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A Sparse and Spatially Constrained Generative
Regression Model for fMRI Data Analysis

Vangelis P. Oikonomou, Konstantinos Blekas∗, and Loukas Astrakas

Abstract—In this study, we present an advanced Bayesian frame-
work for the analysis of functional magnetic resonance imaging
(fMRI) data that simultaneously employs both spatial and sparse
properties. The basic building block of our method is the general
linear regression model that constitutes a well-known probabilistic
approach. By treating regression coefficients as random variables,
we can apply an enhanced Gibbs distribution function that cap-
tures spatial constrains and at the same time allows sparse repre-
sentation of fMRI time series. The proposed scheme is described
as a maximum a posteriori approach, where the known expecta-
tion maximization algorithm is applied offering closed-form up-
date equations for the model parameters. We have demonstrated
that our method produces improved performance and functional
activation detection capabilities in both simulated data and real
applications.

Index Terms—Expectation maximization (EM) algorithm, func-
tional magnetic resonance imaging (fMRI) analysis, general linear
regression model (GLM), Markov random field (MRF), relevance
vector machine (RVM).

I. INTRODUCTION

FUNCTIONAL magnetic resonance imaging (fMRI) mea-
sures the tiny metabolic changes that take place in an active

part of the brain. It is a common diagnostic method for the be-
havior of a normal, diseased, or injured brain, as well as for
assessing the potential risks of surgery or other invasive treat-
ments of the brain. fMRI is based on the increase in blood
flow to the local vasculature that accompanies neural activity
of the brain [1], [2]. When neurons are activated, the result-
ing increased need for oxygen is overcompensated by a large
increase in perfusion. As a result, the venous oxyhemoglobin
concentration increases and the deoxyhemoglobin concentra-
tion decreases. Because the latter has paramagnetic properties,
the intensity of the fMRI images increases in the activated areas
according to the paradigm. fMRI detects changes of deoxyhe-
moglobin levels and generates blood oxygen level-dependent
(BOLD) signals related to the activation of neurons.

The objective of the fMRI data analysis is to detect the weak
BOLD signal from the noisy data and determine the activated
regions of the brain. It consists of two stages: preprocessing and
statistical analysis. The first stage is usually carried out in vari-
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ous steps, such as realignment, segmentation, motion correction,
spatial normalization, spatial smoothing, etc. [2]. Model-based
statistical analysis is most commonly achieved through the use
of the general linear regression model (GLM) [3], [4]. At the end
of the learning process, the statistical activation map is drawn
based on t- or F -statistics, displaying the activation areas and
the importance of each voxel.

A significant drawback of the basic GLM approach is that
spatial and temporal properties of fMRI data are not taken into
account. However, the fMRI data are biologically generated by
structures that involve spatial properties, since adjacent voxels
tend to have similar activation level [5]. Moreover, the pro-
duced activation maps contain many small activation islands
and so there is a need for spatial regularization. Another de-
sirable property is to handle temporal correlations derived from
neural, physiological, and physical sources [6] and have a mech-
anism that can automatically address the model order. The latter
is a very important issue in many model-based applications in-
cluding regression. If the order of the regression model is too
large, it may overfit the observations and does not generalize
well, while if it is too small it might miss trends in the data [7].

Within the literature, there are several methods that incor-
porate either spatial correlations or sparse properties into the
estimation procedure. Spatial characteristics of fMRI are usu-
ally taken into account by spatially smoothing the data with a
fixed Gaussian kernel, as a preprocessing step [2], [8]. Other ap-
proaches have been also proposed that elaborate denoising tech-
niques applied before the statistical analysis (see, e.g., [8]–[11]).
fMRI data have also been analyzed by multivariate methods such
as spatial independent component analysis (ICA) [12], [13]. Un-
der the Bayesian framework, spatial dependences in fMRI have
been modeled through Gaussian Markov random fields (MRFs)
priors applied either to temporal and spatial components of
the signal or to the noise process, using Markov chain Monte
Carlo (MCMC) to compute posterior inference [14], [15]. Also,
Gaussian spatial priors have been placed over the regression
coefficients, as well as on autoregressive (AR) coefficients of
the noise process [6], [8], [16], [17]. A special type of Gaussian
MRF has been applied in [18], where the covariance matrix is
assumed to be known based on the distance over pixel coor-
dinates, while learning is made through variational expectation
maximization (EM). Alternatively, spatial smoothing can be ob-
tained either through Laplace- or Cauchy-type priors [6], [19],
or as a postprocessing step working over the resulting statistical
map [10], [20], [21].

On the other hand, methods with sparse properties have been
applied to fMRI data analysis. These include sparse regression
models over the linear coefficients of GLM [22]–[24], either the
coefficients of spatio-temporal AR models [15], or the weights
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on the space domain of images [25]. Moreover, other sparse
models have been proposed using of elastic nets [26], or by
converting the estimation problem into a linear programming
problem [27]. Training of the above methods is performed either
by Markov Chain Monte Carlo (MCMC), or through Variational
Bayes (VB) framework.

However, only a few works have studied the impact of both
spatial and sparse properties on the quality of fMRI data mod-
eling. One such methodology has been presented in [8] that
addresses both spatial and sparse capabilities in a hierarchical
framework. In particular, the image of the regression coefficients
is first decomposed using wavelets, and then a sparse prior is
applied over the wavelet coefficients. An alternative approach
has been presented in [16] where the regression coefficients are
indirectly spatially smoothed using an Ising prior over their in-
dicator variables. Finally, a recent work is described in [17], that
applies a multivariate Laplacian prior over coefficients written
as a scale mixture followed by a spatial distribution on an aux-
iliary variable, that allows a spatiotemporal smoothing of data.

In this paper, we propose an advanced Bayesian framework
that simultaneously employs both spatial and sparse proper-
ties in a more systematic way. The contribution of this paper
is twofold. First, we provide directly the regression coefficients
with the desired two properties by considering an enhanced prior
distribution. Additionally, we manage to establish an efficient
learning procedure, based on the EM algorithm, that derives
closed-form update equations. More specifically, the general-
purpose GLM is used for fMRI time series modeling. The key as-
pect of our method is the enhanced exploitation of the MRFs by
using an effective Gibbs potential function. Traditionally, Gibbs
distribution is used for addressing only spatial correlations. In
our study, we present a modification of the potential function
that, apart from spatial, is able to simultaneously impose sparse-
ness based on the relevance vector machine (RVM) [7]. A max-
imum a posteriori expectation maximization (MAP-EM) al-
gorithm [28] is applied next to train this model providing with
update rules in closed form during the M -step. The performance
of the proposed methodology is quantitatively and qualitatively
evaluated using a variety of simulated and real datasets. Compar-
ison has been made with two types of GLM having only spatial
or sparse properties, respectively, and with the spatial ICA.

In Section II, we briefly describe the basic GLM framework
and show how we can introduce a Gibbs prior so as to allow
spatial correlations. The proposed simultaneous sparse spatial
regression model is then presented in Section III together with
the MAP-based learning procedure. To assess the performance
of the proposed methodology, we present in Section IV numer-
ical experiments with artificial and real fMRI datasets. Finally,
in Section V we give conclusion and suggestions for future
research.

II. SPATIALLY VARIANT LINEAR REGRESSION MODEL

A. Background

Suppose we are given a set of N fMRI time series Y =
{y1 . . . ,yN }, where each observation yn is a sequence of M
values over time, i.e., yn = {ynm}M

m=1 . The application of the

GLM) assumes the following functional description:

yn = Φwn + en (1)

where Φ is the design matrix of size M × D and wn is the
vector of the D regression coefficients that are unknown and
must be estimated. The last term en is an M -dimensional vector
determining the model noise. By assuming temporal correlation
structure, it can be modeled as an AR process of order p [15],
[29] expressed as

en = Enξn + εn . (2)

The term En is an M × p matrix containing past error samples,
ξn is the p-length vector of the AR coefficients, and εn is an
i.i.d. M -length zero mean Gaussian vector with a precision
(inverse variance) λn , i.e., εn ∼ N (0, λ−1

n I). Alternatively, we
can consider the next formulation

Ξnen = εn (3)

where Ξn is an M × M upper diagonal matrix containing the
AR coefficients. From this scheme, we obtain the distribution
of error as en ∼ N (0, (λnΞT

n Ξn )−1). Both versions of the AR
noise model are helpful for appropriately setting the likelihood
function.

The design matrix Φ contains some explanatory variables
(or effects) that describe various experimental factors. Its con-
struction is crucial for the statistical analysis of fMRI data. The
number of regressors (columns of the design matrix) depends on
the experiment and on the problem formulation in order to ad-
dress several factors of the fMRI time series, such as long-range
correlations and movement effects [6], [22].

In fMRI data analysis, the goal is to find the involvement
of experimental factors in the generation process of time series
through the estimation of coefficients wn . Following (1), we
can model the sequence yn with a normal distribution

p(yn |wn , λn , ξn ) = N (Φwn , (λnΞT
n Ξn )−1). (4)

Training of the GLM can be viewed as a maximum like-
lihood (ML) estimation problem for the model parameters
Θ = {wn , λn , ξn}N

n=1 . The log-likelihood function can be then
written in two equivalent ways by means of the error formulation
(2) or (3)

LML(Θ) =
N∑

n=1

{
M

2
log λn − λn

2
‖Ξn (yn − Φwn )‖2

}
(5)

LML(Θ) =
N∑

n=1

{
M

2
log λn − λn

2
‖yn − Φwn − Enξn‖2

}
.

(6)

The maximization procedure leads to the following rules that
are iteratively applied:

ŵn = (FnΦ)−1Fnyn (7)

λ̂n =
M

‖Ξn (yn − Φŵn )‖2 (8)

ξ̂n = (ET
n En )−1En (yn − Φŵn ) (9)

where Fn = ΦT ΞT
n Ξn .
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B. GLM With MRF-Based Spatial Prior

Let W = {w1 , . . . ,wN } be the set of N vector of regression
coefficients of N voxels. Spatial properties of the data can be
accomplished through the use of MRF over W. The Gibbs
density function takes the following form:

p(W) = Z exp{−U(W)} (10)

where Z is a normalization factor. The function U(W) is the
energy function given by

U(W) =
1
2

N∑

n=1

VNn
(wn ) (11)

where VNn
(wn ) denotes the clique potential function within the

neighborhood Nn of nth voxel, written as

VNn
(wn ) = βn

∑

k∈Nn

‖wn − wk‖2 (12)

and βn is the regularization parameter. The neighborhood Nn is
the set of voxels that are horizontally, vertically, or diagonally
adjacent to the nth voxel, having a cardinality equal to |Nn |.
Although there is an obvious dependence on neighbors, without
loss of generality we can assume the next prior distribution for
each voxel

p(wn |βn ) = Zn exp
{
−1

2
VNn

(wn )
}

(13)

where the first term is the normalization factor formulated as
Zn ∝ β

|Nn |/2
n . Finally, a Gamma prior is imposed on the regu-

larization parameter βn , as well as the noise precision λn of the
form

p(βn ) = Gamma(βn |bβ , cβ ) ∝ β
cβ −1
n e−bβ βn (14)

p(λn ) = Gamma(λn |bλ, cλ) ∝ λ
cλ−1
n e

−bλλn . (15)

The estimation problem is now formulated as a MAP frame-
work, in the sense of maximizing the posterior density of
model parameters Θ = {wn , βn , λn , ξn}N

n=1 . The MAP log-
likelihood function is then

LMAP(Θ) =
N∑

n=1

{
M

2
log λn − λn

2
‖Ξn (yn − Φwn )‖2

− βn

2

∑

k∈Nn

‖wn −wk‖2 +
|Nn |

2
log βn +G(βn ) + G(λn )

}

(16)

where the function G() has the following form:1

G(x) = cx log x − bxx. (17)

By taking the partial derivatives with respect to model parame-
ters, the next updated rules are obtained

ŵn = (λnFnΦ + Bn )−1(λnFnyn + BWn ) (18)

1We follow the methodology described in [7] where the maximization is made
over a logarithmic scale using p(log x) = xp(x).

β̂n =
|Nn | + 2cβ∑

k∈Nn
‖ŵn − ŵk‖2 + 2bβ

(19)

λ̂n =
M + 2cλ

‖Ξn (yn − Φŵn )‖2 + 2bλ
(20)

where Bn =
∑

k∈Nn
(βn + βk )I and BWn =

∑
k∈Nn

(βn +
βk )wk correspond to the effect of neighbors on nth voxel’s re-
gression coefficients. Note that in the aforementioned scheme,
the neighborhood Nn can include voxels whose regression co-
efficients either have ŵk or not wk been updated. For the AR
coefficients ξn , the update rule is exactly the same as in the ML
case (9). The aforesaid learning scheme can be incorporated
into an EM framework [28]. In particular, during the E-step the
expected values of the hidden variables wn are computed (18),
while the adaptation of model parameters is performed in the
M-step according to (9), (19), and (20).

III. SIMULTANEOUS SPARSE AND SPATIAL GLM

A desired property of the linear regression model is to offer
an automatic mechanism that will zero out the coefficients that
are not significant and maintain only large coefficients that are
considered significant according to the model. Moreover, an
important issue when using the regression model is how to
define its order D. The appropriate value of D depends on the
shape of data to be fitted, that is models of smaller order lead to
underfitting, while large values of D may lead to overfitting. It
is well known that both cases may lead to serious deterioration
of the fitting performance. The problem can be tackled using
the Bayesian regularization method that has been successfully
employed in the RVM model [7].

In order to simultaneously cover both spatial and sparse prop-
erties, the Gibbs distribution function (10) needs to be reformu-
lated. This can be accomplished by using the following energy
function:

U(W) =
1
2

N∑

n=1

{
V

(1)
Nn

(wn ) + V
(2)
Nn

(wn )
}

. (21)

The first term of the aforesaid function is the sparse term used
for describing local relationships of the nth voxel coefficients.
This can be expressed as

V
(1)
Nn

(wn ) = wT
n Anwn (22)

where An is a diagonal matrix containing the D hyperparam-
eters {αn1 , . . . , αnD}. In addition, a Gamma prior is imposed
on them

p(αn ) =
D∏

d=1

Gamma(αnd |bα , cα ) ∝
D∏

d=1

αcα −1
nd e−bα αn d .

(23)
In this way, a two-stage hierarchical prior is achieved which is
actually a Student-t distribution with heavy tails [7]. Sparsity is
obtained since this scheme enforces most hyperparameters αnd

to be large; thus, the corresponding coefficients wnd are set to
zero and finally eliminated.

The second term of the proposed Gibbs energy function cap-
tures the spatial correlation and is responsible for the clique
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potential of the nth voxel

V
(2)
Nn

(wn ) = βn

∑

k∈Nn

znk‖wn − wk‖2 . (24)

In comparison with the potential function of the basic spatial
scheme (12), this formulation provides a variation in the neigh-
bors’ contribution to the calculation of the clique potential value,
as reflected by the parameters znk . Experiments have shown
that the introduction of such weights can increase the flexibility
of spatial modeling and can be proved advantageous in cases
around the borders of the activation regions (edges). In the lit-
erature, there are other Gibbs potential functions that embody
the same desired property around edges, see for example [30].
However, they do not provide closed-form update rules such as
in our case.

The prior distribution of the regression coefficients of the nth
voxel is then written as

p(wn |βn , zn , αn ) = Zn exp
{
−1

2
V

(1)
Nn

(wn ) − 1
2
V

(2)
Nn

(wn )
}

(25)
where the normalization factor Zn can be expressed as

Zn ∝ β|Nn |/2
n

∏

k∈Nn

z
1/2
nk

D∏

d=1

α
1/2
nd . (26)

We also assume that the regularization parameter βn , the
noise precision λn , and the weights znk are Gamma distributed
variables. Based on the aforesaid formulation, the data analy-
sis problem can be treated as a MAP approach for the set of
regression model variables Θ = {wn , ξn , βn , λn , zn , αn}N

n=1 .
The MAP log-likelihood function can be given as

LMAP(Θ) =
N∑

n=1

{
M

2
log λn − λn

2
‖Ξn (yn − Φwn )‖2

− 1
2
wT

n Anwn − βn

2

∑

k∈Nn

znk‖wn − wk‖2 +
|Nn |

2
log βn

+
1
2

∑

k∈Nn

log znk +
1
2

D∑

d=1

log αnd + G(βn ) + G(λn )

+
∑

k∈Nn

G(znk ) +
D∑

d=1

G(αnd)

}
. (27)

Setting the partial derivatives with respect to regression coeffi-
cients equal to zero, we obtain the following update rule:

ŵn = (λnFnΦ + BZn + An )−1(λnFnyn + BZWn ) (28)

where

BZn =
∑

k∈Nn

(βnznk + βkzkn )I

BZWn =
∑

k∈Nn

(βnznk + βkzkn )ŵk .

For the rest three model variables {βn , zn , αn}, the next update
equations are found

β̂n =
|Nn | + 2cβ∑

k∈Nn
znk‖ŵn − ŵk‖2 + 2bβ

(29)

ẑnk =
1 + 2cz

β̂n‖ŵn − ŵk‖2 + 2bz

(30)

α̂nd =
1 + 2ca

ŵ2
nd + 2ba

(31)

while the AR coefficients ξn and the noise precision λn have the
same form as previously defined [(9) and (20), respectively)].

Again, the whole procedure can be incorporated into an EM
framework by treating the regression coefficients as hidden vari-
ables. In this way, their expectation is computed in the E-step
(28), while the maximization of the complete-data MAP log-
likelihood function is performed during the M-step giving up-
date rules for the model parameters (29)–(31). We call this
method SSGLM. Following (27), it is easy to see that when
and = 0 the proposed method is reduced to the previously de-
scribed spatial GLM scheme (setting also znk = 1) keeping
only the spatial component. On the opposite case, when βn = 0
or znk = 0 only the sparse part is maintained and this scheme
becomes equivalent to the RVM-based sparse regression mod-
eling [7]. In the Appendix, we present an EM-based alterna-
tive description of the aforementioned model, where we obtain
the marginal distribution of the observations yn by integrating
out the regression coefficients wn and treating them as hidden
variables.

A. Statistics

After finishing with the estimation procedure, the BOLD con-
trast can be displayed by calculating the quantity cT ŵn for each
voxel, where c is the (given) associated contrast vector that
specifies particular differences over the coefficients. Two other
statistical maps can be also drawn for showing the brain activ-
ity according to two statistics: the t-statistics and the posterior
distribution, based on the classical and the Bayesian approach,
respectively [31]. In the classical approach, the statistical para-
metric map (SPM) is created by calculating the t-statistic for
each voxel

tn =
cT ŵn√
cT Cŵn

c
(32)

where Cŵn
is the covariance of the regression coefficients ŵn

that is calculated according to (38) (assuming a Gaussian dis-
tribution). Alternatively, under the Bayesian framework a map-
ping of the brain is created according to the posterior probability
value

ppn = 1 − Ψ

(
γ − cT ŵn√

cT Cŵn
c

)
(33)

that a voxel is activated or its effect size γ is greater than a
threshold. In this form, the function Ψ(·) is the normal cu-
mulative distribution function. These values are then used for
obtaining the posterior probability map [32]. During our
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experimental study, we present only activation maps produced
by SPM.

IV. EXPERIMENTAL RESULTS

We have tested the proposed method (SSGLM) using vari-
ous simulated and real datasets. In an attempt to examine the
contribution of both spatial and sparse properties, we have made
comparison with two versions of the GLM: the SeGLM that uses
only the spatial constraints as derived by the potential function
of (24) and the SpGLM that captures only the potential function
related to the sparse properties of the model (22). We have also
compared our method with the spatial ICA [12], where we have
followed the method described in [13] for estimating the number
of independent components (ICs).2 Note that during studying
simulated datasets where the ground truth was available, the
resulting statistical map of ICA was obtained from the indepen-
dent component that presents the largest correlation with the
ground truth. All GLM-based methods were initialized by first
calculating the ML estimates of the regression coefficients wn

(7), and used them next for setting the rest model parameters
ξn , λn , βn , zkn , and anp , according to (9), (20), and (29)–(31),
respectively.3 Also, all Gamma parameters were set equal to 0.5,
except those of the error precision and the sparse responsible
variables that were set as bλ = cλ = bα = cα = 10−6 making
them noninformative.

A. Experiments With Simulated Data

The simulated datasets were created according to the follow-
ing generation mechanism. We used a design matrix with two
prespecified regressors: the first one, shown in Fig. 1(a), was
responsible for the BOLD signal s of length M = 84 and it
was selected from a real experiment found on the SPM package
while the second one being a constant of ones. Then, we con-
structed a binary image showing the activated and nonactivated
areas, where its pixel intensities correspond to the value of the
first coefficient (wn1). Two such simulated images were used
for this purpose: the first image [see Fig. 1(b)] was created by
a statistical map of a real fMRI example after ML-based esti-
mating the regression coefficients and setting a threshold to the
t-values (Dataset 1). The second image [see Fig. 1(c)] was taken
from [33] and created by sampling from an MRF model using
a Gibbs sampler (Dataset 2). The second coefficient wn2 had
a constant value equal to 100. The time series data (yn ) were
calculated by using the generative equation of GLM (1) with an
additive Gaussian noise of various SNR levels, calculated as

SNR = 10 log
sT s

M(1/λn )
. (34)

The noise was constructed according to an AR model
of order p = 3, whose coefficients took the values ξn =
(1,−0.8, 0.6,−0.4)T , as proposed in [29].

Two evaluation criteria were used.

2We have used the fast ICA software with its default settings downloaded
from http://www.cis.hut.fi/projects/ica/fastica/.

3Due to relation between βn and zkn , we used (19) instead of (29).

Fig. 1. (a) BOLD signal s. (b), (c) Two images with random shaped activated
areas used for generating simulated data.

1) The area under curve (AUC) of the receiver operating
curve (ROC) based on t-statistic calculations that reflects
the ability of the method to detect the real activations,
while minimizing the detections of false activations. ROC
curves were generated by considering a voxel to be active
if its effect size is greater than a predefined threshold.
In our experiments, the aforementioned threshold varied
from the minimum to the maximum value of the t-statistic
as calculated by each method.

2) The normalized mean square error (NMSE) that measures
the quality of the curve fitting procedure

NMSE =
∑N

n=1(ŵn1 − ωn1)2

∑N
n=1 ω2

n1

(35)

where ŵn1 and ωn1 are the estimated and the true regres-
sion coefficients responsible for the BOLD signal.

Also, we have selected a design matrix (Φ) with 12 columns
(D = 12): one for the BOLD signal, one column with ones for
the constant term, and the first ten basis functions from the
discrete cosine transform (DCT) that corresponds to low-pass
frequency components of fMRI time series [2]. For every noise
realization (SNR value), we performed 50 different runs of each
method and calculated statistics (mean value and standard devi-
ation) of the AUC and NMSE measurements. Note that for the
spatial ICA method only the AUC measurement was calculated,
since the regression coefficients could not be estimated. Further-
more, the resulting statistical map of ICA was obtained from the
independent component that had the highest correlation with the
ground truth signal.

The diagrams in Fig. 2 present the comparative performance
results using error bars for the two activation images in Fig. 1. As
is obvious, the proposed method improves not only the activation
detection ability (AUC), but also the quality of fitting process
(NMSE). Also, the error bars indicate that the observed differ-
ences between the methods are statistically significant. Between
both versions of GLM, the SeGLM approach, that incorporates
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Fig. 2. Plots of mean values of AUC and NMSE with error bars for various
SNR values in the case of two simulated images in Fig. 1.

spatial properties, had a tendency toward better discriminative
ability. This was expected, since the activated areas in both sim-
ulated images in Fig. 1 are not smoothed. On the other hand,
the sparse capability during modeling of the SpGLM method
causes into improving curve fitting procedure and leads to bet-
ter NMSE values. This behavior can be further explained by
presenting in Fig. 3 some examples of the produced activation
maps in the case of the first simulated image [see Fig. 1 (b)] for
SNR value −10 dB and two false positive rates (FPR) 0.01 and
0.1. As can be observed, the SeGLM method tends to overesti-
mate the activated areas and produces larger than the true ones.
On the other hand, the SpGLM method fails to produce spatially
connected areas and detects many small false positive islands.
The proposed method SSGLM achieves a balance between spa-
tially distributed modeling and sparse smoothing that improves
model accuracy and efficiency. Another useful observation ex-
tracted from the activation maps in Fig. 3 is that our approach
shows a much reduced dependence on the threshold choice of
t-values since it maintains a stable behavior for various values
of FPR. Finally, the spatial ICA gave the worst performance and
only in large SNR values it yielded results comparable to those
obtained by other approaches.

To gain more insight into the discriminative capability of our
method, a more comprehensive analysis of ROC curves was
performed. More specifically, Fig. 4 illustrates the calculated
mean ROC curves with error bars in the case of the activation
image in Fig. 1(b) for two noisy environments of −6 dB and
−10 dB. Note that the FPR on x-axis is shown in logarithmic
scale. Obviously, the SSGLM method exhibits better results than
the other two methods, SeGLM and SpGLM. For example, in
the case of −6 dB [see Fig. 4(a)] and for FPR equal to 0.001,
the SSGLM method gives 90% of the detection accuracy, while
its peers have 70% and 55%, respectively. Higher values of the

Fig. 3. Resulting activation maps of four comparative methods on SNR
−10 dB for two values of FPR.

Fig. 4. Mean ROC curves of SSGLM, SeGLM, and SpGLM for (a) −6 dB
and (b) −10 dB. FPR is shown in logarithmic scale.

FPR are needed for the SeGLM and the SpGLM methods in
order to reach 90%. Likewise, in the case of SNR value −10 dB
the SSGLM method shows an accuracy of 60% for FPR equal
to 0.001, while the SeGLM and the SpGLM methods have 40%
and 10%, respectively. Finally, the performance of the spatial
ICA method was poor at small FPR values. As shown in Fig. 4,
an accuracy of 90% is achieved when the FPR is much greater
than 0.1.

B. Experiments With Real fMRI Data

The proposed approach was also evaluated in a variety of
real applications. Since the ground truth is not available in
this study, we have selected to visually compare the resulting
activation maps by all methods. For any selected dataset, we
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followed the standard preprocessing steps of the SPM package,
i.e., realignment, segmentation, and spatial normalization, with-
out performing the spatial smoothing step. Data are then scaled
by means of their mean value, as described in [8], and finally
high-pass filtered using a set of discrete cosine basis functions.
During all experiments, we have chosen an AR model of or-
der p = 3, suggested in [29]. On the other hand, for evaluating
the spatial ICA method we manually selected the independent
component (among those estimated from the approach described
in [13]) that best meets the design of the experiment and resem-
bles the expected brain activation area.

1) Block Design fMRI Data: At first, we have studied a real
block design fMRI dataset designed for auditory processing task
on a healthy volunteer.4 It consisted of 96 acquisitions made in
blocks of 6, giving 16 blocks of 42-s duration. The condition for
successive blocks alternated between rest and auditory stimula-
tion, starting with rest. Auditory stimulation was performed with
bisyllabic words presented binaurally at a rate of 60 words per
minute. The functional data start at acquisition 16. The whole
brain BOLD/echo-planar imaging (EPI) images were acquired
on a modified 2T Siemens MAGNETOM Vision system. A de-
tailed description of it can be found on the SPM manual [34].
After preprocessing, functional images consisted of 68 slices
(79 × 95 × 68, 2 mm × 2 mm × 2 mm voxels).

We have selected slice 29 of this dataset for making experi-
ments. Twelve regressors (D = 12) for the design matrix were
used: one for the BOLD response, another one having constant
values of ones for modeling the mean brain activity, and finally
ten more regressors obtained by DCT basis functions.5 Fig. 5(a)
illustrates the activation maps of all comparative approaches.
The proposed method illustrates clearer an activity around the
auditory cortex, as it was the expected. On the other hand, the
SeGLM and the spatial ICA methods construct very large and
confused activation areas, while the SpGLM has a tendency to
yield many small (disconnected) islands.

Another useful observation can be obtained by presenting
the statistical maps of three GLM-based methods after setting a
threshold value on the calculated t-values.6 As shown in Fig. 5,
the imposition of a threshold does not affect the performance of
the SSGLM method since both activation maps are very similar.
This is more apparent in Fig. 6(a) where we plot the estimated
size of activated areas (number of voxels) by each method in
terms of the threshold value (obtained with a varying signifi-
cance level from 0.0001 to 0.5). The same observation is made
by plotting the calculated t-values of three methods in Fig. 6(b),
where the distinction between the activated and nonactivated
voxels becomes much easier in the SSGLM method. From a
clinical perspective, this is very important since in the standard
fMRI analysis the activation boundary varies significantly with
the smoothing and the statistical threshold used, and thus com-
plicates clinical decisions [35]. This problem is alleviated by our

4Obtained from the SPM web page http://www.fil.ion.ucl.ac.uk/spm/.
5Additional experiments were made with various numbers of DCT basis

functions with similar results.
6The significance level was set to 0.0001, which gives a threshold value

t0 = 3.8942 applied to (32).

Fig. 5. SPMs of comparative methods based on t-values (a) without and (b)
with setting a threshold value.

Fig. 6. Plots of (a) the estimated number of activated voxels in terms of
threshold value (in logarithmic scale) and (b) the t-values of SPMs as computed
by three comparative methods.

methodology which does not require smoothing and produces
results that are very insensitive to the threshold choice.

2) Event-Related Design fMRI Data: Additional experi-
ments were made by considering event-related cases. At first, we
have used a public available dataset found on the SPM web page.
This was designed for face recognition using grayscale images
of faces, where the subject was asked to make face judgments
making key presses. Images were acquired using continuous
EPI with TE = 40 ms, TR = 2 s, and 24 descending slices (64 ×
64, 3 mm × 3 mm). More information about these data can be
found in [36]. In our study, we have selected slice 18 for making
experiments. The contrast vector was set as c = [1, 1, 1, 1, 0]
that describes the response to the presentation of a face image.
We have used a design matrix that consists of five (D = 5) re-
gressors related to four types of events. In particular, the first
four regressors indicate the presence of a face and have been
convolved with a “canonical” hemodynamic response function
(HRF) while the last one is the constant term. Fig. 7 presents the
resulting statistical activation maps. As it is obvious, the most
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Fig. 7. Estimated statistical maps by four comparative methods in a real visual
event-related experiment.

important voxels estimated by the SSGLM method are exclu-
sively observed in the occipital lobe. Comparing with the other
methods, the resulting activation areas of whom are to some
extent scattered throughout the brain, the proposed approach
manages to produce smoother and clearer results.

In the second event-related experiment, we analyzed fMRI
data consisted of images acquired from a motor event-related
paradigm available at the affiliated University Hospital of Ioan-
nina. During this experiment, patients with restless legs syn-
drome (RLS) performed random and spontaneous limb move-
ments evoked by sensory leg uneasiness. These movements were
used to create the indicator vector in our modeling that was con-
volved next with the HRF in order to provide the BOLD signal.
The motor fMRI dataset was acquired with a clinical magnet
1.5T (Philips Intera) equipped with fast gradients. The imaging
protocol consisted of: 1) axial T1-Weighted—a 3-D sequence
that provided a high-resolution reference for alignment between
subjects. We used a 3-D-volume magnetization-prepared rapid
acquisition with gradient echoes (MP-RAGE). Parameters are
TR = 25 ms; TE = 4,6 ms; flip angle = 30◦; slice thickness
= 0.8 mm; acquisition matrix = 256; reconstruction matrix =
256. 2) Multilevel BOLD fMRI using a hand task: we used a
gradient echo EPI. Parameters are TR = 2000 ms; TE = 50 ms;
flip angle = 40◦; acquisition matrix = 64; reconstruction matrix
= 128; slice thickness = 5 mm; gap = 0; 160 dynamics. Four
dummy scans were performed in the beginning of fMRI to stabi-
lize the magnetization level and allow us to keep all the images.
The paradigm consisted of alternate action and resting blocks,
20 s each. During the action epoch the subjects flexed and re-
leased continuously at 0.5 Hz rate the fingers of their right hand
in unison. The cues for action or rest were announced through
headphones using the commands start and stop. The paradigm
of 8 action and 8 rest blocks lasted 320 s, and we collected 20
images/slice at TR = 2 s. We restricted motion artifacts by us-
ing foam rubber pads and strap across the forehead. Eyes were
kept closed, at all times. A detailed description about how these
data were acquired can be found in [37]. The design matrix had

Fig. 8. Resulting statistical maps in the real motor event-related experiment.

Fig. 9. Nine produced ICs of the motor event-related experiment.

four columns (D = 4): the BOLD signal, its time and dispersion
derivatives, and a constant.

In our study, we examined the main effect (leg movement
versus rest) which means that the contrast vector was set equal
to c = [1, 0, 0, 0]. The estimated statistical maps are shown in
Fig. 8 for slice 54 of the dataset. Our method produced brain
activated regions related to motor function such as: 1) the sup-
plementary motor area; 2) the primary motor areas (precentral
gyrus); and 3) the superior parietal lobe. In comparison with
the other approaches, it provides contrast maps that appear neu-
robiologically plausible, where even a simple visual inspection
reveals localized maxima in good agreement with the current
knowledge of the locations and extent of motor circuitry. In this
experiment, the activation map estimated by the spatial ICA was
split into many components making the visualization a hard task.
This is shown in Fig. 9 that presents nine ICs, each one of which
captures only a part of the brain regions related to the motor
function.

V. CONCLUSION

In fMRI data analysis, the spatial extension of the hemo-
dynamic response in a neighborhood of voxels introduces a
significant weakness for the detection process of the acti-
vated areas. Moreover, the presence of temporal correlations
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deteriorates the performance. In this paper, we present an ad-
vanced method to tackle these two problems by efficiently in-
corporating both spatial correlations and sparse properties. This
is done by using an appropriate prior over the regression coef-
ficients based on MRFs modeling and RVMs. Training of the
proposed model is achieved through an EM-MAP framework
providing update rules in closed form. Experiments on artificial
and real datasets have demonstrated the ability of the method to
improve the detection performance and robustness, especially
in noisy environments, with enhanced estimation accuracy. Our
method showed a significantly reduced sensitivity to the thresh-
old value of the produced statistical map without needing to
make multiple comparisons. Our future research is focused to
three directions: 1) to examine the appropriateness of other types
of sparse priors [38]; 2) to try alternative potential functions of
the Gibbs distribution; and 3) to assume a Student-t distribution
instead of Gaussian for modeling the excitation noise aiming
to achieve more robust statistical inference and handle more
efficiently outlying observations [39].

APPENDIX

In the previous analysis, the regression coefficients have been
treated as model parameters. However, following the RVM
methodology [7], we can integrate them out and obtain a reduced
model with less parameters Θ = {βn , znk , αnd , λn , ξn}N

n=1 .
The marginal log-likelihood for each voxel n can be obtained
by the following integration:

log p(yn |βn , znk , αnd , ξn )

= log
∫

p(yn |wn , λn , ξn )p(wn |βn , znk , αnd)dwn . (36)

Since both densities are known (4) and (25), we can easily found
the marginal log-likelihood

log p(yn |βn , znk , αnd , ξn ) ∝ |Nn |
2

log βn

− 1
2

∑

k∈Nn

log znk − 1
2

D∑

d=1

log αnd − 1
2

log |Sn |

+
M

2
log λn − 1

2

{
mnSnmn − λnyT

n ΞT
n Ξnyn

− βn

∑

k∈Nn

znkwT
k wk

}
(37)

where

Sn = (λnFnΦ + BZn + An )−1 (38)

mn = Sn (λnFnyn + BZWn ). (39)

Therefore, the MAP log-likelihood function is written as

LMAP(Θ) =
N∑

n=1

{
log p(yn |βn , zn , αn , ξn ) + G(βn )

+ G(λn ) +
∑

k∈Nn

G(znk ) +
D∑

d=1

G(αnd)

}
. (40)

Following the MAP-EM framework, the regression coefficients
wn are treated as hidden variables where their expectation is
calculated at the E-step (28). During the M-step, the expecta-
tion of the complete data MAP log-likelihood function (27) is
maximized, where the expectation is made with respect to the
posterior distribution of regression coefficients wn . Notice here
that this posterior can be considered as Gaussian with mean
mn and covariance Sn . By setting the partial derivatives with
respect to model parameters equal to zero, the next update rules
are obtained

β̂n =
|Nn | + 2cβ∑

k∈Nn
ẑnkEwn |yn ,θn

{‖wn − wk‖2} + 2cβ
(41)

ẑnk =
1 + 2cz

β̂nEwn |yn ,θn
{‖wn − wk‖2} + 2bz

(42)

α̂nd =
1 + 2ca

Ewn |yn ,θn
{w2

nd} + 2ba
(43)

λ̂n =
M + 2cλ

Ewn |yn ,θn
{‖Ξn (yn − Φwn )‖2} + 2bλ

(44)

ξ̂n =(ET
n En )−1EnEwn |yn ,θn

{
‖Ξn (yn − Φwn )‖2} (45)

which are iteratively applied. The aforesaid expectations can be
easily calculated using

Ewn |yn ,θn
{wn} = mn , Ewn |yn ,θn

{
wwT

n

}
= Sn + mnmT

n .
(46)
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