornographic
nature are expected to exhibit a high ratio of skin, while benign images often exhibit low values of this
feature. However, this particular feature alone cannot be used effectively in order to classify an image
as either pornographic or benign. Intuitively, a close-up image of a human face may contain a large
proportion of skin pixels (although actually being benign). In contrast, a pornographic image may exhibit
a very large proportion of non-skin pixels but present pornographic information in only a limited fraction
of skin-pixels. Thus, pornographic image detection cannot rely on the proportion of skin alone, although
it proves important especially when combined along with other visual features. Hu’s moments in the
feature extraction pipeline encode texture properties of the underlying ROI. It should be pointed out that
the seventh Hu’s moment in feature (3) encodes little discriminative information, since it typically takes
values close to zero and exhibits a small variance about that value. The mean and variances of the RGB
channels in the ROI encode information regarding the scatter f skin and non-skin pixels in the ROI.
Regions of interest that contain plain skin regions are expected to exhibit mean and variances in their
ROI skin pixels that are close to a dominant color of true skin tone.

We used two image classes, namely nude and benign, for image classification. Each of them has two
subclasses, namely bikini and hard porn (for the porn class), and skin and non-skin (for the benign class),
respectively. The porn label is assigned to real porn images. The bikini subclass is typically assigned to
images of women/men wearing swimming suits. The skin label corresponds to images of humans having
small exposed skin regions, e.g., face or hands in medium and long shot images. The non-skin label is
assigned to images that do not depict humans. During testing, each test image is classified into one of
the four subclasses.

V. RF-TREE CLASSIFICATION SCHEME

The employed RF-tree predictor consists of a tree-structured ensemble of strong Random Forest classi-
fiers [Bre01], as shown in Figure 2, that allows to perform coarse-to-fine-grained categorization of input
features. The root node classifier assesses the likelihood of an input image feature vector to correspond
to either the ”nude” or the ”benign” class. The three classification nodes in the RF-tree are trained in
isolation from each other using the standard Random Forest learning algorithm described in [Bre01].

In our model, the root RF classifier provides a probability p that a test image is assigned to the ”nude”
class. Then, a feature vector is assigned to the nude class if and only if p ≥ pn; otherwise is assigned
to the benign class. Based on this decision, we move downwards in the tree to the left or the right leaf
node, in order to decide if the image is bikini/porn or skin/non-skin, respectively.

An obvious drawback in the classification pipeline of the RF-tree model is that prediction errors
can accumulate in leaft nodes due to false predictions performed in the root node. However, with a
proper selection of the pn threshold, we can achieve a good trade-off between false rejections and false
acceptances. In search for a reasonable threshold pn in the RF-tree pipeline, we compute the normalized
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Fig. 2: The RF-tree classification model employing an ensemble of simple binary random forest classifiers.
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(a) benign decision confidence frequency histogram
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(b) porn decision confidence frequency histogram

Fig. 3: Normalized confidence-value frequency distributions attained by the root-node regressing unit in
the RF-tree model over benign and nude image samples in the AIIA-PID dataset.

frequency mass histograms generated by the root-node classifier over the entire AIIA-PID training set
(excluding images containing no ROI by the proposed technique); see Figure 3. The response distributions
of the benign and pornographic classes follow different distributions overlapping in a small region between
the decision frequency values of pn = 0.4 and pn = 0.6. In order to generate the histograms, we use
a total of 7879 porn and benign feature vectors from the AIIA-PID data set. 32% of the total samples
are labeled against either the pornographic or bikini class, while the remaining features correspond to
skin and non-skin samples. From the obtained distributions that are shown in Figure 3, we draw two
essential observations that are important for classification: a) the benign class follows a positively skewed
probability distribution attaining most of its mass around pn = 0.05. For probability values above that
threshold, the mass probability distribution decays rapidly by attaining lower frequencies; and b) the
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Fig. 4: The figure depicts the results of the 10-fold cross-validated evaluation of the generalization
capability of the binary random forest classifiers in the RF-tree model. The 4-way classifier comprising all
four semantic classes of the respective binary random forest classifiers exhibits suboptimal performance
compared to the respective generalization capabilities of the binary classifiers in the RF-tree model. The
generalization capability of the POESIA classifier has been evaluated using the standard training parameters
in the POESIA source code bundle, and by using the entire AIIA-PID data set as a testing set.

response frequency mass distribution of the pornographic class follows a negatively skewed Gaussian-like
distribution, which approximately attains its mode at pn = 0.8. The latter frequency mass distribution
decays rapidly left-wise to that latter response frequency value. However, both distributions attain a small
class overlap between the frequency values pn = 0.4 and pn = 0.6. In this discrete interval, few samples
correspond to the benign class and most of the overlapped samples belong to the pornographic class.
Since false rejections are more costly in porn detection, we greedily choose6 pn = 0.4 as our decision
threshold in the proposed RF-tree model. A more detailed analysis of the attained generalization error of
the nodes in the RF-tree considering the AIIA-PID data set is given in the following section.

VI. EXPERIMENTAL RESULTS

We have tested the proposed method called AIIA-POD (AIIA porn detector) on a set of 9,000 images
of the AIIA-PID database (AIIA Porn Image Database) containing porn, bikini, skin and non-skin images.
An image is assigned to a subclass ”porn” / ”bikini” or ”skin” / ”non-skin”, if the probability provided
by the corresponding leaf Random Forest classifier is larger than the a-priori subclass probability, as
evaluated over the training set. In assessing the binary predictors in the RF-tree model, we performed
10-fold cross validation, using 90% of the total images as training ones and 10% of them as testing
ones (non-overlapping sets). In the course of constructing an experimental software implementation of
the proposed RF-tree model for assessing generalization performance, we opted for the highly optimized
random forest implementation available in the Python scikit machine learning toolkit that implements
binary and m-way (multi-class) random forest predictors [PVG+11].

Figure 4 depicts a comparison of the generalization accuracies obtained by our Random Forest classi-
fiers generated across training samples from our 9,000-sample data set over 4 semantic categories. The
generalization capability of each binary random forest classifier is evaluated by enforcing 10-fold cross

6In fact, this overlap region can form our reject option for classification. In this case, a confidence value lying in the reject option can
assert model uncertainty about class membership.
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validation. Models are trained by varying the number of decision trees integrated. The number of decision
trees is varied from 1 tree (resulting in a degenerated random forest) up to 200 decision trees. For a
similar discussion on the error progression of Random Forest classifiers, the astute reader is pointed to
[FHT01]. In our experimental evaluation, we treat the 4-way random forest classifier as the baseline
for our experiments. This type of classifier, as shown in the comparative graph, exhibits sub-optimal
generalization compared to the standalone binary classifiers employed in the RF-tree model. As expected,
all Random Forest models follow a decreasing pattern of generalization error. In practice, the number of
trees employed in the ensemble classifiers impose a model complexity burden which is addressed both
in the training and testing assessments of the models. Since training is performed off-line, model testing
is more important for our pornographic image detection classifier. In particular, random forest models
integrating less than 20 trees are shown to exhibit minimal performance, whereas their cross-validated
error estimate is shown to stabilize around particular values as more trees are progressively added to the
models. An interesting fact that describes the employed classifier is that optimal generalization can be
achieved using a relatively small number of decision trees in the model, thus allowing us to establish a
decreased model complexity with an acceptable generalization capability. At the same time, low learning
model complexity allows for fast testing evaluations in our RF-tree classifier, as we will describe shortly.

The POESIA image classifier is also tested on our entire data set of pornographic and benign images
using the parameters bundled in the POESIA project, achieving 80% of correct classification, as shown in
Figure 4. In contrast, our best random forest models exhibit optimal performance compared to POESIA. A
generalization capability of approximately 84, 9% in the ”porn versus other” binary classification problem
(equating to the classification problem tackled by the POESIA classifier) is observed to be attained. In our
previous work [KPN12], generalization estimates were reported for fixed-parameter binary classifiers in
the RF-tree model. As can be seen in Figure 4, as we vary the number of decision trees, the generalization
of the models progresses better than the previously reported results.

In addition, an accuracy of approximately 83% is obtained by our best classifier tackling the ”porn versus
bikini” problem, which signals the ability of the model to accurately distinguish between pornographic
and bikini images (e.g., images of people wearing swimsuits). In the same categorization problem, the
POESIA image classifier exhibits suboptimal accuracy compared to the AIIA-POD technique by a margin
of around 2%. Maximal performance (specifically, of about 88%) is also attained by the best classifier
on the ”skin versus non-skin” problem of distinguishing between benign images containing no true skin
and images containing a limited amount of true skin (e.g., images of athletes with some body parts being
exposed, images containing human faces, etc).

Table I provides a summary of the generalization accuracies attained by the binary prediction models
and the POESIA classifier. As shown in the same table, the binary models that we trained exhibit small
deviations about their attained mean generalization accuracies.

By assessing the turnaround times of both techniques, we opt for selecting the prediction models that
exhibit maximal performance in the AIIA-POD technique. For the root node in the RF-tree model (depicted
in Figure 2), we integrate 98 decision trees. The porn versus bikini classifier integrates 90 trees in its
model, and the best classifier discriminating skin versus non-skin images employs 142 ones. By fixing the
count of weak learners in the binary models, as discussed already, we assemble an RF-tree model that is
integrated in our AIIA-POD classifier. In general, the observed turnaround time is affected by two major
factors. If an image contains a skin ROI, then the total turnaround time is measured as the cumulative time
of the computation of feature-vector extraction and classification by the RF-tree model. In the case where
no ROIs are present in an input image, the total turnaround time is equal to the time consumed in the
feature-extraction procedure. In the latter case, the image is given the ”benign” label and no classification
is performed. The computations involved in the feature extraction phase amount to deciding non-existence
of a skin contour by means of the quad-tree decomposition algorithm, as described in Section III. Typical
candidate images that do not contain ROIs are often auxiliary figures, background images, and figures
that generally contain no true skin-tone pixels. In case an image contains a skin ROI, then the amount of
time consumed in classifying its corresponding feature vector amounts to the time of evaluating two out
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AIIA-POD versus POESIA: generalization capability
Classifier Test setting generalization mean std
AIIA-POD porn vs. other (bikini/skin/non-skin) 84,85% 84,05 % 0,0123%

porn vs. bikini 82,8 82,02% 0,0138%
nude vs. benign 85,65% 85,05% 0,0119%
skin vs. non-skin 87,63% 86,9% 0,0130%

POESIA porn vs. other 80% N/A N/A

TABLE I: Comparison of the accuracy attained by the POESIA classifier versus the AIIA-POD method
in terms of generalization capability. 10-fold cross-validation has been enforced in estimating the
generalization capability of the trained models in the RF-tree ensemble. In the table above, generalization
is reported in terms of the best performing predictor that we obtained with respect to a cross-validated
estimate. The respective error progressions decrease smoothly and approximately converge about a mean
value, as the models exhibit a small deviation about their mean accuracy.

Classifier 0-1M pixels 1-2M pixels 2-3M pixels
AIIA-PID skin 537 ms 999 ms 4972 ms
AIIA-PID non-skin 34 ms 149 ms 290 ms
POESIA skin 753 ms 4455 ms 6744 ms
POESIA non-skin 728 ms 3045 ms 4925 ms

TABLE II: Attained response times in skin and non-skin images in the AIIA-POD and POESIA image
classifiers in descending order of magnitude in the number of pixels

of three binary classifiers in the RF-tree model.
In the process of assessing the turnaround response time of our method, we opt for employing the most

complex classifiers possible that at the same time attain maximal generalization. As seen in Figure 2, it is
evident that we can gain a better speed-up performance by sacrificing little generalization capability (e.g.,
of no more than 1% according to the obtained 10-fold cross-validated generalization estimates) by only
employing fewer decision trees in each respective binary classifier in the RF-tree model. For example,
by choosing to employ a less accurate binary model, we can boost the running time of our method by
employing a significantly smaller count of trees.

In Table II, we report speed-up comparison results of our technique versus the POESIA classifier.
Turnaround times are quantized according to two parameters: a) the total count of pixels in an image
(using a 1M pixel quantization factor); b) the presence or absence of a skin colored ROI in the image. In the
case of the AIIA-POD technique, reported times refer to the computations including both feature extraction
and classification performed by the RF-tree model. Our technique outperforms the POESIA classifier by a
large margin in terms of response speed (by an average of a 19× speed-up) when classifying images that
are determined to contain no ROI. In the case of images that contain skin ROIs, the AIIA-POD method
consumes considerably more time in feature extraction and classification. Images with less than 2 million
pixels are in abundance on the Internet (e.g., social media, visual search engines, etc). For this class of
images, our method demands on average 1 second of CPU time. Considering images containing between
2 to 3 million pixels, processing time in AIIA-POD gets more demanding. In the latter case, AIIA-POD
demands approximately 1.7s of less CPU time compared to POESIA (on average). In the AIIA-POD
technique, the evaluation of the RF-tree model using the counts of weak learners as described above, adds
only 70 milliseconds of extra computational time.

In this experimental derivation, all of the reported turnaround times produced by the AIIA-POD
technique enforce serial-only computations without further software optimizations. By enforcing multi-
threading or GPU-based hardware acceleration on some of the most computationally intensive operations
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in the AIIA-POD technique, we can possibly attain much better turnaround times.

VII. CONCLUSIONS

We have presented the AIIA-POD technique for categorizing pornographic and benign images in four
semantic classes. The proposed method outperforms the current state of the art POESIA method when
discriminating porn image versus all other subclasses (namely, the bikini, skin and non-skin classes) by a
margin of 5%. Furthermore, it can discriminate other classes or subclasses, e.g., ”porn” versus ”bikini”,
”nude” versus ”benign”. Our method is much faster than POESIA (attaining approximately a ×2 speed-up
against the latter) in processing regular images of less than 2 Mpixels. In the case of images appearing
to possess no skin colored ROIs, our method attains very fast response times with an average of a 19×
speed-up. Therefore, the AIIA-POD method is much faster than POESIA, has better performance and can
provide finer image classification considering the porn, bikini, skin and non-skin subclasses.

VIII. ACKNOWLEDGMENTS

The research leading to these results has received funding from the FP7 COST project IC1106. The
publication reflects only the authors’ views. The EU is not liable for any use that may be made of the
information contained therein.

REFERENCES

[BAW76] Marvin Brown, Donald M. Amoroso, and Edward E. Ware. Behavioral effects of viewing pornography. The Journal of
Social Psychology, 98(2):235–245, 1976. PMID: 1256030.

[Bra00] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.
[Bre01] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[CFP71] Royer F Cook, Robert H Fosen, and Asher Pacht. Pornography and the sex offender: Patterns of previous exposure and

arousal effects of pornographic stimuli. Journal of Applied Psychology, 55(6):503, 1971.
[DBCVKO08] M. De Berg, O. Cheong, M. Van Kreveld, and M. Overmars. Computational geometry: algorithms and applications. Springer,

2008.
[DPN08] T. Deselaers, L. Pimenidis, and H. Ney. Bag-of-visual-words models for adult image classification and filtering. In Pattern

Recognition, 2008. ICPR 2008. 19th International Conference on, pages 1–4. IEEE, 2008.
[FFB96] M. Fleck, D. Forsyth, and C. Bregler. Finding naked people. ECCV 1996, pages 593–602, 1996.
[FHT01] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning, volume 1. Springer Series in

Statistics, 2001.
[GFY83] Ronald L Graham and F Frances Yao. Finding the convex hull of a simple polygon. Journal of Algorithms, 4(4):324–331,

1983.
[Hu62] M.K. Hu. Visual pattern recognition by moment invariants. Information Theory, IRE Transactions, 8(2):179–187, 1962.
[HZW+11] Weiming Hu, Haiqiang Zuo, Ou Wu, Yunfei Chen, Zhongfei Zhang, and David Suter. Recognition of adult images, videos,

and web page bags. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP), 7(1):28,
2011.

[KNB11] S. Karavarsamis, N. Ntarmos, and K. Blekas. Inferno–an intelligent framework for recognizing pornographic web pages.
Machine Learning and Knowledge Discovery in Databases, pages 638–641, 2011.

[KPN12] S. Karavarsamis, I. Pitas, and N. Ntarmos. Recognizing pornographic images. In Proceedings of the 14th ACM Workshop
on Multimedia and Security, pages 105–108. ACM, 2012.

[LW05] Ven-Hwei Lo and Ran Wei. Exposure to internet pornography and taiwanese adolescents’ sexual attitudes and behavior.
Journal of Broadcasting & Electronic Media, 49(2):221–237, 2005.

[Mey72] Timothy P Meyer. The effects of sexually arousing and violent films on aggressive behavior. Journal of Sex Research,
8(4):324–331, 1972.

[OT01] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope.
International Journal of Computer Vision, 42(3):145–175, 2001.
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