IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, VVVV 2005 1

Revisiting Java Bytecode Compression for
Embedded and Mobile Computing Environments

Dimitris Saougkos, George Manis, Konstantinos Blekdember IEEE Apostolos V. Zarras,Member IEEE

Abstract—Pattern-based Java bytecode compression tech-assembly code. Amongst the few approaches that focus on
niques rely on the identification of identical instruction sequences the case of Java bytecode we have the ones proposed in [2],
that occur more than once. Each occurrence of such a sequence |s[3] and [4]. In [2] the authors examine various approaches for

substituted by a single instruction. The sequence definespattern bvtecod - Vi HUff d d Mark
that is used for extending the standard bytecode instruction set ytecode compression, relying on Huiiman codes an arkov

with the instruction that substitutes the pattern occurrences in chains. In [3], bytecode compression is based on the use of
the original bytecode. Alternatively, the pattern may be stored in canonical Huffman codes and the generation of fast decoders.
a dictionary that serves for the bytecode decompression. In this |n [4], the approach followed is based on the discovery of
case, the instruction that substitutes the pattern in the original o4 ction sequences that occur more than once within the
bytecode serves as an index to the dictionary. In this paper, we . . .

Java bytecode. Each sequence of instructions defipatern

investigate a bytecode compression technique that considers a |) X) .
more genera| case of patternsl Specifica”y’ we emp|oy the useEaCh pattern occurrence is substituted by a S|ng|e Instruction

of an advanced pattern discovery technique that allows locating that is called amacra

patterns of an arbitrary length, which may contain a variable
number of wildcards in place of certain instruction opcodes
or operands. We evaluate the benefits and the limitations of
this technique in various scenarios that aim at compressing the
reference implementation of MIDP, a standard Java environment
for the development of applications for mobile devices.

Index Terms—D.3.2.j Java, 1.4.2 Compression (Coding).

I. INTRODUCTION

HE Java language has become a dominant means f
the realization of embedded and mobile computing e
vironments. The main feature of Java that led to the previo
is its portability. More specifically, the compilation of Java

However, a pattern, in its broadest sense may have the
following characteristics:

1) It may be of amarbitrary length
2) It may containwildcardsin place of a particular opcode

or operand. Hereafter, we use the tggarameterizedo
refer to patterns that contain a variable number of wild-
cards. Respectively, we use the temon-parameterized
to refer to patterns that do not contain wildcards.

o0 far, existing approaches for Java bytecode compression
H_o not deal with the aforementioned generic form of patterns.
'Lrlgis fact is recognized in [4] where the authors further

highlight the need for more sophisticated pattern discovery

applications results in device independent code, genera{ﬁﬁhn'ques'-rhe main contribution of this paper is to assess

in terms of a standard format, called Jakgtecode The

the use of such a technique in the context of Java bytecode

Java bytecode can then execute on top of different devi&2mpressionSpecifically:

specific Java Virtual Machines (JVMs), which take charge of e
translating the bytecode into device-specific machine code.

The memory limitations imposed by embedded and mobile
devices certainly constrain the set of applications that may pos-
sibly execute on top of them. Confronting the aforementioned
issue fosters research towards two orthogonal directions. The
first one concerns the reduction of the physical size and cost ok
memory chips, while the second one involves reducing the size
of the code of embedded applications. Advances in both of the
previous research directions are equally valuable. No matter
how much we increase the amount of available memory, there
will always be more demanding applications. Similarly, even
if we manage to diminish the size of embedded and mobile
applications we may always require to concurrently execute
as many of them as possible.

Lots of significant research efforts have already been done
towards the generation of compressed code [1]. However, most
of these efforts involve the compression of either machine or

D. Saougkos, G. Manis, K. Blekas and A. V. Zarras are with the Computer
Science Department of the University of loannina, P.O. BOX 1186 GR 45110
Greece. Email{dsaougos, manis, kblekas, zagr@xcs.uoi.gr

We customize a well-known pattern discovery technique,
called agglomerative clustering [5], [6], towards the iden-
tification of parameterized and non-parameterized pat-
terns within a given Java bytecode. The proposed tech-
nigue allows discovering patterns of an arbitrary length,
which may contain a variable number of wildcards.

We assess the advantages and the limitations of the
aforementioned technique in various scenarios that aim
at compressing MIDP, a standard Java environment that
supports the development of applications for mobile
devices. The main feature of the parameterized pattern
discovery technique is that it allows finding a large variety
of patterns that can be combined to obtain better bytecode
size reduction. This, however, is also its main limitation.
Exploring the large variety of patterns towards finding a
combination that gives a good bytecode size reduction is
a complex task. Given this fact, in our assessment:

1) We employ/compare two heuristic methods towards
the combination of patterns.

2) Based on the two heuristics, we investigate the
impact of using patterns that contain a variable

number of wildcards for the compression of Jav&eeley propose an approach for fast Huffman decoding. Their
bytecode. To this end, we compress MIDP usingpproach focuses on virtual instructions and is evaluated for
patterns that contain a variable number of wildcardghe case of Java bytecode. In [2], the authors also investigate
patterns that do not contain wildcards and patteritise use of Huffman codes for compressing Java bytecode.
that contain a fixed number of wildcards and we Pattern-based techniques for interpretable code compression
perform a comparative study of the results. focus on the identification of multiple occurrences of instruc-
3) Moreover, we examine the impact of the increasintipn sequences within an application. Each such sequence is
length of the patterns in the compression of Jawaalled apattern Patterns are usually stored in a dictionary
bytecode. and their occurrences in the original code are substituted
4) Finally, we study the behavior of the decompressian the compressed code by dictionary indexes. Indexes are
overhead introduced by the examined technique. frequently calledmacrosand their size is usually the size of

The remainder of this paper is structured as follows. [single instruction. Specifically, in [15] the authors propose
Section 2, we discuss related work. In Section 3, we intrg- dictionary-based approach that can be applied in RISC
duce a typical non-parameterized pattern discovery technigliéermediate representations. This approach allows searching
followed by the advanced parameterized pattern discovdff non-parameterized patterns of an arbitrary length. Non-
technique that we investigate. Following, we highlight thearameterized patterns of an arbitrary length are also used by
benefits of the parameterized pattern discovery technigiie IBM CodePack compressor [16], which is deployed on
as opposed to the non-parameterized one, with respect t6@verPCs. This particular technique originates from the one
number of motivating examples. In Section 4, we introduce tfioposed by Lefurgy et al. in [17].
complementary heuristic techniques, which serve for handling!n [18], the authors present an approach that deals with
the complexity of combining large numbers of parameterizdframeterized patterns. The approach relies on the discovery
and non-parameterized patterns. Moreover, we present fesimilar basic blocks (i.e., code fragments with a unique
experimental results we obtained in the case of MIDP. Final§ntry and a unique exit point). As a similarity metric the

in Section 5 we summarize the contribution of this paper a#ithors use a fingerprint function. Moreover, several classical
point out the future directions of this work. compiler optimization techniques (e.g., dead code elimination)

are applied. In [19], the authors go one step further by
searching for similar procedures and code regions. Again, the
fingerprint function is used as a similarity metric. Parameter-
Code compression techniques can be divided into two majeed procedures are also used in Krinke's work [20]. Moreover,
categories [7]. The first one aims at producing a reduce@-BRISC [7] the authors propose a dictionary-based technique
size wire codethat can be transmitted to the CPU as fashat relies on patterns consisting of 2 instructions. The patterns
as possible. In this case, what matters is to achieve the besty further contain wildcards in place of instruction operands.
possible compression. For the particular case of Java, themrameterized pattern discovery is also used in [21]. This
have been several approaches for the construction of wipproach focuses on the identification of similar basic blocks
code. Amongst the prominent ones we have JAZZ [8], an ARM code. For a set of similar blocks, a representa-
alternative to the standard JAR format and Slim Binaries [9ve function is built. The representative function comprises
an alternative to the standard bytecode format. Moreover, weedicated instructions, corresponding to the differences met
have the approach proposed in [2], where the authors discassongst the original basic blocks. In [22], the authors also
methods for reducing the size of the constant pool. In [1Q}yopose an approach that employs a sort of parameterized
Pugh also discusses interesting ideas towards a wire cqudterns. The proposed system accepts as input a grammar
format that aims at reducing the size of collections of clagsd a training set of programs and produces an expanded
files. Finally, in [11] the authors investigate techniques fgyrammar that allows shorter derivations of the training and
the removal of redundant class file attributes and methodsher similar programs. The rules of the expanded grammar
along with techniques for constant pool compression and clags be seen as parameterized patterns, leading to different
hierarchy transformations. derivations. In [20], legacy source code is transformed using
The second category of techniques aims at producingpeocedural abstraction so that it becomes more understandable,
reduced-sizanterpretable codethat can be stored and exe-maintainable and small. Extracted sets of statements form
cuted without being fully decompressed. In this case, whatpsocedures and the extracted code is replaced with procedure
important is the reduction of the overall amount of memoryalls. Similarly, in [23] the authors identify similar segments
required for the execution of the application. The variousf source code based on program dependence graphs.
techniques proposed for the generation of interpretable codeConsidering the particular case of Java bytecode, in
rely either on Huffman codes and arithmetic coding, or on tj8] the authors propose a technique which considers non-
identification of patterns. parameterized patterns of an arbitrary length. Their main
The use of Huffman codes [12], [13] and arithmetic codingontribution is that they do not directly use the notion of
[14] in code compression aims at shortening a sequence of én-dictionary; instead they specialize the JVM with more
structions by mapping them into the shortest possible sequeroeplex instructions that actually realize the execution of
of bits. Huffman based techniques have been criticized for théfire patterns. Then, the patterns can be substituted in the
decompression complexity. However, in [3] Latendresse andginal code by the new instructions, reducing thus the size

Il. RELATED WORK

of the original code. In this paper, we investigate a dictionary-
based bytecode compression technique, which goes one step
further from [4] by considering both parameterized and non-
parameterized patterns of an arbitrary length. Currently, the
technique is applied in bytecode basic blocks but it could be
as well used in the case of whole Java methods. The technique
that we investigate is more fine-grained with respect to the
other parameterized pattern discovery techniques, discussed
in this section. It does not search for similarity among whole
basic blocks (or procedures). Instead, it searches inside the
basic blocks for similar instruction sequences of an arbitrary
length. To cope with the increased complexity of this task, we
employed the agglomerative clustering algorithm [5], [6].

I11. JAVA BYTECODE COMPRESSIONPROCESS

The bytecode of a compiled Java program is a sequence
of binary encoded JVM instructions. Each instruction consists
of an opcode and possibly a number of operands. The size
of instruction opcodes or operands is 1 byte. As an example,
consider the Java program given in Figure 1(a). This simple
program comprises a class of objects that represent vectors
in the 3-dimensional space. Each vector is characterized by 3
coordinates (x, Yy, z, attributes) and provides a method, called
distance , which calculates the Euclidean distance norm,
d = +/x? + y? + 22, for the vector.

The compiled bytecode for thdistance method of our
program is given in Figure 1(b). The overall size of the
sequence is 34 bytes. In the remainder of this section, we
use the example of Figure 1(b) to highlight the main steps
of the non-parameterized and the parameterized compression
approaches, discussed in this section. In both cases, the overall
compression process consists of the following steps:

1) The Java bytecode is segmented ib&sic blocks

2) A pattern discovery technique is used for the identifica-

tion of patterns in the basic blocks of the bytecode. 1)
3) The resulted patterns are collected; possible combina-

tions of patterns are examined and for each one of them

the corresponding bytecode size reduction is calculated.

4) Finally, the combination of patterns that gives the highest

bytecode size reduction is selected and used for the
generation of the compressed code. 2)

A. Non-Parameterized Pattern Discovery
The non-parameterized pattern discovery can be reduced

class xyz {
public float x,y,z;
public xyz(){
x=0;
y=0;
z=0;

public xyz(float x1,float yl,float zl){
x=x1;
y=y1l;
z=z1;

}

public double distance() {
return Math.sqgrt (x*x+y*y+z*z) ;

}

public static void main(String Args[]){
Xyz z=new xyz(10,20,10);

System.out.println
{"Distance="+z.distance()) ;

(a) Source code.
Compiled from "xyz.java"
class xyz extends java.lang.Object
public double distance();
Code:

1: aload 0

4: getfield

5: aload 0

8: getfield

9: foal
aload 0
getfield 03
aload 0
getfield 03
fomal
fadd
aload 0
getfield 0 4
aload 0
getfield 0 4
foal
fadd
f2d
invokestatic 0 5
dreturn

(b) Complled bytecode for thdistance

02

method.

Fig. 1. A simple Java program.

For eachk = 2,..., K, obtain the collectionX; =
{z;};*, of k-length substrings of the sequences that
belong in S, by sliding a window of sizek in each
sequenceS; € S. For everysS;, the resulted number of
substrings isL; — k + 1. Hence, the cardinality o

is np = | Xi| = 300 {L; — k+ 1}

Then, the set of non-parameterized pattefhss cal-
culated by searching within each collectioX, for
identical substrings. The union of the identical substrings
obtained during this step constitutés

into a simple string search problem. Specifically, consider 7@ accomplish the first of the above tasks we have to perform

finite setX = {cy,...,¢cq} consisting ofQ = |X| individual

Y g

AL — k+1} = YK {|Xy|} sliding steps.

characters An arbitrary string over the &&is any sequence Moreover to accompllsh the second task, we have to perform

Sj = {s]k}k;:
character at the-th position of the sequencé;. Let S =
{S1,...,5m} be a set of\f sequences of lengthy, ..., Ly,

of length L;, wheres;;, € X denotes the an overall of K SIXET X — i — 1) = 0K {1 X %
(|Xk| — 1)/2} substring comparisons.

All the possible combinations of the patterns retrieved are

respectively. In our case§ denotes the set of basic blocks of!”l. The subset ofP that gives us the highest bytecode size
the Java bytecode, identified during the first step of the codeduction is stored in the dictionary. The dictionary we use
compression process. Then, the pattern discovery amountsstactually a table of characters. Each table element is used
finding common substrings that are repeated in the sequentediold a pattern instruction opcode or operand. Moreover,
of §. Suppose that we search for substrings of a variable lengfiere are table elements that contain a special character used

k=2,...,
tasks:

K. Then, to locate them we perform the followingto signify the end of a pattern; hereafter, we use the term
ENDOF PATTERNOo refer to that character. The occurrences

of each pattern are substituted in the original code by particular,d, can be seen as a two-dimensional matrix of size
character (i.e., one byte) that indexes the dictionary eleménk |Q2|. The rows of the matrix correspond to theslements

that contains the first byte of the pattern. For the selectiafthe samples of (i.e., z;, in the first step of the algorithm),

of the indexing characters we employ the typical approaehile the columns correspond to the different characterQ of

of Clausen et al., which amounts to using unused bytecotitat can become the values of each element. Then, the value of
instruction opcodes [4]. Different standard Java platfornsmatrix elemend,[m,] denotes the probability of observing
for embedded systems comprise unused instruction opcodggracterc; at positionm of the samples ob. Specifically,
whose number ranges from 52 to 152. As discussed by Claugghn, /] is maximum-likelihood (ML) estimated as follows:

et al., the number of unused opcodes limits the number of

patterns that can be used. However, this problem can be 0, [m, 1] = nymi/nw (1)

alleviated by using a second character, along with the ones
that correspond to unused instruction opcodes. nwmi COunts the number of occurrences of the charagter()

Getting to our example scenario, the bytecode for the d%t— them-th position of then, samples of clustes. Formally:

tance method (Figure 1(b)) constitutes a basic block as it does)

not comprise any branch operations. Alphabetonsists of 12 S Z 5.t Whered;,, — { 1 if 2, =)

characters that encode the various opcodes (@effield = 0 otherwise

aload _0, etc.) and operands (e.d@, 2, 3, 4, 5) used in the) _

basic block. The basic block contains patterns of length él.m the_ first ste_zp of ACjn, = 1 and each rown of the
. X . X . §, matrix contains one element equal to The values of

Since the overall size of the basic block is 34 characters (i.€

34 bytes), the set of substrings of length 4 for this basic blo<?1[<r the other elements of thex-th row are 0. Taking our

contains 31 elements. The set of patterns that results from);%Zralse S\:ﬁg;aemmc;cxilr:rlwitrjr:elelr; f# pizo;ebtrlzts WECS?LZ? tf)c;r
31 substrings includes the 3 patterns given in Figure 2(a). b : 9 YIes.

Let us consider the first of the three patterns. When storlgap“ed in the d'lﬁ‘erent collectionss, ..., Xo 'that contain
in the dictionary the required space is 4 bytes, plus o tecode substrings Of. Iengm_...,9, respectively. For the
more byte for theENDOF PATTERNcharacter. Since this €25€ 0fXo, AC results in creating leaf clusters, each one of
pattern appears twice in the examined Java bytecode, twgmh.mclqdes_a sequence of length .9' Some of thesg clusters
bytes are needed in the compressed bytecode to index into e given in Figure 2(b) (note that in order to simplify the
dictionary the position of the pattern. Hence, the gain fro ure we usedh, GandF to denote the opcodesload 0,

I ' : .. getfield and fmul , respectively). Letv be the first leaf
substituting the occurrences of the first pattern in the orlglnC ister from the left side of the figure. Theft, is a9 x 12

bytecode i occurences x 4 bytes — (5 dictionary bytes + . - .
2 indexing bytes) — 1 byte. Thus, compressing the bytecodénatrt'x' S|][nl|zlgr ma;rll;:es are created for the rest of the leaf
CéltJS ers of Figure 2(b).

with respect to the first pattern saves us 1 byte. If we repe .
the same procedure for the other two patterns, we can sav t each next step_ of AC’ the algorithm Sef"‘“?hes the current
et of clusters to identify the two most similar onesu

two more bytes and the final bytecode will be 31 byte%hat can be merged into a new cluster denotedvhyu. In

Therefore, the bytecode size reduction obtaineds. &%, ur example, the substrings of the first and the third cluster
As we demonstrate in the following subsection, this is mu‘g‘ﬁer only in the operands that reside in theith ands-th

smaller compared to the reduction obtained by using t 5 tions. Th luster n be meraed int new cluster
parameterized pattern discovery technique. positions. These clusters can be merge 0 a new cluste

that contains the aforementioned substrings. Moreover4-the
B. Parameterized Pattern Discovery th and8-th rows of thef,, matrix comprise two non-zero

. . . . lued elements. Consequently, the,; matrix represents a
The parameterized pattern discovery technique is aCtu""Yfi(rameterized pattern of the two substrings, which contains

an extension of the non-parameterized one. It starts from the " . . . L
. . - . . two wildcards in place of itd-th and8-th elements. A similar
point where we have already identified the different collections . : ;
¥ Xy of substrings of the sequences that belongSin Mmerge takes place in the third step of the algorithm. d.die
2, AK Ostrng quen the 4-th leaf cluster from the left of Figure 2(b). This cluster
Following, the discovery of parameterized patterns can be

viewed as eclustering problemin the sense of searching forIS merged with the one created in the previous step into a
L ; > "~ new one that is still represented by the parameterized pattern
disjoint subsets (clusters) in each $&t that are characterized b y P P

. S created in the previous step.
by @ high degree of similarity among the samples that theyThe distance between two clusters is formally defined as
enclose. Several algorithms have been proposed for cluster]jgﬁ;ows [5], [6]:

discrete data [24], [5], [6]. Among them, we selected the

agglomerative clusteringAC) [5], [6], which is a hierarchical .

approach that relies on the bottom-up generation of a tree-like D(v,u) = Lo(00) + Lu(6u) = Luvu(Bouu))

structure of clusters. The quantityL, (6,) represents the log-likelihood value that
AC is performed for everyX; towards obtaining a subsetcharacterizes the clustar and is given by the following

of candidate pattern®;. Specifically, AC starts with a set of formula:

| Xk| clusters (leaf nodes), each one containing one bytecode AT

substringz; from the setX;,. Following, a multinomial distri- Ly(6,) = Z Z Z(sz log 0,[m,] (4)
bution with 6, parameters is generated for each clustein sicv m=1 =1

Pattern 1:

1: aload 0 from the application of AC to theXs, ..., Xk collections of
4: getfield 072 substrings are finally merged into a single set of significant
patterns P. Again, P may comprise overlapping patterns.
o > A Moreover, P may comprise nested patterns, in the sense that
13: getfield 03 a patternp that was originally included irP; exactly matches
with a part of a patterry that was originally included irP;
Pattern 3: wherej > i. The elements oP are combined during the last
P qeEERE B two steps of the code compression process mentioned at the
(a) Non parameterized patterns. beginning of this section.
A = aload 0 AT As in the case of the non-parameterized patterns technique,
G = getfield \"T// the total number of possible combinations of patterns is
F = fmul L 2Pl The subset of them that gives us the highest bytecode
Su@@fﬁ‘ﬁ/ - size reduction is stored in the dictionary, whose structure is
N aload 0 however slightly different compared to the one used in the
¥] - . T non-parameterized pattern discovery technique. Specifically,
I @K T e the dictionary is still a table of characters. Each table element
o //,L\ P holds a pattern mstrucﬂon opcode or operand and there are
ey O N elements that contain thENDOF PATTERNcharacter. The
(b) Parameterized patterns. wildcards are not stored in the pattern. Instead of wasting one

table element for storing a value that signifies the existence

of a wildcard, we only spend 1 bit. Specifically, for patterns

of maximum lengthK we use[(K — 2)/8] table elements at
gthe beginning of each pattern to encode the positions of the

pattern that characterizes a cluster signifies that the substri Iéicards W't_hm I'tll dRe((:jaII_thar: t.h ef_pattergsl prO(t:I)uced. tr)]y AC
of the cluster differ in theii-th byte. The pattern may contain not con;ccam wildcar IS my;[(elr Irst anc ast yg;? ence,
more than one consecutive wildcards, if the substrings of tﬁeoattern of maximum lengt _may contain at mosk’ — 2
cluster differ in more than one consecutive bytes. The A)@Idcards. Then, the value of theh bit of a table element that

algorithm may further construct non-parameterized patterns codes the pos!tlons O_fl dwﬂdga_lrdshévqlthm _t_he pgttern "Q]: 1, if
merging clusters that contain identical substrings. the paftern contains a wildcard in then position. Hence, Tor

The algorithm terminates when no pair of nodes is allow tterns of maximum length 10 we use 1 extra table element.

to be further merged. To assess the final set of patterns aS@;'?g’t:grt;);t;eé?esmvg?;zrl%ngghc:i blitmiegrillinaaﬁ]% 1t2’cgv§e
obtain P, we perform a depth-first visit upon the nodes of : 9 y

the constructed tree. In particular, starting from the high Ievg]e occurrences of a pattern are substituted by a character (i.e.,

nodes, we traverse each subtree until finding the first clus®1® byte) that indexes the dictionary elements that encode the

. . : positions of wildcards within the patterns. The indexing byte is
g‘?ggzﬁr’ e\ghgzgr;wg? OSTr:]?Ila?i?; s%izairsngj%tris tr)?/prseeiﬁrr:; followed by the actual values of these wildcards. As indexing

thresholdT'(k) to the number of non-wildcard elements of aracters we use unused bytecode instruction opcodes [4].

the pattern that is represented by the node that we look fo Summarizing, the most important concept of AC is thier-

The value forT'(k) should be experimentally determinéd ?Ifs;eerrdiﬁtazﬁjeslt)e(i ?ﬁr;’r\:hlinewceor?sst?u?tsioi gﬁrl]Ce (;:gzm‘)r%e
Once such a node is found, it is storedAp. By construction, 9ing 9 ’

P, may comprise patterns that overlap. More precisely, wii S8 R, O 28 % S W & T e
patterns inP; may refer to the same opcode or operand y ging

the original bytecode. Overlapping patterns may contribuf usters%hangv.tDur'lng fealchtone .Of |tsthstepsr,1 thg al?r? rltlhm
differently in the overall bytecode size reduction and therefof.nerges € best pair of clusters, 1.€., those having the lower

they are included inP;. At the end of AC, the retrieved |?<elihood decrease when putting together. AC has several
patterns are further simplified. Specifically, /. contains advantages as it requiré(|.X;[) memory for everyxy, k =

a pattern with a wildcard in place of the first (or the Iasc?’ - K, while its complexity is typically quadratic toX|

byte, this pattern is substituted with the pattern that resu @r fﬁed\ilﬁrthelissr,nthﬁ] a?]pp\)lllcat;tlcgn ofdotheLstti?tltstlcalnmetrodsr
from removing this wildcard. Therefore, the resulting $&t 0 g patterns ava bytecode constitutes one ot ou

contains patterns that do not start or end with a wildcard. NoW—tFL;reiuC:::ﬁ]Ct'?giL? ;T;njugege?]r:r?é suppose that we use the
parameterized patterns may also result from the simplificationttem ide?nified in Fi u:oe 2(b) to com Fr)gss our simple Java
procedure when it is applied in patterns that contain Wildcargé1 9 P P

only in place of their first or last bytes. program. The pattern_ appears in three bytecode sequences
The P Py subsets of significant patterns obtaine{:? the program. Originally, for these sequences we need
Do K x 9 bytes = 27 bytes. In the dictionary we need 7 bytes to
1 _ _ , _ _ store the non-wildcard pattern elements and one extra byte to
In our particular experiments discussed in Section IV, a valu& @) =

[k/2] was sufficient for obtaining good percentages of bytecode size redtﬁ:‘_jCOde the positions of the wildcards.
tion. Finally, we need 1 byte for thENDOF PATTERNcharacter.

Fig. 2. Patterns discovered for tidistance method.

In general, a wildcard in théth position of a parameterize

Minimu

JavaProgram Bimany Bubble Fibonacci min Matrix ~ Prime Sclection that .need to be fetched from the dictionary. FoI'IO\./vmg, the
pre— required number of bytes are fetched from the dictionary to-
ytes) 789 81, I3 Lo . i wards forming an instruction. The remaining instructions that
e s @ om » " constitute the particular pattern are decompressed similarly.

(a) Class file and bytecode sizes. The overall decompression procedure ends up by fetching the
JavaProgram Binary Bubble Fibonacci Minimum Matrix Prime Sclection ENDOF PATTERNelement from the dictionary.

Search Sort Numbers in Array Addition Numbers Sort
mdaied | 4Z5% G66% S5I0% 533% S8 45 T4 For the parameterized technique, the decompression is sim-
non- ilar. The decompression module is also initialized with a
parameterized 10.71% 6.66% 0.00% 0.00% 1.47% 0.00% 0.00%

. . given dictionary and the maximum length used for deriving

(b) Percentage of bytecode size reduction. . . . - .

the patterns contained in this dictionary. The decompression
TABLE |

module accepts as input an index to the dictionary. Following,
it uses the input index to repeatedly fetch from the dictionary a
number of elements that encode the positions of the wildcards
within the indexed pattern. The number of these elements
depends on the maximum length used for discovering the
patterns contained in the dictionary (by default, the maximum

In the bytecode, each pattern occurrence is replaced by th th of patterns is 9 and therefore one byte is fetchgd).
bytes, one for indexing the directory and two for the actudne byte that follows the elements that encode the positions
values of the two wildcards. Thus, in the compressed COngildcards is the first instruction opcode contained in the
we need 9 bytes for specifying the positions of the pattepr?ttem' As previously, the decompression modu_le figure; out
occurrences in the bytecode and 9 bytes for storing the patt@HPUt t.he number of bytes required for forming t.he first
in the dictionary. This means that the compression resulfstruction that should be executed. Some of the required bytes

in saving 9 bytes. Hence, the use of parameterized patteﬁgghfetched from the dictionary,_f'vvhlille some othgrsf arehfound
gives us a much better bytecode size reductid®4(%), In the compressed code. Specifically, theh byte is fetched

compared to the ones 82%) obtained in the case of the nonfrom the dictionary if _the value_ of theé-th pit_ of the bytes _

parameterized pattern discovery technique. that encm_:ie the ‘posmons. of wﬂdcgrds within the pattern is
To further motivate the investigation of the advanced par8= Othervws_e, the-th b.yte is found n the comprgssed code.

meterized pattern discovery technique we applied it in a S‘Etge remaining instructions that constitute the particular pattern

of simple Java programs that realize standard algorithms. THE decompressed ts)irr;ilarlr?{. Ag;in, the overall dech)mpression
sizes of these simple programs are given in Table I(a). The pBfocedure ends up by fetching tRWDOFPATTERNelement

centages of the bytecode size reduction we obtained in th G the dictionary.

examples are given in Table I(b). It should be noted that these

results are optimal in the sense that we performed all possible IV. ASSESSMENT

combinations of the retrieved patterns towards locating theAlthough some benefits from using the parameterized pat-
subset of these patterns that gives the highest bytecode e discovery technique are evident from the simple examples
reduction. Once more, we can observe that the parameterigistussed in Section Ill, we further conducted experiments
pattern discovery technique results in better percentagesirafolving a real-world case study. Specifically, the target of our
bytecode size reduction, compared to the ones obtained frinvestigation is the MIDP (Mobile Information Device Profile)
the non-parameterized one. It is worth noticing that in some.0 reference implementation from Sun Microsystefns

of the examples (e.g., fibonacci numbers, selection sort, etefIDP is part of the Java 2 Platform Micro Edition (J2ME) and
the non-parameterized technique completely failed to locatsies on CLDC (Connected Limited Device Configuration).
any patterns, while the parameterized technique results int @rovides a basic environment for the development of Java

USING THE NON-PARAMETERIZED AND THE PARAMETERIZED
TECHNIQUES TO COMPRESS A TYPICAL SET OF ALGORITHMS
IMPLEMENTED IN JAVA.

respectable percentage of bytecode size reduction. applications for mobile information devices (MIDs) such as
mobile phones and PDAs. The MIDP reference implemen-
C. Bytecode decompression tation consists of 11 packages. In this section, we present

The bytecode decompression procedures for the techniqltﬂa% results we obtained from 6 of these packages, which we

we discussed in this section are quite straightforward. In tconsider as the core of MIDP. The basic characteristics of
case of the non-parameterized teqchni ue ?he decom' reSS|%Ch package (size of class file and bytecode size) are given

the non-p) . 1que, PreS$i0ble 1. The sizes of the particular Java class files are repre-
module is initialized with a given dictionary. The module

. : : : entative, considering real world applications aimed at mobile
provides an operation that accepts as input an index to t?‘l g bp

e : -
dictionary. This particular operation should be called by t and embedded devices. Specifically, the standard JTWI (Java
main loop of the Java bytecode interpreter, upon the discov

rechnology for the Wireless Industyspecification sets the
of a byte that corresponds to an unused bytecode opcode. i{dﬁn of a standard-size-application to 64Kbytes. JTWI actually
decompression module uses the input index to find the firs

?ﬁnes a standard framework for the development of mobile
byte of the pattern. This corresponds to the first instructioarP

plications and MIDP is part of it. Applications that are
opcode contained in the pattern. The decompression modul8,y.jjava.sun.com/products/midp/
reasons based on the given opcode about the number of bytétp://java.sun.com/products/jtwi/

Class Byteeode Number of patterns found

MIDP Package file size size MIDP Package (pattern length =2 to 9) Execution time
non- for AC (sec)
(bytes) (bytes) parameterized etertiod
javaio 19568 3454 javaio 4408 1870 6903
iav:l.lang 27714 3908 javalang 4160 2322 25403
. . e . javax.microedition.io 66 41 632
javax.microedition.io 4599 509
javax.microedition.media 541 245 500
javax.microedition.media 2065 362 javax.microedition.midlet 531 295 12
javax.microedition.midlet 2025 121 javax.microedition.pki 9 3 35
javax.microedition.pki 7563 184 (a) Maximum length of patterns = 9.
Number of patterns found
(pattern length =2 to 11) E: tion tim
TABLE II MIDP Package - — for AC (s60)
MIDP PACKAGES BASIC FEATURES e parameterized
javaio 4583 1981 8701
javalang 4375 2504 32639
javax.microedition.io 99 43 818
under the limit of 64Kbytes are guaranteed to work correctly —_2vxmicroeditionmedia Sl el b
. javax.microedition.midlet 533 295 15
over any kind of device that complies with JTWI. Regarding - ——
javax.microedition.pki 98 23 74

the MIDP packages, java.io provides classes for input and
output through data streams. The java.lang package consists
of basic language classes coming from J2SE (Java 2 Standard
Edition), javax.microedition.io includes networking support
relying on CLDC. The javax.microedition.media package al-
lows accessing device-dependent resources for multimedia
processing. The javax.microedition.midlet package defines the

basic MIDP application model. Finally, javax.microedition.pki

enables managing certificates, used for securing connectiofi¥Periments where the maximum length of the patterns was
The goal of our experiments was twofold: 11. In general, we can observe that increasing the maximum

1) To investigate theenefitsand thecostof the parameter- length of the patterns results in increasing the overall number
. . .) of patterns found.
ized pattern discovery technique, measured in terms of , ,
Nevertheless, the time required by the advanced parameter-

the bytecode size reductiosbtained and théime spent) , !
for discovering and combining patterns, respectively. ized pattern discovery technique for the discovery of patterns

2) To study the cost of the decompression procedure ti§duite high (Tables lli(a) and (b)). Moreover, the discovery

comes along with the parameterized technique in terfis @ Tich variety of patterns also increases the complexity
of thetime overheagintroduced in the execution of Javalf combining these patterns to obtain a good bytecode size
reduction. Therefore, an issue that should be studied in our

(b) Maximum length of patterns = 11.
TABLE IlI
COMPARING THE NUMBERS OF PARAMETERIZED AND
NON-PARAMETERIZED PATTERNS DISCOVERED INVIIDP.

bytecode. _)
assessment is whether the discovered patterns are useful,
worthy of the time required for discovering and combining
A. Bytecode Compression them.

To evaluate the benefits and the cost of the parameterizedis already discussed, the complexity for finding all possible
pattern discovery technique we performed two different satembinations of patterns &7!. In the first set of experiments,
of experiments. The first one aims at evaluating the impattie average number of parameterized patterns found per MIDP
of using patterns that contain a variable number of wildcardtass is 157. On the other hand, the average number of non-
in the compression of MIDP. The second set of experimentarameterized patterns found per MIDP class is 85.6. If we
aims at investigating the impact of the increasing length assume that each combination of patterns requires 1 usec to be
the patterns in the compression of MIDP. In the first set gferformed, then the assessment of all possible combinations
experiments, the maximum length of the patterns is set to &, parameterized patterns would requir89864 = 103! hours
while in the second one we increase this length from 9 to 1th. complete. Similarly, the assessment of all combinations
In both sets, the threshold for non-wildcard elements in tlg non-parameterized patterns would requir69879 * 10'°
patterns was set t?'(k) = [k/2]. hours. The assumption that the assessment of a particular

The strong point of the advanced parameterized pattearombination of patterns requires 1 usec is rather optimistic
discovery technique is its ability to track-down a rich varietand refers to combinations of 2 patterns. As we can observe
of patterns, whose combination may lead to more effective the experiments detailed later the required time depends on
bytecode size reduction. This fact is particularly highlightethe number of combined patterns and it is usually higher than
in Tables lll(a) and (b), which give the total number of patterns usec. Therefore, for both the parameterized and the non-
and the number of non-parameterized patterns discoveredparameterized sets of patterns found in MIDP, the assessment
the MIDP packages. Table lli(a) specifically refers to thef all possible combinations is virtually impossible. To deal
first set of experiments where the maximum length of theith this particular problem we investigate the use of two
patterns was 9, while Table Ili(b) refers to the second set béuristics. The purpose of the heuristics is to allow us to

efficiently obtain good suboptimal bytecode size reduction. Specifically, the time required to combine the patterns (Fig-

In both heuristics, we sort an overall set of pattefhbased ure 3(b)) is acceptable in every case. However, the bytecode
on the bytecode size reduction provided by these patterns wisére reduction we obtained for each package highly depends
they are used in isolation for the compression of the bytecode the patterns used. In particular, in some packages (e.g.,
within which they were found. In a sense, we quantitativelavax.microedition.midlet),P,..q,» gives the best bytecode
group/cluster the patterns with respect to the bytecode skiee reduction. In other packages (e.g., java.io), the non-
reduction that they provide. Following, in the first heuristiparameterized sek, o, —param, Performs better. Finally, there
we start from the pattern that offers the best bytecode siaee also packages where the sets that contain patterns with
reduction and we examine its combination with the seconfixed numbers of wildcards give the best bytecode size re-
best pattern. If the bytecode size reduction obtained using thection (e.g.,P;,, and P, in javax.microedition.pki). There-
two patterns is greater than the one obtained from the fifste, the first heuristic is quite fast but rather unpredictable
pattern we keep the second pattern as well. Otherwise, tlegarding the set of patterns that should be used to obtain the
second-best pattern is useless. We follow the same procechighest bytecode size reduction. Moreover, in most packages
for the rest of the sorted patterns, ending up with a set tife first heuristic appears incapable of taking advantage of the
patterns that gives us a suboptimal bytecode size reductifiexibility provided by the large variety of patterns contained
The second heuristic amounts to performing the first heuristitc Pyqyqm -
|P| times. During each iteration : ¢ = 1,...|P| we start The results obtained from the application of the second
from thei-th best of the sorted patterns and we proceed Ineuristic in Pyoram, Pron—param: Piws Pow, Paw and Py,
checking the usefulness of combining it with the- 1,7 + are given in Figure 4 (more details regarding the bytecode size
2,...,|Pl,1,2,...,i—1 patterns. At the end of this procedureeduction obtained per different MIDP class are given in Ap-
we end up with| P| sets of patterns, amongst which we selegtendix I). As expected, the time required to combine patterns
the one that gives us the highest bytecode size reduction. (Figure 4(b)) is much higher than the time spent when using

In general, the impact of the second heuristic in the overdlle first heuristic. However, it is still reasonable compared
time required for the bytecode compression is expected to toethe time required for deriving all possible combinations of
much higher than the impact of the first heuristic (since thmatterns. The bytecode size reduction we obtained is generally
application of the second heuristic consists of applying theetter than the corresponding reduction obtained from the
first heuristic| P| times). On the other hand, the combinationapplication of the first heuristic. The use &, gives
of patterns examined by the second heuristic are a supersethef highest bytecode size reduction in all packages, except
the combinations of patterns examined by the first heuristfor the javax.microedition.pki one (Figure 4(a)). Hence, the
Hence, the percentage of bytecode size reduction obtairsatond heuristic renders the use f,,.,, more beneficial.
from the application of the second heuristic is expected to Bée reduction obtained from the sets that contain patterns with
at least as good as the percentage of bytecode size reductioed numbers of wildcards is in most packages poorer than
obtained from the application of the first heuristic. the reduction resulted from®,,,.q.,». However, amongsP;,,,

1) Experimental results - 1st set of experimeritsthe first Py, Ps,, and Py, the first two sets give better bytecode size
set of experiments we used as input to both heuristics treduction. Hence, patterns with a relatively small number of
full set of patterns,P,...m. discovered by the parameterizedvildcards contribute more in reducing the size of the MIDP
pattern discovery technique in each one of the MIDP packagpsackages.

Moreover, we used as input to both heuristics the set ofFigures 5 and 6 compare the results we obtained from the
non-parameterized patternb,,.,—parem, discovered in each application of the first and the second heuristic Ap,rqm.

one of the MIDP packages. To compare the contribution &},0n,—param, Pi—2w, Pi—3w and Pi_4, (more details can
patterns that contain a variable number of wildcards, agaits found in Appendix). Regarding the two heuristics, the
the contribution of patterns that contain a fixed number abservations derived from Figures 3 and 4 are still valid. The
wildcards we further constructed four input sel,,, P»», bytecode size reduction obtained from the first heuristic is
P, and Py, consisting of patterns that contain one, twosmaller compared to the one obtained from the application of
three and four wildcards, respectivel¥;.,, P>, P3, and the second heuristic. In both heuristics the reduction obtained
Py, were constructed from the full set of patterf§q,q., in the case ofP;_y,, Pi_3, and Pi_y, is greater than the
that resulted from AC. Finally, to investigate the impact ofeduction obtained in the case &f.,, Py, Pz, and Py,.

the increasing number of wildcards in the compression of tihe most casesP;_», gives better bytecode size reduction
MIDP packages we constructed three more input d&ts,,,, than P,_3,, and P;_4,. This observation is an additional
P,_3, and P,_4,, consisting of patterns that contain oneevidence that patterns with a small number of wildcards result
to-two, one-to-three and one-to-four wildcards, respectiveiyn combinations that give us better bytecode size reduction.
Py_oy, Pi_3, and P;_4, were also constructed from the full The inclusion of patterns with 3 and 4 wildcards in the
set of patterns,,,q. that resulted from AC. set of patterns that contain 1 and 2 wildcards results in

Figure 3 compares the results we obtained per MIDRorst bytecode size reduction in certain cases because of the
package from the application of the first heuristicRp,,.., Overlapping between these patterns. For example, a pattern that
Pron—params Prw, Paw, Psyw @and Py, (more detailed results contains 3 wildcards could appear in the bytecode in the form
regarding the bytecode size reduction obtained per diffesf two consecutive patterns that contain 1 and 2 wildcards. In
ent class of the MIDP packages are given in Appendix Ihe same bytecode, there may also be individual occurrences

Hevuristic 1

35%
0% @ parametenzed
259, H non-parameterized
0O 1 wuldcard
Bytecode 00, 1 [i
size 02 wildcard
reduction 15%, | 3 wildcard
Y
&3 @4 wildcard
BT B GAP
5% 1
0% + 5
i a on¥ et G qon ¥
a2 & a)ad w o gon mdoej o™ Ll
ok Cla yaa i
peckages
(a) Percentage of bytecode size reduction per MIDP package.
. Noa ~ Pammecrtiel Paameterhiol Parameteriied Parameterted
MIDF Package Parameterized teri patterns with1 patterns with2 patferns with 3 patterns with 4
paramcierized wildcard wildcards wildcards wildcards
javaio 203 1.17 0.66 021 0.09 0.08
javalang 3975 7.06 1.96 04 046 02
javax.microedition.io 02 0.1 0.09 0.02 0.02 0.02
javaxmicroedition. media 027 0.13 0.05 0.01 0.01 0.01
javaxmicroedition.midlet 003 0.02 0.02 0.02 0.02 0.02
javax.microedition_pki 0.01 0.01 0.01 0.01 001 0.01

(b) Time to combine patterns per MIDP package (sec).

Fig. 3. Experimental results from the application of the first heuristi®ifram, Prnon—param, Plw, Pow, P3w and Py,.

of the two constituent patterns. If used in isolafiothe 2 they contained.
constituent patterns may result in bytecode size reduction

that are smaller than the one that can be obtained from U\}S discussed so far with the ones obtained from the use
use of the 3-wildcards-pattern. On the other hand, if both t $ GZIP. We usedGZIP to compress the bytecode of the
constituent pattemns are used we may get a reduction thaﬂhfﬁerent-MlDP packages that constitute our case study. The

better than the one obtained by the use of the 3-wildcar rSsulted compressed bytecode is not interpretable, in that it can

pattern. However, the selection of the 3-wildcards-pattern m ¥t be executed without being fully decompressed. However
render the selection of the two constituent patterns impossi) bytecode size reduction obtained WBZIP is a.useful '
(e.g. because after the subsitution of the 3—W|Idcards—pattgh%asure towards our assessment. In all figures, we can observe

occurrences, the constituent pattems no longer appear in 1Ih§t the percentage of the bytecode size reduction obtained

bytecode more than once). . .with GZIP is comparable with the one resulted fraf.,am.

Alihodu%h one would eé(pect that theldby;ecode”suei reductigis interesting to note that in the case of the first heuristic
resulted fromP,_s,, and P4, would be really close or g e 3(a), 5(a)), in most MIDP packag@ZIP performs
equal to the one obtained fronf,,,qm, this is noj[the slightly better thanP,aram and Paon—param. ON the other
case.P; 4, comprises all the pa_tterns that contain W'Idca_‘rd?rand, in the case of the second heuristic we see gt
However, P_Pamm further comprises the non-parame'_[enz_e ives in some MIDP packages (java.io, java.lang packages)
patterns, discovered by AC (Section Ill B). The contributio etter bytecode size reduction th&ZIP, while P

1 non—param

of the non-parameterized patterns is quite significant alogg/es only at most as good bytecode size reductioG2E
with the contribution of the patterns that contain 1 and '

wildcards. This becomes clear with further elaboration on the Summarizing the results from the first set of experiments,
results obtained from the application of the second heurist can derive the following conclusions. The examined pattern
in Pyaram. Specifically, Figure 7 gives the numbers of usefuliscovery technique allows the discovery of a rich variety of
patterns (i.e., the patterns that are finally used for compressR@jameterized and non-parameterized patterns. The discovery
the MIDP packages) that resulted from the second heuristicGhthe patterns is quite expensive, with respect to the time spent
relation with their lengths and the number of wildcards th& AC. Moreover, the complexity of selecting and combining
patterns is also high. Our experimental results showed that

4i.e. according to the way that we assess the contribution of patterns in {F\ethe case of MIDP, the mostseful patterns out Ofppamm)
heuristics. are the non-parameterized ones and the ones that contain 1

ﬁiigures 3(a), 4(a), 5(a) and 6(a) further compare the results

Heuristic 2

35%
30%
O parameterized
[]
25% H non-parameterized
0 1 wildcard
bytecode 20% |
size 02 wildcard
reduction (%) 150, 1| fin m 3 wildcard
=4 wildcard
10% 1
1 GAP
5% 1
0% +
: T a et ;
a0 a9 Foni© ,ﬁoqrrefj Acnmde ﬁcn-P\‘“
¥ A . L qeed® felscs
e -
packages
(a) Percentage of bytecode size reduction per MIDP package.
N Parameterized Parameterized Par ferized Par ferized
MIDP Package Parameterized o: N patterns with1 patterns with2 patterns with3 patterns with
F wildcard wildcards wildcards 4 wildcards
javaio 2126.65 487.64 131.21 11.73 364 0.18
javalang 12731.71 4122.76 139.11 3934 16.84 119
javax.microedition.io 119.94 2224 18.47 1.05 007 0.07
javax.microedition.media 027 0.18 0.05 0.01 0.01 0.01
javax.microedition.midlet 0.12 0.02 0.02 0.02 0.02 0.02
javax microedition pki 0.01 0.01 0.01 0.01 0.01 0.01

(b) Time to combine patterns per MIDP package (sec).

Fig. 4. Experimental results from the application of the second heuristt,idam, Pron—param, Plw, P2w, P3w and Py.

and 2 wildcards. However, this may not be the case in otHength of the patterns may result only in a small increment of
Java applications, where patterns with more than 2 wildcartte bytecode size reduction. In the worst case, it may result
may also prove useful. Based on these remarks, a gdada decrement of the bytecode size reduction. As detailed in
strategy for balancing the tradeoff between the time spent f6ection Il B, to encode the positions of wildcards in patterns
discovering/combining patterns and the resulted bytecode safemaximum lengthK, we have to usg (K — 2)/8] bytes.
reduction is to apply the technique in an incremental mann@&herefore, for patterns of maximum length 9, 1 byte is needed.
For a given bytecode, instead of using AC for constructing@n the other hand, for patterns of maximum length 11, 2
large set of patterns, containing many wildcards, AC can lbgtes have to be used. The extra bytes used for encoding
customized to construct a smaller set of patterns, containithge positions of wildcards when the maximum length of the
few wildcards. Starting from this smaller set of patterngatterns is long may reduce the benefits obtained from using
the technique may be used at a later time, if necessary,tih@se patterns.
discover patterns that contain more wildcards, towards furtherMore specifically, Figures 8(a) and (b) give the results
improving the bytecode size reduction. we obtained in the case of the MIDP packages. Figure 8(a)
2) Experimental results - 2nd set of experimenks:the refers to the first heuristic, while Figure 8(b) refers to the
second set of experiments we used as input to both heurisBegond heuristic. In both figures, the left axis corresponds to
the set of patterns of maximum length 13,,,.,,, discovered the percentage of the bytecode size reduction increment or
in each one of the MIDP packages. As discussed at tHecrement resulted from increasing the maximum length of the
beginning of this subsection, increasing the maximum lengpiatterns from 9 to 11 (columns that are under 0% correspond
of the patterns results in the discovery of more pattern®. bytecode size reduction decrement, while columns that are
Moreover, increasing the maximum length implies increasirayer 0% correspond to bytecode size reduction increment; the
the time required for discovering the patterns and the tinsenaller the columns that are under 0%, the larger the decre-
required for combining them. The expected benefit against timent of the bytecode size reduction). The right axis shows the
time increment is the increment of the bytecode size reductioncrement of the time required for discovering and combining
However, the previous may not hold; increasing the maximutie patterns when their maximum length is increased from 9 to

Heuristic 1

35%
30% 1
@ parameterized
2% ’7 B non-paraneterized
Bytecode opoy,] 0 1-2 widcards
size reduction
(%) 15% - 0 1-3 widcards
10% B 1-4 widcards
5
o GarP
5% + —
0% ~
o al0 ﬁﬂ(gjmd\' e cnﬂ"d on P
5 mdf’aj i mdoej o rﬂc""Ejj :
packag&s
(a) Percentage of bytecode size reduction per MIDP package.
Non Parameterized Parameterized Parameterized
MIDPF Package Parameterized P patterns with 1- patterns with patterns with 1-4
parame 2 wildcards 1.3 wildcards wildcards
javaio 203 117 084 091 1.02
javalang 3975 7.06 125 134 1.53
javax.microedition.io 0.2 0.1 0.11 0.12 0.14
javax.microedition. media 027 018 01 0.1 011
javax microedition.midlet 0.03 0.02 0.02 0.02 0.02
javax.microedition.pki 0.01 0.01 0.01 0.02 0.03
(b) Time to combine patterns per MIDP package (sec).
Fig. 5. Experimental results from the application of the first heuristi®jf:am, Pron—param, P1—2w, P1—3w and Py _ 4.
Heuristic 2
35%
30% = :
O parameterized
25% o
Bytecode B rorparaneterized
" 20% -] .
slze O 1-2wildcards
reduction 15% - 0 13 wil
(%)
10% - B 1-4wildcards
5% ncap
0% A T
‘p\ra“o ‘?Na - d\\d\“‘di \\Oﬂﬁd " dc@\“or\p\q
™ p«aﬁ i el
packages
(a) Percentage of bytecode size reduction per MIDP package.
N Paramefterized Parameterized Parameterized
MIDP Package Parameterized ": red patterns with patierns with patterns with
paramd 1-2widcards 1-3 wildcards 14 wildcards
javaio 212665 487.64 119.46 23175 295.83
javalang 12731.71 4122.76 227.48 141755 1527.37
javax.microedition_io 119.94 2224 28.71 28.87 3532
javax.microedition.media 027 0.18 2227 25 36.66
javax microedition. midlet 012 0.02 0.02 0.02 0.02
javax microedition_pki 0.01 0.01 033 0.42 0.45

(b) Time to combine patterns per MIDP package (sec).

Fig. 6. Experimental results from the application of the second heurist,idam, Pron—param, P1—2w, P1—3w and P1_4.

11. In the case of the first heuristic, time increases from 26%decreases. In the first heuristic the decrement ranges from -
34% for the different MIDP packages. Similarly, in the seconi2% (Figure 8(a) third column - javax.microedition.media) to
heuristic time increases up to 34%. With the exception of oré2% (Figure 8(a) second column - java.lang), while in the
package (javax.microedition.pki), the bytecode size reductisecond heuristic the decrement ranges from -7% (Figure 8(b)

javaio

| 1T Y T

D pattem length 2
m pattem length 3
O pattem length 4|
D pattem length 5
m pattem length 6
D pattem length 7|
m pattem length 8
O pattem length 9

Owidcards 1widcad 2widcads 3widcads

number of wildcards

4widcards

(a) java.io
javaxricroeditionio

@ pettem length 2|
@ pettem length 3|
0 pettem length 4|
0 pettem length 5
m pettem length 6
@ pattem length 7|
@ pattem length 8|
0 pettem length 9

o [N

Owildcards 1widcard 2 widcards
number of wildcards

3widcads 4 widcards

(c) javax.microedition.io

Jjavaxuricroeditionmidet

2
nurrber of
corrbined

pattems p

D pettern length 2
B pattern length 3
0 patten length 4
D patten length 5
m pettern length 6
o pettern length 7,
B pettern length 8
0 pattern length 9

Owildcards 1 wildcard 2w 3w 4 wil
nuirber of wildcards
(e) javax.microedition.midlet

2
nurber of
corrbined

nurber of
comrhined

javalang

===HHEN

el -

@ pattern length 2
B pettern length 3
0 pettern length 4|
0 pettem length 5
B pattem lengh 6
[pattern length 7]
B pattern length 8
0 pattem lengh 9

Owildcards 1 wildcard 2wildcards 3wildcards 4 wildcards
nurrber of wildcards

(b) java.lang
Jjavauricroeditionmedia

|

M pattemn length 2]
B paitem lengh 3|
Opsitem lengh 4]
Opattem lengh 5|
mpattem length 6
mpaitem lengh 7|
mpaitem lengh 8|
Opattem lengh 9)

Ow\dcardsl Twildcard 2wildcards 3wildcards 4 wildcards
nurrber of wildeards
(d) javax.microedition.media
Jjavaurricroedtion pld

@ pettem length 2|
m pettem length 3|
O pettem length 4|
O pettem length 5|
m pettem length 6|
@ pettem length 7|
m pettem length 8|
O pettem length 9|

Owildcards 1wildcard 2widcards 3widcards 4 wildcards
nurrber of wikdeards

(f) javax.microedition.pki

Fig. 7. Patterns combined by the second heuristic in the cag®Ofum.
Heuistic 1
perceriageof 0% L —
bytecode -10% A 30% time
reduction -20% 20% in;rerrer.t for
increrentor -30% i af;’mng
decrenment -40% ,:- . % conbining
-50% - — - - : . : 0% pettems
s Goni© e ot jondd
gl ,p\,a.\arg o adad‘“d\. T spon -
e O I
packages
\ I percertage of bytecode size reductionincrenert/decrenert —— percentage of tine increnent
(a) Results obtained from the first heuristic.
Heuristic 2
percentage of 0% of tire
——— = o o aﬂmﬁmnﬁrr?
decrerrert -30% Y
el I e PRCTE
a0 R) wWo'© e rid
L e
packages
‘ B percentage of bytecode size reduction increnent/decrenent —— percentage of tine increnent
(b) Results obtained from the second heuristic.
Fig. 8. The impact of increasing the maximum length of the patterns in the bytecode size reduction obtained and the time required for discovering and

combining the patterns.

third column - javax.microedition.media) to -33% (Figure 8(bheuristics (sixth column - Figures 8(a) and (b)).
first column - java.io). In the javax.microedition.pki package,

the bytecode reduction increases up to 3% for both theSummarizing the results from our second set of experiments,
we can conclude that very long patterns may not prove bene-

ficial for the bytecode compression process. The best strategy A two-dimensionalK x M matrix F'R. The value of each
is to start from discovering patterns whose maximum length is matrix element*R[k, m] (such thatt : 2,..., K andm :
less or equal to 10 since the bytes required for encoding them 0,..., M) corresponds to the probability of generating a
in the dictionary is small. The discovery of longer patterns pattern of lengtht with m wildcards.

could be tried towards optimizing the compression, while The JvM loop does not provide any advanced JIT compi-

keeping in mind that it may lead to worst results. lation capabilities. Moreover, several typical JVM activities
(e.g. verification, resolution, access control [25]) that pre-
B. Bytecode Decompression cede the bytecode interpretation are omitted. Consequently,

The decompression overhead introduced in the executionﬂa‘? overhead introduced by the decompression modules is

applications that were compressed into interpretable byteco%?eded to be high. In any case, the results are based on
Hdomly generated bytecode and may not be representative

is always an issue for the assessment of the compressri o .
lr]eal applications that do not comply with the features used

technique that was used. However, this overhead depends0 : .

several factors concerning the application itself and the en\f/(?-r the ge_nerated bytecode In our experlments. To perfqrm
ronment within which the application executes. Specifically, RUr experlments we used 2 different envwonmen_ts. The first
the case of the technique examined in this paper, the overh@R§ relies on a 2GHz AMD Athlon. XP 2400+ with 256Kb
depends on the number of pattern instances encountered duhagcaChe’ while Fhe second one is based on a 500 MHz
the bytecode execution, the length of the patterns and tHg aSEARC-IIe with 256Kb L2 cache.)

number of wildcards of these patterns. Moreover, the overheadThe |n_put parameters of the generator relied on_the results
depends on the characteristics of the particular device and Y oPtained from the MIDP case study. In particular, we
JVM used for the execution of the bytecode. It should HePnstructed 4 different sets of bytecode sequences, whose
noted that the JVM may be even implemented as part of tig€ Was reduced 5%, 10%, 15% and 20%, respectively. The
processor used. The previous particularly holds in the caseCgflPression of these bytecode sequences relied on patterns,

Java processors such as picoJa@modd, alile GEMCord which contained up to 4 wildcards. Similarly, we generated 4
JOP and several others. Given the [;revious remark’s Fpore sets of bytecode sequences, whose size was reduced 5%,

this paper we focus on examining the general behavior Hp%, 15% and 20%, with respect to sets of patterns, which did

the decompression overhead. To this end, we used randor’?\‘ﬂ; contain wildcards. In all cases, the maximum _Iength of the
generated synthetic bytecode and a simple JVM main lo tterns was set to 9. The range of the pattern instances was

[25] that interprets the synthetic bytecode. The simple JV ,12]. The matrix_FR that was given as input to the generator
main loop was realized for the purpose our experiments alolfGs calculated with respect to the overall set of patterns that
e combined using the second heuristic in the case of MIDP

with a random bytecode generator and the two decompress - .
modules discussed in Section Il C. Figure 7). The specific values @ R that we used are given

The random bytecode generator accepts as input a requi'lrétlf'gure 9(a).) .
percentage of bytecode size reduction and produces a synthetfc9ure 9(b) gives the average decompression overhead we
bytecode sequence that can be compressed according to §Rigined for the aforementioned sets of bytecode sequences.
percentage of bytecode size reduction. The generator furt expected, the overhea_1d is quite high (h_owever, It s C|O_Se
accepts as input the main features of a set of patterns tFPafhe overhead reported in [4] for the CaffeineMark synthetic

is generated with respect to the given features. This set @@ Programs). The overhead linearly increases with the

patterns is then used by the generator towards the construci§ficentage of the bytecode size reduction. In general, the
rhead in the case of the bytecode sequences that were

of the target bytecode sequence, which consists of instanf&§ , \ lence
of the generated patterns, complemented with bytecode fempressed using patterns that did not contain wildcards was

structions that will not be compressed. Specifically, the manmnaller, compared to the overhead in the case of the bytecode
features that characterize a generated set of patterns are: Séduénces that were compressed using patterns that contained

The maximum length, of the patterns. Based on thiswildcards. To further elaborate on the decompression overhead
° gthix, P ' we measured the absolute time required for decompressing
feature, the generator creates patterns, whose length_ s . .

. e . parameterized and non-parameterized patterns, whose length
uniformly distributed in the rang&, K.

. The maximum number of wildcarda/, contained in the ranged from 2 to 9 bytes. The parameterized patterns com-

patterns. Given this feature, the generator builds patterr‘i)gsed up to 3 wildcards. Specifically, the patterns of length 2

whose number of wildcards is uniformly distributed inan’d 3 comprised 1 wildcard. The patterns of length 4, 5, and 6
the rangel0, M] y comprised 2 wildcards. Finally, the patterns of length 7, 8 and

: 9 comprised 3 wildcards. The results we obtained are given
o The maximum the number of pattern occurrencés, . _. : . . .
;) in Figure 9(c). The time to decompress linearly increases with
According to this feature, the generator constructs

7 Re length of the patterns.
number of pattern occurrences in the target bytecoc}e, 9 P

which is uniformly distributed in the range, L]
V. CONCLUSION

Shttp://www.sun.com/microelectronics/picoJava/
Shttp-/fipr.ira.uka.de/komodo/komodoEng.html In this paper, we introduced a first approach that aimed at

Thitp:/Awww.ajile.com/products/jemcore.htm assessing the use of statistical pattern disqovery for dictionary-
8http://www.jopdesign.com/ based Java bytecode compression. In particular, we focused on

025
02
pattems 0,15

0,1 1

0,05 1

. { h L v m (b o 0
patten | pattemn | pattern | pattermn | pattem | pattemn | pattemn | pattern
lergih2|lergih 3| lergih4 lergth5| lergth 6| lergih 7 lengih 8 lergth®
B Owildcards | 0,112 | 0,08 0,213. 0,072 | 00293 | 0,0533 | 0,0187 | 0,0507
| 1 wildcard o] 00347 0,04 | 0032 | 00267 | 00213 | 0,0293| 0,032

0 2 wildcards [} 0 0,0053 | 0,0213| 0,008 | 0,016 | 00293 0,032
0 3 wildcards 0 0 0 _0,0027 0,0053 0 0,0107 | 0,0053
B 4 wildcards o] [¢] [¢] o] 0,0053| 0,0027 | 0,0027 o]
pattem length
(a) Probabilities of generating patterns of length2,...,9 with m : 0,...,4 wildcards.
08
40% ?
e 06 =
30% me to P e B
average decompress 0.4 —
execution 20% (=eq) l___:_—:p“ff.r_M g2
overhead (%) 02)
10% 0
0% T T T 2 ! 4 5 6 7 8 9

5% 10% 15% 20% pattern length
bytecode size reduction (%)

. —e— ANVD Athllon XP 2400+ (Parametenized)
—e— ANMD Athlon XP 2400+ (Parameterized) : i
= UtraSPARCHie (Parameterized) —=— UtraSPARC ie (Parameterized)
—a— AMD Athlon XP 2400+ (Non-Parameterized) —a— ANVD Athlon 2P 2400+ (Nen-Parametenzed)|
—5¢— UtraSPARCHie (Non-Parameterized) —s— UtraSPARC lie (Nen-Parameterized)
(b) Decompression overhead for the synthetic bytecode sequences. (c) Absolute times for pattern decompression (usec).

Fig. 9. Evaluating the decompression overhead of the parameterized pattern discovery technique.

the use of agglomerative clustering, a well-known hierarchive aim at formulating the problem of pattern combination
cal pattern discovery technique. The main outcome revealasl a global optimization problem. This would allow us to
from our assessment is that the examined technique promate®stigate the use of classical global optimization techniques
the identification of a rich collection of parameterized anguch as simulated annealing in conjunction with the proposed
non-parameterized patterns of variable lengths, which giparameterized pattern discovery technique. Our future research
the opportunity for obtaining good bytecode size reductiofurther aims at the exploration of other, possibly more efficient,
However, the discovery of such a rich set of patterns for satistical methods for discovering patterns in Java bytecode.
given bytecode is certainly time consuming. Moreover, the

complexity of finding useful combinations of patterns out of APPENDIX |

this set that result in a good bytecode size reduction is also FyRTHER RESULTS FROM THEMIDP CASE STUDY

high. To deal with the complexity of combining patterns we in- {n this section, we provide further details regarding the

vestigated two heuristics. Our experimental results showed that . .
. ._experiments performed for the assessment of the parameterized
the length of the patterns should be appropriately customize . . . : . .
’ . ; attern discovery technique discussed in this paper. Specifi-
so that it does not negatively affect the compression by requir- . :) i
. . cally, Figures 10 and 11, provide details regarding the bytecode
ing a large number of bytes for encoding the patterns. More-

. Size reduction obtained per different MIDP class from the
over, our experimental results showed that non-parameterize

. . application of the first and the second heuristicsH,qm,
patterns and patterns that contain a relatively small numbgr Pru, Pow, Py and Py,,. Similarly, Figures 12

of wildcards are the most useful in our case study. However. o “parem:

. . . nd 13 give the bytecode size reduction obtained per different
this observation may not hold for any possible Java byteco T .

. IDP class from the application of the first and the second
Based on these remarks, a good strategy for balancing

e
tradeoff between the time spent for discovering/combini

euristics inpparamr Pnon—paramv P1—2w1 P1—3w andP1—4w-
. LI nally, Figures 14 and 15 detail the impact of increasing the
patterns and the resulted bytecode size reduction is to aprﬂ Y. M0 P g
the patterns discovery technique in an incremental manner.

¥ximum length of the patterns found in MIDP from 9 to 11,
In a first step, the algorithm can be customized towards tnethe bytecode size reduction obtained and the time required

discovery of small sets of patterns that contain few Wildcardso.r compressing each MIDP class.

Following, the small sets of patterns may serve as input to

the algorithm towards the discovery of patterns that contain REFERENCES
more wildcards, which may further improve the bytecode siz§l] A. Beszdes, R. Ferenc, T. Gyinthy, A. Dolenc, and K. Karsisto,
reduction “Survey of Code-Size Reduction Method$CM Computing Surveys

vol. 35, no. 3, pp. 223-267, 2003.
The incremental use of the agglomerative clustering al?l D. Rayside, E. Mamas, and E. Hons, “Compact Java Binaries for
ith . int ting issue for further research. alon Embedded Systems, Iﬁroqeedmgs of the 19_99 ACM Conference of the
g(?r't m 1S an interesting ' ' 9 centre for Advanced Studies on Collaborative Research (CASCQON'99)
with techniques that would allow pruning patterns that are 1999, pp. 1-14.
not useful, ear|y in the patterns discovery process. Currentl{?,’] M. Latendresse and M. Feeley, “Generanon of Fast Interpreter_s for
K i | t ted towards further improving the Huffman Compressed BytecodeScience of Computer Programming

Ou_r _Wor IS also targete _W : N Improvi .g (Advances in Interpreters, Virtual Machines and Emulators)l. 57,
efficiency of the pattern combination procedure. To this end, no. 3, pp. 295-317, 2005.

(4]

(5]
(6]

(7]

(8]

(0]
[10]

[11]

[12]

[13]

(14]

(18]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

L. R. Clausen, U. P. Schultz, C. Consel, and G. Muller, “Java Bytecode
Compression for Low-End Embedded Systen#8CM Transactions on
Programming Languages and Systerd. 22, no. 3, pp. 471-489, 2000.
M. Meila and D. Hecherman, “An experimental comparison of mode
based clustering methodsylachine Learningvol. 42, pp. 9-29, 2001.
K. Blekas and A. Likas, “Incremental Mixture Learning for Clusteringh.
Discrete Data,” inLecture Notes in Atrtificial Intelligencevol. 3025.
Springer-Verlag, 2004, pp. 210-219.

J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A. Proebsting, “Code
Compression,” inProceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLD|'A997,

pp. 358-365.

Q. Brandly, R. N. Horspool, and J. Viter, “JAZZ: An Efficient Com-
pressed Format for Java Archive Files,” liecture Notes in Atrtificial
Intelligence vol. 3025. Springer-Verlag, 2004, pp. 210-219.

M. Franz and T. Kistler, “Slim Binaries,Communications of the ACM
vol. 40, no. 12, pp. 87-94, 1997.

W. Pugh, “Compressing Java Class Files,"Hroceedings of the ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI'99) 1999, pp. 247-258.

F. Tip, P. Sweeney, C. Laffra, A. Eisma, and D. Streeter, “Practical
Extraction Techniques for JavaRCM Transactions on Programming
Languages and Systemal. 24, no. 6, pp. 625-666, 2002.

A. Wolfe and A. Chanin, “Executing Compressed Programs on &
Embedded RISC Architecture,” iRroceedings of the 25th IEEE Inter-
national Symposium on Microarchitecture (Micro-23p92, pp. 81-92.

M. Kozuch and A. Wolfe, “Compression of Embedded System Prc
grams,” inProceedings of the International IEEE Conference on Comnr
puter Design: VLSI in Computers & Processot®994, pp. 270-277.

H. Lekatsas and A. Wolfe, “SAMC: A Code Compression Algorithm for
Embedded ProcessordEEE Transactions on Computer Aided Design
vol. 18, no. 12, pp. 1689-1701, 1999.

K. D. Cooper and N. MclIntosh, “Enhanced Code Compression for
Embedded Risc Processor&yCM SIGPLAN Noticesvol. 5, pp. 139—
149, 1999.

IBM, “CodePack: PowerPC Code Compression Utility User's Manual
v3.0,” IBM Corporation, Tech. Rep., 1998.

C. R. Lefurgy, P. L. Bird, I-C. Chen and T. N. Mudge, “Improving
Code Density Using Compression Techniques,Pioceedings of the
30th ACM/IEEE International Symposium on Microarchitecture (Micro-
30), 1997, pp. 194-203.

S. K. Debray, W. Evans, R. Muth and B. De Sutter, “Compiler
Techniques for Code Compactio®CM Transactions on Programming
Languages and Systemsl. 22, no. 2, pp. 378-415, 2000.

B. De Sutter, B. De Bus and K. De Bosschere, “Sifting out the Mud:
Low Level C++ Code Reuse,” iRroceedings of the 17th ACM SIGPLAN
Conference on Object-Oriented Programming Systems Languages anc
Applications (OOPSLA'02)2002, pp. 275-291.

J. Krinke, “Identifying Similar Code with Program Dependence Graphs,”
in Proceedings of the 8th IEEE Working Conference on Reverse Engi-
neering 2001, pp. 301-309.

W. Cheung, W. Evans, and J. MoseSpftware and Compilers for
Embedded Systems: 7th International Workshop (SCOPES%S)
LNCS. Springer-Verlag, 2003, vol. 2826, ch. Predicated Instructions
for Code Compaction, pp. 17-31.

W. Evans and C. Fraser, “Bytecode Compression via Profiled Grammar
Rewriting,” in Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDL®001, pp.
148-155.

R. Komondoor and S. Horwitz, “Effective, Automatic Procedure Ex-
traction,” in Proceedings of the 11th IEEE International Workshop on
Program Comprehension (IWPC’'Q32003, pp. 33-43.

Y. Bengio and S. Bengio, “Modeling High-Dimensional Discrete Dat:
with Multi-Layer Neural Networks,” inAdvances in Neural Processing
Systems 1. Solla, T. Leen, and K.-R. &ller, Eds. MIT Press, 2000, &
pp. 400-406.

T. Lindholm and F. Yellin,The Java Virtual Machine Specification
SUN Microsystems, 1999, ch. 5: The Structure of the Java Virtu
Machine.

Dimitris Saougkos received his B.Sc.
in 2004 from the Department of
Computer Science of the University of
loannina, Greece. Following, he obtained
his M.Sc. in 2006 from the same
department. His main research interests
include code compression, compilers,
programming languages, middleware,
mobile and embedded computing
systems.

George Manisis a Lecturer in the Department of
Computer Science of the University of loannina,
Greece. He received his Diploma in Electrical and
Computer Engineering in 1992 from the National
Technical University of Athens (NTUA), Greece. In
1993, he obtained his MSc from the Queen Mary and
Westfield College (QMW), University of London. In
1997, he obtained his Ph.D. in Computer Engineer-
ing from NTUA. His main research interests include
computing systems and architectures, compilers, and
biomedical engineering.

Konstantinos Blekasreceived his Diploma in Elec-
trical Engineering in 1993 and his Ph.D. in Electrical
and Computer Engineering in 1997, both from the
National Technical University of Athens (NTUA).
Since 2002, he has been with the Department of
Computer Science, University of loannina, Greece,
where he is currently a Lecturer. His research inter-
ests include artificial intelligence, statistical pattern
recognition, machine learning, and bioinformatics.

Apostolos V. Zarras holds a Lecturer position
at the Department of Computer Science, Univer-
sity of loannina, Greece. He received his B.Sc. in
Computer Science in 1994 from the Department of
Computer Science, University of Crete. In 1996,
he received his M.Sc. in Distributed Systems and
Computer Architecture, from the same department.
He obtained his Ph.D in Distributed Systems and
Software Architectures in 2000 from the University
of Rennes I, France. From 1999 to 2001 Apostolos
Zarras worked as a researcher at the ARLES Group

of INRIA-Rocquencourt. His research interests include middleware, model-
driven architecture development and pervasive computing.

Heuristic 1
45%

3%
0%
2%
2%
15%
10%
5’/0 B

bytecode
size reduction (%)

bt
éf/‘@

*ﬁ
G

0 Paraeterized B Non Pearameterized 0 1 Wildcard Parameterized|
02 Wildcard Paraneterized B 3 Widcard Pararmeterized D 4 Wildcard Pararmeterized|

TEWW,

&

o«"’

jMK}

Heuristic 1
35%
30%
25% m
bytecoce 20% -
s'zer?;.)lctim 1§2 ‘ | 4 1k
o lm htinhl»}f‘ﬂm nﬁ m‘
x@,f & LIS L ES, f@yf
javalang

« rf&

B Non Pararreterized [1 Wildcard Pararreterized
B 3 Widcard Paraneterized @ 4 Widcard Paraneterized

[Perameterized
[0 2Vdcard Paranreterized

(a) java.io (b) java.lang
Heuristic 1
20%
Heuristic 1
3%
bytecode 1% 25%
. bytecode
reduction 10% e 2% _
(2] reduction 15%
£20 @ o E—
% 5%
Connector PushRegistry % i
javexrricroedition.io Menager
jaca nricroedition.media
o Pararnreterized m Non Pararreterized 0 1 Wliccard Pararreterized| = Paraneterized B Non Parareterized 1 Wideard Paranreterized
12 Wildcard Pararreterized ® 3 Wiidcard Paraneterized M 4 Wiidcard Pararreterized| 12 Wildcard Paraeterized W 3 Wildcard Pararveterized 1 4 Wildcard Parareterized
(c) javax.microedition.io (d) javax.microedition.media
Heuristic 1
Heuristic 1 25%
St 20%
ytocock 5% bytecode 20%
s 0% S 450
o = reduction
reciuction 15% o 1%
@ 1% | %
5%
0% . 0%) : 1
MDiet MDietProxy) Cemﬁ.cateE@ptlon
T ftionrridet javax.rricroedition.pki
u Ehon ; 1 \Widcard Pararmeterized 0 Paraeterized B Non Parareterized [1 Widcard Pararreterized
L 2Widkard W3 Widcard & 4 Widkard 02 Widcard | W3 Widcardf 4 Wideardf

(e) javax.microedition.midlet

(f) javax.microedition.pki

Fig. 10. Experimental results - per MIDP class - from the application of the first heurisfdRam, Pron—param, Plw, Paw, P3w and Pyy,.

Heuristic 2
45% =
40%
35%
bytecode 30%
size 25%
reduction 20%

15%
10%
5%
D“/n

i;f’f

O Pararreterized

(o)

IT

. =1 Lt

yffeﬁ@@f

Ja@ io

B Non Paraeterized

E1V\IIdcadF‘aareaized‘

[2 Widcard Paranreterized B 3 Widcard Parameterized B 4 Wildcard Parameterized
(a) java.io
Heuristic 2
25%
20%
size 15%
reduction
(% 10%
5%
% -
PushRegistry
javaxrricroeditionio
o P M Non P: 1 Wildcard Parameterized
12 Widcard W 3 Widcard B 4 Widcard
(c) javax.microedition.io
Heuristic 2
30%
25%
bytecode
peny 20%
reduction 15%
()

10%
5%
0%

O

M DietProxy
ion.midlet
] Hhon © 1 Widcard Parameterized
02 Wideard W 3Widcard 54 Widcard

(e) javax.microedition.midlet

Fig. 11. Experimental results - per MIDP class - from the application

Heuristic 2
40%
35%
0%
lecode
byt 25%

size
re ion 20% - -

" Lo hltE G e
Q}p‘f&of o’f&ffdhefﬂé&&é qf}"“;{ya

@%‘ javalang
<

[Parameterized
12 Wildcard Parameterized

A
&

B Non Parameterized
B 3 Wildcard Parameterized

(b) java.lang

11 Wildcard Parameterized
[4 Wildcard Parameterized

Feuristic 2

2
Eytacode 200
e
rrton 1%
(%)
o
o
ol
Manager
e riconamon i
R e Parrraterizad e Parareieead
£ 2 e = 5 Wadeara = 4 Ve
(d) javax.microedition.media
Heuristic 2
25%
0%
bytecode
size 15%
reduction
%) 10%
5%
0%
CertificateException
javax microedition pki
B Parameterized B Non Parameterized 1 Widcard Parameterized
02 Wideard B3 Widerd =4 \Wideard

(f) javax.microedition.pki

of the second heurigjg,i0m, Pnon—param, Plw, P2w, P3w and Pyy,.

Heuistic 1
45%

40% f
35% Heuristic 1
Bytecode 30% = 35%
size 25% 30%
reduction 20% Bytecode 25%
) 15% - size 20%
1% «W‘I— -‘-r ﬁ redotion 15%
nh m 0 ot
) n
f 5 g A Ly ral- il ‘
& P & S ¢
fﬁ";"%f PRy £
Javalo Jjavalang
gﬁi‘rﬁmzsd : ﬁrﬁa’rﬂa@ O 1-2 wildcards: B pararm - mmmm 0 1-2 wildcards
(a) java.io (b) java.lang
Heuristic 1 s 5
20% 5% Heuristic 1
Bytselzde 15% Bytecode 20% -
~ 10% sizz 15%
reduction reduction 10% |
%) 5% ol (%) 5%
0% 0% -
Connector PushRegistry Menager
javax nricroedition.io Javaxmicroedtion.meda
O perarreterized B ron-pararreterized 8 peraneterized B non-pararreterized
0 1-2 wildcards 0O 1-3 wildcards 0 1-2 wildcards 0 1-3 wildcards
B 1-4 wildcards M 14 wildcards
(c) javax.microedition.io (d) javax.microedition.media
Heuristic 1
25%
Bytecode 20%
Heuistic 1 sizz 15%
30% reduction 10%
Bytecode (%) 5%
sz 20% o%
= WEHTI i
0% Javax nricroedition.pki
MDletProxy
Javaxnx:roedhmmcbt O pararreterized W non-paraneterized
B parameterized B ron-paraneterized 0 1-2 wildcards 0 1-3 wildcards
0 1-2 wildcards 0 1-3 wildcards =
W 1-4 wildcards B 14 wildcards

(e) javax.microedition.midlet

Fig. 12. Experimental results
Heuristic 2
45%
40%
3B% "
Bytecode 0%
size 25% ,
recuction 20%
(%) 15% [|
Ll
;f:@ 4 425‘ & .
S é’%’f f&
a‘é f
o
& o
@ parameterized ron-parareterized 0 1-2 wildcards
0 1-3 wildcards I 14 wildcards
(a) java.io
Heuristic 2
30%
Bytecode
siz 20%
reduction 4go, |
(%)
0%
Connector PushRegistry
Jjavaxmicroedition.io
O parareterizzd B non-parameterized
0 1-2 wildcards O 1-3 wildcards
W 14 wildcards
(c) javax.microedition.io
Heuristic 2
30%
Bytecode
siz 20%
reduction 1o,
(9
0%
MDiet MDietProxy
Jjavax microedition.midet
O perarreterized H non-pararreterized
0 1-2 wildcards 0 1-3 wildcards
8 1-4 wildcards

Fig. 13. Experimental results - per MIDP class - from the application of the second heurigjG,im, Pron—param, P1—2w, P1—3w and P|_4s,.

(e) javax.microedition.midlet

(f) javax.microedition.pki

- per MIDP class - from the application of the first heurisfdRam, Pron—param: P1—2w, P1—3w and P|_ 4.

Heuristic 2
40%
3B5%
redction g
9 10%
5% +
%] nm m
3 ¢
G I E LSS ST S S
& javalarg
v‘ﬁ ‘ O pararreterized B ron-parameterized 0 12 wildcards
0 1-3 wildcards ui4 wlldwds
(b) java.lang
Heuristic 2
30%
Bytecode
siz 20%
reduction 10% -
Yo
(%) 0% |
Manager
javax rricroeditionmeda
O paraneterizzd B nron-pararreterized
0 1-2 wildcards 0 1-3 wildcards
B 1-4 wildcards
(d) javax.microedition.media
Heuristic 2
25%
Bytecode 20%
sizz 15%
reduction 10% |
%) 5%
0%
CertificateBException
Jjavax microedition.pki
O paraneterizzd H non-pararreterizzd
0 1-2 wildcards 0 1-3 wildcards
W 1-4 wildcards

(f) javax.microedition.pki

Heuristic 1
60%

Heuistic 1
o 0%
percertageof 0%
bytecode 0% peroentage -20%
reduction 0% | of
incremert -20% 2 -40%
or -40% =tion
decremert inorement -60%
430% -

decremrent -80%

eff & éé’ 4& éf \?@ . -100% o
Wik s i

javalarng

| = percertage of bytecode size redustionincrenert/decrenert —— percertage of time incremert

-pamdmeomegmmmimmmm —— percertage of time increrrert

(a) java.io (b) java.lang
istic 1 e
o Heuristic D% i Heuristic 1 -
0% 1 30% percertage percertagect 2% . 30% “gu
o 0% ~ ° orme byecode 4% 25% incement
reduction T 28% nerement reduction 6% 20% o
-30% for rorenert computing
ircrement 1 26% compaig L 8% 15% 7
or -A40% ~ ad decrarert | -10% 10% combining
50% T 24% cambining 12% 5% petiems
0% - | ooy PR _14% I 0%
Connector PushRegistry Mareger
java.ricroedition.io Jjava.nicroeditionmeda
B percentage of bytecode size reduction increrrent/decrerrent| BN percentage of bytecode size reduction incremrent/decrerrent
—— percentage of tire incremrent —— percentage of tie increrrent
(c) javax.microedition.io (d) javax.microedition.media
Heuristic 1 Heuristic 1
0% 60% 4% T T 40%
percertage 1 Refcerioe percertage
of 10% P 0% - orume parertzgocr 370 | 300 oftne
/ Ta% | for red g“j’ !
juction for
eremen. 20% 0% corputrg el 5 120% s
= +20% aw o o ard
-30% 1 109, conbirtg decremert o T 10% combirirg
© patters 1% patters
-40% 0% 0% 0%
MDiet MDletProxy CertificateException
Jjava.rricroedition. midet Jjava.ncroedition.pki
B percentage of bytecode size reduction increrrent/decrerrent| B percentage of bytecode size reduction increment/decrerment
—— percentage of tine increrrent —— percentage of tire increrrent
(e) javax.microedition.midlet (f) javax.microedition.pki

Fig. 14. The impact - per MIDP class - of increasing the maximum length of the patterns in the bytecode size reduction obtained and the time required for
discovering and combining the patterns (first heuristic).

Heuristic 2

percertage

¥ mm percertage of bytecod size redution increment/decremert._—— percertage of time incremert

(b) java.lang

Heuistic 2
13/{1 - 3 30:& 0% 25%
percentageof 77 A T 2% “otume ‘ 200 PITRGe
byecode 20% L 209 increment percentageof _10% o et
reducion -30% -| for bytecode 1 qge imeremert
increment 0 [15% computing reduion 50, = =
o =
x i F10% _ad i 10% g
decrement -50% corrbining L
60% L 5% pattems. decremert -30% L 5% m"m
o] Fo% . — i
. o °
‘Cornector PushRegstry
. . oo Mereg
Jjava rcroeditionio java.rricroedition.media

B percentage of bytecode size reduction increrrent/cecrenrent |

B percentage of bytecode size reduction increrment/decrerrent|
—— percentage of time increnent

—— percentage of time increrrent

(c) javax.microedition.io (d) javax.microedition.media
Heuistic 2 . Heuristic 2 e
0% 400% 5 T o
+ 350%
-10% e 300% Pt percertageof 3% 0% e
Biecos I 25% ircremert
ok 2% e
ircrervert 20% corpuing
o 2% 5%
"% + 10% e?g;g
1% L 505
MDet MDietProxy e %
Jjava.rricroedition nidet CertificateException

javamicroedtion pk
B perosriage of bytecods size reduction increrent/decrerrent
—— peroertage of tirre ircrerrert

(e) javax.microedition.midlet (f) javax.microedition.pki

B percentage of bytecode size reduction incremrent/decrerent
—— percentage of tire increnent

Fig. 15. The impact - per MIDP class - of increasing the maximum length of the patterns in the bytecode size reduction obtained and the time required for
discovering and combining the patterns (second heuristic).

