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Abstract. The fuzzy min-max neural network constitutes a neural architecture that is based on hyper- 
box fuzzy sets and can be incrementally trained by appropriately adjusting the number of hyperboxes 
and their corresponding volumes. Two versions have been proposed: for supervised and unsupervised 
learning. In this paper a modified approach is presented that is appropriate for reinforcement leam- 
ing problems with discrete action space and is applied to the difficult task of autonomous vehicle 
navigation when no a priori knowledge of the enivronment is available. Experimental results indicate 
that the proposed reinforcement learning network exhibits superior learning behavior compared to 
conventional reinforcement schemes. 

1. Introduction 

According to the general framework of reinforcement learning, a system accepts 
inputs from the environment, selects and executes actions and receives a reinforce- 
ment signal T that is usually a scalar value rewarding or penalizing the selected 
actions. The basic approach in dealing with such problems is based on the use of 
two networks [5]: the action network which provides the action to be executed 
at each step, and the evaluation network which provides as an output a predic- 
tion rr,rd of the evaluation of the current state. The evaluation network is usually 
a feed-forward network trained using on-line back-propagation with the training 
error specified through the method of temporal differences. The action network is 
also a feed-forward network which for each input state provides a vector of action 
probabilities pi (i = 1, . . . , K) (K distinct actions are assumed) from which the 
final action is selected. Consider that, for a given state, action j has been selected, 
rp& is the output of the evaluation network, and r is the corresponding reinforce- 
ment. Training is performed using on-line back-propagation with an error based 
on r - rprd. If r - rPrd > 0 then weights are modified to increase the probability 
pj, otherwise they are modified to decrease the probability pj. 

In this paper, we present an approach to reinforcement learning problems with 
discrete action space where the fuzzy min-max neural network [ 1,2] is employed as 
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a model for the action network. The fuzzy min-max network is suitably adapted in 
order to be able to cope with the specific requirements imposed by the reinforcement 
learning framework. The proposed method constitutes an attempt to use a local 
learning technique (based on the quantization of the input space into closed regions) 
for the action selection network and it is interesting to compare its performance 
against the approaches based on feed-forward networks with Bernoulli output units. 
Of course, other on-line supervised local learning techniques could also have been 
employed and adapted to fit to the reinforcement framework. 

2. The Proposed Action Selection Network 

Fuzzy min-max neural networks [ 1,2] are one of the many models of computational 
intelligence that have been developed in recent years from research efforts aimed 
at synthesizing neural networks and fuzzy logic. 

The fuzzy min-max cZussiJication neural network [ 1,3] is an on-line supervised 
learning classifier that is based on hyperbox fuzzy sets. A hyperbox constitutes a 
region in the pattern space that can be completely defined once the minimum and the 
maximum points along each dimension are given. Each hyperbox is associated with 
exactly one from the pattern classes and all the patterns that are contained within a 
given hyperbox are considered to have full class membership. In the case where a 
pattern is not completely contained in any of the hyperboxes, a properly computed 
fuzzy membership function (taking values the in (0,l)) indicates the degree to which 
the pattern falls outside of each of the hyperboxes. During operation, the hyperbox 
with the maximum membership value is selected and the class associated with 
the winning hyperbox is considered to be the decision of the network. Learning 
in the fuzzy min-max classification network is an on-line incremental expansion- 
contraction process which consists of partitioning the input space by creating and 
adjusting hyperboxes (the minimum and maximum points along each dimension) 
and also associating a class label to each of them. Details of the learning process can 
be found in [ 11. An important issue is that there is only one parameter 0 (maximum 
hyperbox size) that must be specified at the beginning of the learning process. 

To enable the fuzzy min-max classification network to be employed as an action 
selection network in a reinforcement learning scheme (with discrete action space), 
a correspondence must be established between the notion of action and the notion 
of class, i.e. each action is treated in the same way as a class in the supervised 
case. There are also two main issues that have to be treated: the first one is related 
to the modifications which must be made in the case where the selected output 
is penalized since we do not know what is actually the correct output (in contrast 
to the supervised case). The second is how to introduce randomness in the output 
selection process so that, in the case where an action has been penalized, alternative 
actions can be explored which may lead to rewarding states. 

In the proposed scheme, both issues are resolved with the introduction of the 
notion of random hyperbox. If (for a specific input) a random hyperbox is selected 
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(has maximum membership), the final action will be obtained with unifomz random 
selection through the set of possible actions. For distinguishing puproses, a non- 
random hyperbox will be called deterministic. Using the notion of the random 
hyperbox, the learning process (expansion, overlap test, contraction) [I] of the 
classical fuzzy min-max network now takes the following form: 

l In the case of reward (r - rPrd > 0) 
- If the action has been derived from a deterministic hyperbox, then we 

proceed as in the classical fuzzy min-max case. 
- If the action has been derived from a random hyperbox, then this hyperbox 

is marked deterministic and is associated with the corresponding rewarded 
action. Moreover a hyperbox overlap test followed by a hyperbox contrac- 
tion (if necessary) are performed. 

’ In the case of penalty (T - rrr’pred < 0) 
- If the action has been derived from a deterministic hyperbox, then a new 

random hyperbox is created which is centered at the input point, and con- 
sequently the conventional learning process takes place to adjust the para- 
meters of the neighboring hyperboxes. It must be noted that the action 
associated with the initially selected hyperbox (which was penalized) does 
not change, only its volume is contracted due to the creation of the new 
random hyperbox. 

- If the action has been derived from a random hyperbox, no learning takes 
place as it is necessary to maintain stochasticity until a rewarding action has 
been discovered for the selected hyperbox. 

Therefore, learning in the reinforcement case can be considered to be a process of 
adding random hyperboxes which later become deterministic as learning proceeds. 
After an adequate number of steps it is expected that no random hyperboxes 
will exist. Random hyperboxes give the learning system the ability to explore the 
discrete output space to discover the best action. When such an action is found 
(according to the evaluation of the critic) it is assigned to the random hyperbox 
which now becomes deterministic. 

3. Application to Autonomous Vehicle Navigation 

We tested our method in the problem of collision-free autonomous navigation of a 
vehicle in various unknown grounds. The objective was to train the fuzzy min-max 
action network to provide the proper driving commands as a response to the current 
state of the vehicle, so that it moved in a course without collisions [4]. 

The autonomous vehicle perceived its environment through the use of eight 
sensors. Four of them were located at the front and two at each side. Each sensor 
could detect the presence of an obstacle situated within a conic space in front of it 
and provide a measure of the distance from the obstacle. Specifically, the distance 
in the area tracked by each sensor was measured as a value in the range O-27. These 
eight integer values constitute the input state of the system. A sensor value close 
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Figure 1. A typical ground where the vehicle is trained to navigate without collisions. 

to 0 indicates that the sensor has detected an obstacle at very close range, while a 
value equal to 27 declares the absence of obstacles. During navigation, at each step 
the vehicle performed one of the following five actions in response to the current 
state: Ahead, 30 degrees right, 60 degrees right, 30 degrees left, 60 degrees Eef. 
These actions correspond to the classes of the fuzzy min-max action network. 

The evaluation of the vehicle’s state was estimated in terms of the positions of 
the obstacles as they were detected by the sensors. The scalar reinforcement signal 
r provided by the environment is real-valued ranging over (O,l), which indicates a 
graded transition from failure (T = 0) to success (T = 1). More specifically, r was 
computed as an average of the partial reinforcements ri, corresponding to the four 
front sensors (ri = J,/4 with & E (0, . . . ,27}). 

The performance of the proposed system was investigated through computer 
simulation experiments. Each experiment consisted of a number of runs that dif- 
fered only in the seed values for the random number generator. Each run consisted 
of a sequence of cycles, with each cycle beginning with the vehicle at the same 
initial state and ending with a failure signal. At the start of each run only one initial 
random hyperbox was considered with parameters specified by the sensor values 
(normalized to (0,l)) corresponding to the initial vehicle position. 

Statistical results of the effectiveness of learning during each run were obtained 
as follows. For smoothing purposes, at the end of each cycle an average value 
of the number of steps per cycle was computed by averaging over all cycles 
from the begining of the run up to that point. Finally, curves were plotted at the 
end of each experiment by averaging over all runs. This representation aims at 
providing an overall view of the progress of learning without being affected by 
random fluctuations. Several training grounds of varying difficulty were explored. 
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Figure 2. Training performance expressed by the curve of the average number of steps per 
cycle with respect to the number of cycles for (a) the proposed method (fuzzy min-max) and 
(b) a conventional method (typical feed-forward network with Bernoulli output units). 

A typical one is presented in the Figure 1. In all the experiments, the parameter 13 
was set equal to 0.115. The evaluation feed-forward network contained one hidden 
layer with 6 units and one output unit. The value of the learning rate was 0.18 while 
the momentum rate was 0.009. 

In the early stages of the learning process the fuzzy min-max network created 
many random hyperboxes in order to efficiently search the input space and select the 
appropriate driving commands. As learning proceeds, new random hyperboxes are 
added at a very slow rate indicating that the network had discovered the appropriate 
class boundaries in the action space. In total, 350 fuzzy hyperboxes were created 
in the experiments involving the depicted ground. 

In order to evaluate the overall performance of our model in the given control 
task, we compared it to the approach described in [4] where a feed-forward action 
network was employed with no hidden units and Bernoulli output units. Figure 2 
illustrates the training performance of the two approaches; the learning curves (a) 
and (b) were obtained from experiments on the typical ground depicted in Figure 1 
and correspond to the proposed and the conventional method, respecti-Jely. This 
graphical representation illustrates the superiority of the proposed method in terms 
of learning speed and suggest that it is worth considering alternative networks and 
training algorithms in reinforcement learning schemes. Moreover, we expect that 
the performance of our approach can be further refined by assigning a vector of 
action probabilities to each hyperbox, which can be suitably adjusted during the 
learning process. This idea is the subject of our current research. 
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