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Abstract—Functional MRI (fMRI) has become one of the most
important techniques for studying the human brain in action. A
common problem in fMRI analysis is the detection of activated
brain regions in response to an experimental task. In this work
we propose a novel clustering approach for addressing this
issue using an adaptive regression mixture model. The main
contribution of our method is the employment of both spatial
and sparse properties over the body of the mixture model.
Thus, the clustering approach is converted into a Maximum a
Posteriori (MAP) estimation approach, where the Expectation-
Maximization (EM) algorithm is applied for model training. Spe-
cial care is also given to estimate the kernel scalar parameter per
cluster of the design matrix by presenting a multi-kernel scheme.
In addition an incremental training procedure is presented so
as to make the approach independent on the initialization of
the model parameters. The latter also allows us to introduce
an efficient stopping criterion of the process for determining
the optimum brain activation area. To assess the effectiveness
of our method, we have conducted experiments with simulated
and real fMRI data, where we have demonstrated its ability
to produce improved performance and functional activation
detection capabilities.

Keywords: fMRI analysis, regression mixture models, EM
algorithm, MRF, Sparse modeling

I. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is a pow-
erful, non - invasive technique that has been utilized in both
research and clinical fields, providing valuable information
about the structure and the organization of the human brain.
fMRI measures the tiny metabolic changes that takes place in
an active part of the brain. It is a common diagnostic method
for the behavior of a normal, diseased or injured brain, as well
as for assessing the potential risks of surgery or other invasive
treatments of the brain [1], [2].

Many methods have been proposed for the analysis of fMRI
data coming from fields such as signal processing, machine
learning and statistics. They can be divided into two major
categories: the model-based and the data driven techniques.
The first category consists of approaches which are mainly
based on the general linear regression model [3] and its
extensions [4], [5], while the data driven techniques includes
the principal component analysis (PCA) [6], independent com-
ponent analysis (ICA) [7], [8] and clustering algorithms [6],
[8]–[10]. They mainly differ on the use of the hemodynamic
model and the experimental paradigm for detecting the brain
response [10], [11].

Clustering is the procedure of dividing a set of unlabeled
data into a number of groups (called clusters), in such a way
that similar in nature samples to belong to the same cluster,
while dissimilar samples to become members of different
clusters [12]. Cluster analysis of fMRI data constitutes a
very interesting application that has been successfully applied
during last years. Most popular clustering methods are the
k-means, fuzzy clustering and hierarchical clustering which
are applied to either raw data, or features that are extracted
from the fMRI signals [9], [10], [13]–[19]. The aim of any
clustering method in fMRI is to create a partition of the entire
data set into distinct regions where each region consists of
voxels with similar temporal behavior. Analysing fMRI data
finds some obstacles which are the large size and complexity
of raw data, the low contrast-to-noise ratio and the presence
of artifacts. Moreover, there are some significant constraints
coming from the nature of data, such as spatial correlation
among them, which must be taken into account.

In this direction spatially constrained models have been
proposed for fMRI data analysis. In [20] a linear regression
model has been adopted, where a spatially constrained mixture
model was used for the modeling of the Hemodynamic Re-
sponse Function (HRF). In [21] the fuzzy c-means algorithm
in cooperation with a spatial MRF was proposed to cluster
the fMRI data. Furthermore, in [22], [23] mixture models
with spatial MRFs have been applied on statistical maps
to perform the clustering. However, in the above works the
clustering procedure was performed indirectly on fMRI time
series, either through careful construction of the regression
model, or using features extracted from the fMRI time series.
Also, the temporal patterns of clusters have not been taken into
account. A solution to this is to perform the clustering directly
to fMRI time series. A useful tool to achieve that is the mixture
model, where each component is a linear regression model. In
[24] a mixture of General Linear Regression models (GLMs)
was proposed for clustering that takes into account the spatial
correlation of time series using a spatial prior based on the
Euclidean distances between the positions of time series and
cluster centers in 3-D space head model. Recently, in [25] a
mixture of linear regression models was also proposed, where
spatial correlations among the time series is achieved through
Potts models over the hidden variables of the mixture model.

In this work we propose an advanced regression mixture
modeling approach for clustering fMRI time series. The main
advantage of the proposed method lies on three aspects.



2

Firstly, we employ a sparse representation of every cluster
regression model through the use of an appropriate sparse
prior over the regression coefficients [26]. Enforcing sparsity
is a fundamental machine learning regularization principle
[12], [26] and has been used in fMRI data analysis [4], [27],
[28]. Secondly, spatial constraints of fMRI data have been
incorporated directly to the body of mixture model using a
Markov random field (MRF) prior over the voxel’s labels [29],
[30], so as to create smoother activation regions. Finally, we
present a kernel parameter estimation framework through a
multi-kernel scheme over the design matrix of the regression
models. In this way we manage to improve the data fitting
procedure and to design more compact clusters increasing the
quality of the clustering solution.

The task of clustering is then formulated as a Maximum
A Posteriori (MAP) estimation problem, where the known
Expectation-Maximization (EM) algorithm can be applied for
solving it. Since there is a dependence on the initialization,
we also present an incremental learning procedure for building
the proposed regression mixture model. This happened with
a repeated component splitting procedure using a particular
stopping criterion. In this way we manage not only to make
the learning process independent on the initialization of model
parameters, but also to construct a model-order selection
criterion for the complexity of the mixture model. We have
evaluated the proposed adaptive regression mixture model
with both artificial and real fMRI datasets. Comparison has
been made using the a regression mixture model with only
spatial properties, the Generalized Linear regression Model
(GLM) that constitutes a classical model-based approach and
the known k-means clustering algorithm. As experiments have
shown, the proposed method offers very promising results with
an excellent behavior in difficult and noisy environments.

The remainder of this paper is organized as follows: In
section II we briefly describe the standard mixture of linear
regression models as a platform for clustering fMRI time
series. In section III the proposed regression mixture is pre-
sented, which considers the spatial and sparse priors, the multi-
kernel scheme and the incremental learning strategy. To assess
the performance of the proposed methodology we present
in section IV numerical experiments with artificial and real
datasets, while, in section V we give some concluding remarks.

II. THE MIXTURE OF LINEAR REGRESSION MODELS

Let Y = {y1,y2, · · · ,yN} be a set of N fMRI time
series of length T , i.e. each element yn is a sequence of
values measured at T successive time instances xl, i.e. yn =
{ynl}l=1,··· ,T . It must be noted that the data analysis in our
study has been made on a single slice. During our experiments
we have studied the possibility of our method to handle 3D
cases with fMRI data by considering independence among
different slices. However, working directly in 3D brain images
finds a limitation of increasing computational complexity.

Linear regression modeling constitutes an elegant functional
description framework for analyzing sequential data. It is
described with the following form:

yn = Xwn + en , (1)

where wn is the vector of M (unknown) linear regression
coefficients, while en corresponds to the stochastic noise term
that is assumed to be zero mean Gaussian with variance σ2

n,
i.e. en ∼ N (0, σ2

nI). Finally, X is the design matrix where
its selection plays an important role for the data analysis.
A typical design matrix scheme is the Vandermonde or B-
splines matrix dealing with polynomial or splines models,
respectively. However, a more powerful strategy is to assume a
kernel design matrix using an appropriate kernel basis function
over time instances {xl}Tl=1. A common choice is to use the
Gaussian kernel

[X]lk = K(xl, xk;λ) = exp
(
− (xl − xk)2

2λ

)
,

where λ is a scalar parameter. Specifying the proper value for
this parameter is an important issue that may affect drastically
the quality of the fitting procedure. In general, its choice
depends on the amount of local variations of data which
must be taken into account. In addition, the design matrix
may contain information about the experimental paradigm of
fMRI experiment. According to this model, the conditional
probability density of the observative sequence yn is also
Gaussian

p(yn|θn) = N (Xwn, σ
2
nI) .

where θn is the set of model parameters, i.e. θn = {wn, σ
2
n}.

In this study we consider the clustering problem, i.e. the
division of the input set of time series Y into K clusters,
in such a way that each cluster contains similar in nature
elements. This is equivalent of assuming that each cluster
has its own regression generative mechanism, as given by
a conditional density with parameters θj = {wj , σ

2
j }. Mix-

ture modeling provides a powerful platform of establishing
the clustering procedure. It is described with the following
probability density:

f(yn|Θ) =

K∑
j=1

πjp(yn|θj) , (2)

where πj are the weights (prior probabilities) of every cluster
that satisfy the constraints: πj ≥ 0 and

∑K
j=1 πj = 1,

while Θ is the set of all mixture model parameters, i.e
Θ = {πj , θj}Kj=1. Assignment of the data to the K groups
is then achieved according to the maximun of the posterior
probabilities of component membership:

P (j|yn,Θ) =
πjp(yn|θj)
f(yn|Θ)

. (3)

Based on the above formulation, the task of clustering
can be converted into a parameter estimation problem. In
this direction the Expectation Maximization (EM) algorithm
[31] constitutes an elegant solution for fitting the model and
maximizing the log-likelihood function:

l(Θ) = log p(Y |Θ) =

N∑
n=1

log
{ K∑
j=1

πjp(yn|θj)
}

. (4)

It consists of two main steps that are applied iteratively. The
E-step, where the current posterior probabilities of component
membership are calculated znj = P (j|yn,Θ) (Eq. 3), and the
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M-step where the maximization of the expected complete log-
likelihood (Q-function) is performed with respect to the model
parameters

Q(Θ|Θ(t)) =

N∑
n=1

K∑
j=1

znj

{
log πj −

T

2
log 2π −

T log σj −
‖yn −Xwj‖2

2σ2
j

}
. (5)

The maximization leads to the following update rules:

πj =

∑N
n=1 znj
N

, (6)

wj =
( N∑
n=1

znjX
TX
)−1

XT
N∑
n=1

(znjyn), (7)

σ2
j =

∑N
n=1 znj‖yn −Xwj‖2

T
∑N
n=1 znj

. (8)

After the convergence of the EM algorithm, each sequence yn
is assigned to the cluster with the maximum posterior.

III. REGRESSION MIXTURE MODELING WITH SPATIAL AND
SPARSE PROPERTIES

The above structure of the regression mixture model for
clustering fMRI data has some limitations, since it does not
capture some important features arisen from the nature of the
observations. In particular, the fMRI data are structures that
involve spatial properties, where adjacent voxels tend to have
similar activity behavior [32]. Furthermore, there are temporal
correlations which are derived from neural, physiological and
physical sources [5]. These are physical constraints that must
be incorporated to the model. This can be carried out by
introducing appropriate priors.

A. Basic features of the proposed model

In particular, we can treat the probabilities (voxel labels)
πnj of each fMRI sequence yn belongs to the j-th cluster
as random variables, which additionally satisfy the constraints
πnj ≥ 0 and

∑K
j=1 πnj = 1. Local characteristics of voxels

can be employed through the use of Markov Random Fields
(MRFs) that have successfully applied to computer vision
applications [29], [33]. More specifically, we assume that the
set of voxel labels Π = {πn}Nn=1 follows the Gibbs prior
distribution with density [29]

p(Π) =
1

Z
exp{−

N∑
n=1

VNn
(Π)} . (9)

The function VNn
(Π) denotes the clique potential function

around the neighborhood Nn of the n-th voxel taking the
following form:

VNn
(Π) =

∑
m∈Nn

K∑
j=1

βj(πnj − πmj)2. (10)

In our case we consider neighborhood consisted of eight
(8) voxels which are horizontally, diagonally and vertically
adjacent. We also assume that every cluster has its own

regularization parameter βj . This has the ability to increase
the flexibility of model, since it allows different degree of
smoothness at each cluster. It is interesting to note here that
in our model these regularization parameters belong to the
set of the unknown parameters which are estimated during
the learning process. Finally, the term Z of Eq. 9 is the
normalizing factor that is analogous to Z ∝

∏K
j=1 β

−N
j .

An important role in using a regression model is how
to estimate its order M , i.e. the size of linear regression
coefficients wj . Estimating the proper value of M depends
on the shape of data to be fitted, where models of small
order may lead to underfitting, while large values of M may
become responsible for data overfitting. This may deteriorate
significantly the clustering performance. Bayesian regulariza-
tion framework provides an elegant solution to this problem
[12], [26]. It initially assumes a large value of order M . Then,
a heavy tailed prior distribution p(wj) is imposed upon the
regression coefficients that will enforce most of the coefficients
to be zero out after training.

The sparsity can be achieved in an hierarchical way [26] by
considering first a zero-mean Gaussian distribution over the
regression coefficients:

p(wj |αj) = N (wj |0, A−1j ) =

M∏
l=1

N (wjl|0, α−1jl ) , (11)

where Aj is a diagonal matrix containing the M com-
ponents of the precision (inverse variance) vector αj =
(aj1, . . . , ajM ). At a second level, precision can be seen as
hyperparameters that follow a Gamma prior distribution:

p(αj) =

M∏
l=1

Γ(αjl|b, c) ∝
M∏
l=1

αb−1jl exp−cαjl . (12)

Note that both Gamma parameters b and c are a priori set
to zero so as to achieve uninformative priors. The above
two-stage hierarchical sparse prior is actually the Student’s-
t distribution enforcing most of the values αjl to be large and
thus eliminating the effect of the corresponding coefficients
wjl by setting to zero. In such way the regression model order
for every cluster is automatically selected and overfitting is
avoided.

As mentioned before, the construction of the design matrix
X is a crucial part of the regression model. In our case we
have adopted a multi-kernel scheme [34], [35] by considering
a pool of S kernel matrices {Φs}Ss=1 which varies in their
scalar parameter value λs. In particular, we assume that the
kernel matrix Xj for the j − th cluster can be written as a
linear combination of these S kernel matrices

Xj =

S∑
s=1

ujsΦs , (13)

where ujs are the coefficients of the multi-kernel scheme
which are unknown and satisfy the constraints ujs ≥ 0 and∑S
s=1 ujs = 1. These parameters should be estimated during

learning in order to construct the kernel design matrix that
better suits to every cluster. As experiments have shown,
the employance of the proposed multi-kernel scheme has the
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ability to improve significantly the performance and the quality
of the clustering procedure.

B. MAP Estimation

The incorporation of the above properties leads to a modi-
fication of the regression mixture model which is written as:

f(yn|Θ) =

K∑
j=1

πnjp(yn|θj), (14)

where Θ = {{πnj}Nn=1, θj = (wj ,αj , σ
2
j ,uj , βj)}Kj=1 is the

set of mixture model parameters. The clustering procedure
becomes now a Maximum-A-Posteriori (MAP) estimation
problem, where the MAP log-likelihood function is given by

lMAP (Θ) = log p(Y |Θ) + log p(Θ)

=

N∑
n=1

log{
K∑
j=1

πnjp(yn|θj)}+ log p(Π)

+

K∑
j=1

{
log p(wj |αj) + log p(αj)

}
. (15)

Employing the EM algorithm to MAP estimation requires
at each iteration the conditional expectation values znj of the
hidden variables to be computed first (E-step):

znj = P (j|yn,Θ) =
πnjp(yn|θj)
f(yn|Θ)

. (16)

During the M-step the maximization of the complete data
MAP log-likelihood (Q-function) expectation is performed:

Q(Θ|Θ(t)) =

N∑
n=1

K∑
j=1

znj

{
log πnj −

T

2
log 2π −

T log σj −
‖yn −Xjwj‖2

2σ2
j

}
−

K∑
j=1

{
−N log βj +

βj

N∑
n=1

∑
m∈Nn

(πnj − πmj)2 +

1

2
wT
j Ajwj −

M∑
l=1

[(b− 1) logαjl − cαjl]
}

. (17)

By setting the partial derivatives of the above Q function with
respect to label parameters πnj equal to zero, we obtain the
following quadratic equation:

π2
nj− < πnj > πnj −

1

2βj |Nn|
znj = 0 , (18)

where |Nn| is the cardinality of the neighborhood Nn and
< πnj > is the mean value of the j-th cluster’s probabilities
of the spatial neighbors of the n-th voxel, i.e. < πnj >=

1
|Nn|

∑
m∈Nn

πmj . The above quadratic expression has two roots,

where we select only the one with the positive sign since it
yields πnj ≥ 0:

πnj =
< πnj > +

√
< πnj >2 + 2

βj |Nn|znj

2
. (19)

Note that in the above update rule the neighborhood Nn may
contain label parameters πmj that have been either already
updated or not. However, these values do not satisfy the
constraints 0 ≤ πnj ≤ 1 and

∑K
j=1 πnj = 1, and there is a

need to project them on their constraint convex hull. For this
purpose, we apply an efficient convex quadratic programming
approach presented in [33], that is based on the active-set
theory.

For the regression model parameters {wj ,αj , σ
2
j , βj} the

update rules can be obtained as

wj =
[( N∑

n=1

znj

) 1

σ2
j

XT
j Xj + Aj

]−1
·

1

σ2
j

XT
j

( N∑
n=1

znjyn

)
, (20)

αjl =
1 + 2c

w2
jl + 2b

, (21)

σ2
j =

∑N
n=1 znj‖yn −Xjwj‖2

T
∑N
n=1 znj

, (22)

βj =
N∑N

n=1

∑
m∈Nn

(πnj − πmj)2
. (23)

Finally, the weights ujs of the multi-kernel scheme are ad-
justed by solving the following minimization problem, where
we have considered only the part of likelihood function that
involves uj :

min
uj

N∑
n=1

znj ‖ yn −
S∑
s=1

ujsΦswj ‖2=

min
uj

N∑
n=1

znj ‖ yn −Xjuj ‖2=

min
uj

{
uTj X Tj Xjuj − 2uTj X Tj

N∑
n=1

znjyn

N∑
n=1

znj

}
, (24)

s.t.
S∑
s=1

ujs = 1 and ujs ≥ 0 .

In the above formulation, the matrix Xj has S columns
calculated by Φswj , i.e. Xj = [Φ1wj Φ2wj · · · ΦSwj ].
The minimization problem described in Eq. 24 is a typical
constrained linear least-squared problem that can be easily
solved again with the active-set theory [36].

At the end of the learning process the activation map of
the brain is constructed with the following manner: Initially,
we select the cluster h that best match with the BOLD
signal ξ (which is known before the data analysis) among
the K mixture components. This is done according to the
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Pearson correlation measurement (cosine similarity) between
the estimated mean curve µj = Xjwj of each cluster with
the BOLD signal ξ, i.e.

h = arg
K

max
j=1

µTj ξ

|µj ||ξ|
. (25)

Then, the voxels that belong to cluster h determine the brain
activation region, while the rest voxels (that belong to all
other K − 1 clusters) correspond to the non-activation region.
In this way we create a binary image with activated and
non-activated pixels. Alternatively, we can obtain a scalar
activation map as follows: First we select a color for showing
the brain activation (e.g. white). Each cluster is then drawn
with this color weighted by the ratio between its correlation
measurement (with the BOLD signal) and the correlation of
the cluster h (Eq. 25), that has been estimated as the brain
activation region. In this way, we create an activation map
with K levels of activation.

A necessary observation must be made here about the com-
putational cost of our method. Indeed, the computational effort
goes in the estimation of the label parameters {πnj} in the
M-step, since they must be examined sequentially according
to the neighborhood system. Also, a constrained optimization
problem is required to be solved for each voxel. Although, it
is typically expensive to account for the data spatial depen-
dencies during inference/learning, this is necessary in order
to capture these properties of data. In addition, it provides
with a flexibility of the proposed method to find optimum
solutions due to the optimization procedure (it projects the
unique unconstrained maximum onto the constraint boundary)
which implies better clustering performance. However, it is
our intension to work further on reducing the complexity
(possibly) by adopting some approximations [37]. Finally, it
must be noted that a way for speeding up the convergence of
the method is to repeatedly execute the updating procedure for
the label parameters in the same M-step. As experiments have
shown, this causes to require less number of EM iterations.

C. Incremental mixture learning

A drawback of the EM algorithm is its sensitivity to the
initialization of the model parameters due to its local nature.
Improper initialization may lead to poor local maxima of
the log-likelihood that sequentially affects the quality of the
clustering solution. The most commonly used initialization
strategy follows a random selection of K sequences among the
input set Y . Then, the regression coefficients wj are initialized
according to the least-square fit rule, while the other model
parameters are calculated using Eqs. 21-24. Finally, the log-
likelihood value is calculated after performing one step of
the EM algorithm. Several trials (e.g. 100) of such one-EM-
step procedure are made and finally the solution with the
maximum log-likelihood value is selected for initializing the
model parameters.

In our study we have adopted a more advanced methodology
based on an incremental strategy that has been successfully
applied in Gaussian mixture models [38]–[40]. Our approach
iteratively adds a new component to the mixture by performing

a component splitting procedure. Initially, we start with a
model having a single linear regression model. Let now
assume that we have already constructed a mixture model fk
with k linear regression components, i.e.

fk(yn|Θk) =

k∑
j=1

πjp(yn|θj) . (26)

Then we select next a cluster j∗ for splitting among the k
components. This is done by finding the mean curve µj that is
more similar with the BOLD signal ξ, according to the cosine
similarity function. Intuitively thinking, the splitting procedure
can be seen as a pruning mechanism that is repeated until
found the cluster that best describes the BOLD effect. Thus,
we can use this relation as a stopping criterion, and also as a
model order selection rule.

Let f(yn|Θ−j
∗

k ) be the mixture without the j∗-th compo-
nent. A new component k + 1 is generated and the resulting
mixture after the split operation takes the following form:

f(yn|Θk+1) = f(yn|Θ−j
∗

k ) + πn,j∗
newp(yn|θj∗)

+ πn,k+1p(yn|θk+1) (27)

For initializing the parameters of the new added regression
model we follow the next strategy:
• Among the time series that currently belong to the

selected cluster j∗, find a small percentage (referred to
as r) of the less probable cases (outliers) and calculate
their mean value y∗.

• Initialize the regression coefficients wk+1 according to
the least-square fit rule over y∗, as well as its regular-
ization parameter and noise variance (Eqs. 21 and 22,
respectively). The kernel weights of the design matrix
are set as uk+1,s = 1/S, ∀ s = 1, . . . , S.

• Also, the label parameters are initialized as

πn,k+1 = πn,j∗
new =

πn,j∗
old

2

The EM algorithm can be applied next for estimating the
parameters Θk+1 of the new mixture model. For terminating
the procedure we have used the criterion of the percentage
of the correlation (with the BOLD signal) increase between
two successive steps. When this percentage becomes very
small the incremental training process is terminated. In this
case the mixture increment from Θk to Θk+1 does not offer
any significant improvement to the correlation criterion, and
thus the best found cluster h (Eq. 25) from the previous
step is the final solution. The algorithmic description of
the proposed incremental strategy for training the adaptive
regression mixture model is given in Algorithm 1.

IV. EXPERIMENTAL RESULTS

The performance of the proposed method was studied in
cases with simulated and real fMRI data. We have studied both
versions of our method: the random initialization (SSRM) and
the incremental learning version (iSSRM). In all experiments,
the multi-kernel scheme for the design matrix was constructed
using a mixture of S = 10 design matrices Φs by considering
10 different values for the scalar parameter λs, varying from
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Algorithm 1 Incremental mixture learning
1: Input : set of N fMRI time-series Y = {y1,y2, · · · ,yN},

BOLD signal ξ and S kernel parameter values λs.
2: Start with k = 1, and calculate correlation c1.
3: repeat
4: Select cluster j∗ for splitting.
5: Initialize parameters θk+1 of the new added compo-

nent k + 1.
6: Θk+1 = Θk ∪ θk+1. Apply EM algorithm to the new

mixture fk+1(Θk+1).
7: Calculate the maximum correlation among the k+ 1

components mean curves with the BOLD signal ξ,

ck+1 = arg
k+1
max
j=1

µTj ξ

|µj ||ξ|
.

8: k = k + 1
9: until k = Kmax or ck−ck−1

ck−1
< ε

10: Output: Binary activation map

0.1 to 2 with step 0.2. Also, in these matrices a column
is added which contains the BOLD signal. Note that the
time instances xl were normalized before to [0, 1]. We have
compared our method with the following approaches:
• SRM: the regression mixture model with only spatial

properties (non-sparse regression modeling).
• GLM: the generalized linear model which is a known

model-based approach [3] that performs a voxel by voxel
analysis and a t-statistic decision process. In all experi-
ments the threshold for the p-values was set to p = 0.01,
since it gave the best performance. For constructing the
design matrix of the GLM we have followed a common
approach [41] that uses the BOLD signal, as well as
the Discrete Cosine Transform (DCT) basis functions to
capture the slow varying components of the fMRI time
series (we have selected the first ten) .

• k-means: a well known vector-based clustering method.
All experiments have been performed using Matlab (Math-
works, Inc.) on a laptop PC with CPU Intel Dual Core at 1.60
GHz and 2 GB RAM.

A. Experiments using simulated fMRI data

During the experiments with simulated fMRI data, we have
created 3-D datasets of time series using linear regression
models with known design matrix and regression coefficients.
In these time series, we have added white Gaussian noise of
various SNR levels (as defined between the BOLD signal and
the white gaussian noise component of the model). Note that
for the calculation of the SNR level we have used the next
formula:

SNR = 10 log10

( sT s

Nσ2

)
,

where σ2 is the variance of the noise and s is the BOLD signal.
The spatial correlation between the time series is achieved
through the regression coefficients. The spatial patterns, that
we have used, are drawn in Fig. 1a (dataset1) and Fig. 1b
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Fig. 1. Two spatial patterns (a), (b) and the BOLD signal (c) used in our
experiments with simulated data

(dataset2). The BOLD signal, which is used to model the
neural activity, is shown in Fig. 1c. Also, in these time series
we have added a slow varying component to model the drift in
the fMRI time series. This is done by using a linear regression
model where the regressors are the first ten basis vector
of DCT basis and the regression coefficients are sampled
from a N (0, 1). The size of both datasets were 80x80x84
(dataset1) and 60x60x84 (dataset2). Finally, for each SNR
level we studied the performance of the comparative methods
by executing 50 Monte Carlo simulations, where we took the
statistics of those runs (mean and variance).

To measure the quality of each clustering approach, we have
used two evaluation criteria:
• the performance, calculated as the percentage of correctly

classified time series, after labeling the cluster h (Eq .25)
as the brain activation area and the rest voxels as the
non-activation region, and

• the normalized mutual information (NMI), which is an
information theoretic measure based on the mutual in-
formation between the true (Ω) and the estimated (C)
labeling normalized by their entropies:

NMI(Ω, C) =
I(Ω, C)

(H(Ω) +H(C))/2
, (28)

where

I(Ω, C) =
∑
k

∑
j

P (ωk, cj) log
P (ωk, cj)

P (ωk)P (cj)
,

H(Ω) = −
∑
k

P (ωk) logP (ωk),

H(C) = −
∑
k

P (ck) logP (ck) .

The quantities P (ωk), P (cj) and P (ωk, cj) are the prob-
abilities of a sequence being in class ωk, cluster cj and
in their intersection, respectively, and are computed based
on set cardinalities (frequencies).

Figure 2 shows the comparative results for both simulated
datasets of Fig. 1. The superiority of the iSSRM is obvious
based on two evaluation criteria, especially in small SNR
values (noisy problems). Between two versions of our ap-
proach (incremental vs. random sampling), we observe that
the iSSRM gave better results with much less variability.
Comparison with the SRM method that holds only the spatial
properties, has shown a significant improvement in terms of
both evaluation criteria. This proves the usefulness of the
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(b) dataset2
Fig. 2. Comparative results in the case of two datasets of Fig. 1. Error bars
for the two evaluation criteria are shown in terms of several SNR values.

sparse term to modeling procedure. Among all regression
mixture models, the GLM approach gave the worst results.
This is in agreement with our belief that the voxel by voxel
analysis as made by the GLM, is not able to correctly capture
the structure of data [14]. Another drawback of the GLM
approach is its great sensitivity to the choice of threshold on
the t-statistic.

Two examples of the activation maps as estimated by each
method are shown in Figs. 3,4 in the case of SNR = −8
dB for the two datasets, respectively. Clearly, our method had
better discrimination ability and achieved to discover more
accurately the original spatial pattern, while at the same time
reduced significantly the false negative activation cases. This
statement can be further justified by calculating the False
Positive Rate (FPR) and True Positive Rate (TPR) (Table I)
from all methods. Especially for the GLM approach we also
present in Fig. 5 the ROC curve that plots TPR vs. FPR, where
we also present (in parentheses) the performance for some
characteristic cases. According to the results there is a great
sensitivity of GLM to the choice of threshold. For example, in
Fig. 2 (b) the performance of the GLM was 0.77 in the case
of −8 dB that corresponds to threshold p = 0.01. Although,
there are other p-values with better performance (e.g. 0.05
with performance 0.89), as shown in ROC curve of Fig. 5, the
obtained performance curve over all SNR levels was worst
that this presented in Fig. 2 (b). As mentioned before, we
have tested many p-values and we have shown that the value
of 0.01 had better overall performance.

We have also studied the effect of the proposed multi-kernel
scheme to the quality of clustering solution. To do this we
have compared the proposed multi-kernel iSSRM with the best
found single-kernel iSSRM, referred to as iSSRM*. The latter
was established by finding the regression mixture having a
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Fig. 3. Spatial patterns for dataset1 as estimated by all methods in the case
of -8 dB.
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Fig. 4. Spatial patterns for dataset2 as estimated by all methods in the case
of -8 dB.
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TABLE I
THE TRUE POSITIVE RATES (TPR) AND FALSE POSITIVE RATES (FPR) AS

CALCULATED BY ALL METHODS OBTAINED FROM THE RESULTS OF FIG. 4.

FPR TPR
iSSRM 0.02 0.96
SSRM 0.02 0.95
GLM 0.01 0.49
SRM 0.06 0.97

K-means 0.16 0.94

ROC curve

Fig. 5. ROC curve of the GLM method in the case of SNR=-8dB (Fig. 4
(e)).

single common design matrix with the best kernel parameter
λ∗, among the S = 10 design matrices. In Table II we
present the results for the two compared methods (iSSRM and
iSSRM*) in the case of dataset1 (Fig. 1(a) ). As we can see our
approach compares favorably in high SNR values. However,
in noisy environments the iSSRM method has shown better
performance in terms of both evaluation criteria, where the
difference is significant in some cases. An important advantage
of the proposed multi-kernel scheme is that it improves the
fitting data process, since it produces better solutions with
more adaptive clusters having its own regression coefficients
and design matrix (not common).

Furthermore, we have studied the behavior of our method
using other type of noise (non-Gaussian) obtained from real
fMRI data. More specifically, we have selected some slices
from a real fMRI experiment (auditory - it will be described
later) and we have applied them to the SPM package for
detecting the regions with no activation (background). Then,
from the corresponding time-series we had set up a set of
noise samples and we have used them for determining the
noise term in the linear Equation 1 by random selection.

TABLE II
THE EFFECT OF MUTLI - KERNEL SCHEME TO OUR METHOD.

Performance NMI
SNR iSSRM iSSRM* ( λ∗ ) iSSRM iSSRM* ( λ∗ )

0 1.0000 1.0000 (0.1) 1.0000 1.0000 (0.1)
-2 0.9997 0.9998 (1.1) 0.9972 0.9981 (1.1)
-4 0.9982 0.9983 (0.1) 0.9857 0.9864 (0.1)
-6 0.9895 0.9895 (1.3) 0.9358 0.9360 (1.3)
-8 0.9719 0.9656 (1.9) 0.8561 0.8360 (1.9)

-10 0.9491 0.8910 (0.1) 0.7682 0.6357 (0.1)
-12 0.9372 0.9247 (0.3) 0.7133 0.6726 (0.1)
-14 0.9083 0.8891 (0.1) 0.6226 0.5609 (0.1)

TABLE III
COMPARATIVE RESULTS USING NOISE FROM REAL DATA. MEAN VALUES

AND STANDARD DEVIATIONS ARE SHOWN OBTAINED FROM 30 TRIALS

Dataset2
Performance NMI

iSSRM 0.9783 ± 0.0031 0.8610 ± 0.0156
SSRM 0.9772 ± 0.0175 0.8665 ± 0.0644
SRM 0.7541 ± 0.1649 0.4330 ± 0.3048
GLM 0.9464 ± 0.0042 0.7558 ± 0.0137

Table III presents the comparative results of all methods after
performing 30 Monte Carlo runs, where we took better results
with the proposed approach. This constitutes the flexibility
of our method to attain its performance in non-Gaussian
noise. However, assuming alternative noise distribution (e.g.
Student’s-t) could be an interesting direction for future work.

Finally, we have tested the behavior of our method when
applying spatial smoothing as a preprocessing step. Exper-
iments have been made using the simulated fMRI dataset
of Fig. 1 (b) (dataset2). In particular, we have employed a
spatially stationary Gaussian filter for various values of full
width at half maximum (FWHM), while comparison has been
made with the GLM approach. The depicted results are shown
in Fig. 6 for three characteristic FWHM values. As we can
see by comparing curves of Fig. 6 (b),(c) with those of Fig.
2 (b), the smoothing process improves the performance of
both methods in large noisy environments. However, the GLM
fails to accurately discover the true activation areas in cases
with high SNR values. This behavior can be explained by
the fact that large smoothing blurs activations, leading to a
biased estimate of the location of activation peaks [4]. And
this is more obvious in low noisy environments, while in
cases with high noise this oversmoothing effect is eliminated.
On the other hand, the iSSRM method is more consistent
incorporating an adaptive smoothing procedure that can better
preserve the shape of the active regions. Also, it is interesting
to note that our method did not show any significant sensitivity
to the choice of FWHM value (we took similar results with
greater FWHM values). Note that we have performed spatially
smoothing during the experiments with real fMRI data as will
be presented later.

B. Experiments using real fMRI data

We have made additional experiments using real fMRI data.
In our study, we have selected three datasets: a block-designed
auditory paradigm, an event-related foot movement paradigm
and a block-designed hand movement paradigm. In these
experiments, we have followed the standard preprocessing
steps of the SPM package, i.e. realignment, segmentation,
normalization and spatial smoothing. Data are then scaled by
using the global mean value of all time series as a factor.
Finally, every time series was high pass filtered using the
standard methodology of the SPM package, where the default
cut off frequency was 0.008 Hz. The BOLD signals for all
experiments are shown in Fig. 7.

At first we have studied a block-designed fMRI dataset1

1It was downloaded from the SPM web page
http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 6. Comparative results in the case of dataset2 where the time series
have been spatially smoothed.
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Fig. 7. BOLD signals for the (a) auditory, (b) motor event and (c) motor
block experiments.

based on an auditory processing task as executed by a healthy
volunteer. Its functional images consisted of M = 68 slices
(79×95×68, 2mm×2mm×2mm voxels). For the auditory
data, the design matrix of GLM contains a columns of 1’s
and the BOLD signal as indicated in [24]. Experiments were
made with the slice 29 of this dataset, which contains a
number of N = 5118 time series. First, we have applied
the iSSRM algorithm for estimating the proper number of
clusters (K = 5) and use this value for executing the other
two approaches. Note that the required computing time was
around 1 min. Figure 8 represents the comparative results
of all clustering methods giving the resulting position of the
activation area inside the brain. Note that the activated areas

iSSRM SSRM

SRM GLM

Fig. 8. The binary activation map as estimated by each method in the case
of the auditory experiment.

K=2 K=3

K=4 K=5

Fig. 9. The progress of incremental training procedure in the auditory
experiment. The splitting stops when found K = 5 clusters according to
the correlation criterion.
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iSSRM SSRM

SRM GLM

Fig. 10. Estimated motor activated areas of comparative methods in white
overlaid on greyscale T1 weighted anatomical images.

are overlaid on greyscale T1 weighted anatomical images.
All methods have detected the auditory cortex as the brain
activation area. Both iSSRM and SSRM methods have clearly
detected three distinct areas of activation. These can be also
seen in the maps produced by the rest two approaches, SRM
and GLM, where in addition they include other small activated
islands that contain only a few voxels. It is also obvious that
the three regression mixture models with spatial properties
produce larger and smoother activation areas in comparison
with the GLM. The progress of incremental training procedure
of regression mixture model is also illustrated in Fig. 9.
Starting with a large activation area when K = 2, the proposed
method reaches the expected area of the brain when K = 5.
For larger value of K (K = 6) the increase of the correlation
measurement with the BOLD signal is not significant and thus
the algorithm terminates.

In the event-related foot-movement experiment we analyzed
fMRI data consisted of images acquired from the University
Hospital of Ioannina, Greece [42]. The imaging protocol
consisted of the following: 1) a T1-weighted high-resolution
(0.86x0.86x1 mm) 3D spoiled gradient echo sequence (TR/TE,
25/4.6 ms), which was used for structural imaging; 2) A single-
shot multisection gradient EPI was used for BOLD functional
images (TR/TE= 3000/50 ms; flip angle= 40; matrix= 64x64;
section thickness= 5 mm; gap= 0 mm). Each fMRI session
consisted of 160 scans and lasted 480 seconds. At the begin-
ning of each session, 4 dummy scans were acquired to allow
equilibration of magnetization. The head of the subject was

K=2 K=3

K=4 K=5

Fig. 11. The progress of incremental training procedure in the motor event
experiment. The splitting stops when found K = 5 clusters according to the
correlation criterion.

restrained by using cushions to minimize motion artifacts, and
he was advised to keep his eyes closed during the examination
so as to minimize potential visual stimuli. During this exper-
iment the subject, suffering from the restless legs syndrome,
performed random and spontaneous limb movements evoked
by sensory leg uneasiness. These movements were used to
create the indicator vector in our modeling that was convolved
next with the hemodynamic response function (HRF) in order
to provide the BOLD signal. Experiments were made with the
slice 54 of this dataset, which contains a number of N = 2644
time series. In this case the required computational time of our
method was around two minutes2.

Figure 10 presents the comparative results in this dataset
overlaid on greyscale T1 weighted anatomical images. Note
that, in the case of the GLM method the design matrix has two
extra columns about the time and the dispersion derivatives.
As expected, all methods have detected the primary and the
supplementary motor areas of the brain as the activation
cluster. Although there is no ground truth for the fMRI
data on individual cases the motor system in general is well
studied and described in the literature. Contrary to the GLM
methodology, our approach gives more activated areas closer
to the established motor circuitry and therefore the results
are more reasonable at least in this case. In particular, the
GLM does not consider the premotor region (large island down

2The difference on computing time between the two real experiments is
mainly due to larger design matrix on event-related foot-movement experiment
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Auditory experiment Motor event experiment

Fig. 12. The obtained scalar activation map in the case of the auditory and
motor experiments used in our study.

left) as activation area. More studies on large groups with
many different cognitive function are needed to prove these
preliminary results. Also, Fig. 11 illustrates the progress of
the incremental training of iSSRM.

The above study with real data allows us to make a useful
observation. In general, the size of the activation area is much
smaller in comparison with the rest non-activated area. This
fact may significantly deteriorate the performance of cluster-
ing. To face this problem, most approaches usually perform a
preprocessing step [14], [43] where the number of voxels is
reduced and the cluster size imbalance effect is eliminated. In
our case this is not needed due to the proposed incremental
learning scheme that repeatedly performs a splitting procedure.

Figure 12 illustrates the scalar activation maps estimated
by our method for the two real fMRI experiments. Each map
shows the image segmentation result according to the level
of activation per cluster, where the white-color cluster is the
most activated. According to these results, it turns to be clearer
the decision about the brain activation area in the case of the
auditory, since the white-color cluster (that best fit the BOLD
signal) differs significantly from the rest. On the other hand,
in the case of motor event experiment there is also another
cluster (with bright grey-color) which is significantly similar
with the BOLD signal and surrounds the white-color cluster
(activated). This is not far from the physiological properties
of the experiments since this second in order most activated
cluster covers parts of motor cortex area. We believe that this
scalar activation map may be proved a valuable tool for the
decision making procedure especially in some difficult cases
as they provide with more useful information.

Furthermore, we have studied the capability of our method
to construct the 3D activation model. In particular we have
applied our method independently to all available slices (68)
of the auditory experiment. The resulting activation maps are
fed to the 3D Slicer toolkit [44] where it has produced the
3D head model that contains the activation areas. Figure 13
illustrates the resulting 3D models of the proposed iSSRM and
the GLM approaches. As shown both methods have detected
a significant activation on the temporal lobe. However our
method have detected an extra activated region into the frontal
lobe which is expected to auditory experiments.

iSSRM GLM

Fig. 13. The 3D head activation maps as estimated by the proposed iSSRM
and the GLM approaches.

Finally, we made experiments on a group of subjects per-
formed hand movement. This fMRI dataset was acquired at
the University Hospital of Ioannina, with a clinical magnet
1.5T (Philips Intera) equipped with fast gradients. The imaging
protocol consisted of: i) Axial T1-Weighted: a 3-dimensional
sequence which provided a high-resolution reference for align-
ment between subjects. We used a 3D-Volume Magnetization-
Prepared Rapid Acquisition with Gradient Echoes (MP-
RAGE). Parameters: TR=25 msec; TE=4,6 msec; flip an-
gle=30; slice thickness=0,8 mm; acquisition matrix =256 ;
reconstruction matrix =256. ii) Multilevel BOLD fMRI using
a hand task: We used a gradient echo EPI. Parameters: TR=
2000 ms; TE= 50 ms; flip angle=40; acquisition matrix =64;
reconstruction matrix =128; slice thickness =5 mm; gap=0;
160 dynamics. Four dummy scans were performed in the be-
ginning of fMRI to stabilize the magnetization level and allow
us to keep all the images. This paradigm consisted of alternate
action and resting blocks, 20 sec each (block design). During
the action epoch the subjects flexed and released continuously
at 0.5 Hz rate the fingers of their right hand in unison. The
cues for action or rest was announced through headphones
using the commands start and stop. The paradigm lasted 320s
of 8 action and 8 rest blocks, and we collected 20 images/slice
at TR=2s. We restricted motion artifacts by using foam rubber
pads and strap across the forehead. Eyes were kept closed, at
all times. More specifically, the data from four subjects were
used to test our method. We applied the iSSRM method in each
subject and the produced activation maps are shown in Fig.
14. In these experiments the slice 54 of each individual dataset
was used. In all subjects we consistently found brain activation
at expected areas comprising the cortical motor network (i.e.
motor, premotor and supplementary motor regions). Note that
the variability of motor activation among the subjects in Fig.
14, is a well known feature of brain activation in general and
it is manifested even among successive studies of the same
subject [45]. Deducing statistical inferences about the average
activation of the whole group although is not a demanding
task requires a second level group-analysis which lies beyond
the scope of the present study.



12

Fig. 14. Results of the application of our method to a group of subjects
performed hand movement. These are the activation maps of four such
subjects.

V. CONCLUSIONS

In this work, a clustering technique, based on probabilistic
mixture modelling, is presented for the analysis of fMRI data.
More specifically, our method was used to cluster the fMRI
time series into two groups, activated and non activated. This
is achieved by introducing a new mixture of linear regression
models with sparse and spatial properties. Sparse priors are
placed on the weights of each linear regression model helping
us to deal with the problem of model order selection. Also,
spatial priors are used on the mixing coefficients to take into
account the spatial correlation between the voxels. This is
achieved by using a Gibbs distribution. Furthermore, to avoid
sensitivity of the design matrix to the choice of kernel matrix,
we have used a kernel composite design matrix constructed as
linear combination of Gaussian kernel matrices with different
scaling parameter. Finally, an incremental strategy was pro-
posed to find the number of clusters as well as to avoid the
sensitivity of the EM algorithm on the initialization.

Our future research study will be focused on examining
the appropriateness of other types of sparse priors [46] and
alternative Gibbs potential functions, as well as to study dif-
ferent strategies for estimating kernel parameters of the design
matrix. Another direction is to apply our method to other fMRI
related problems such the study of functional connectivity
[47] and the analysis of resting state fMRI data [17]. During
the experiments we have shown that a preprocessing step of
spatial smoothing may enhance considerably the performance
of the proposed method. Therefore, studying the effect of
other preprocessing techniques such as those described in

[48], constitutes an interesting issue for future work. Finally, a
possible extension is to use alternative stopping criteria in the
incremental training scheme, especially when the experimental
paradigm is not given [48].
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