Dear Maria I. Argyropoulou

Here are the electronic proofs of your article.

- You can submit your corrections online or by fax. Together with your proof corrections you must return the Copyright Transfer Statement to complete the proof process.
- Print out the proof. (If you do not already have Acrobat Reader, just download it from http://www.adobe.com.)
- Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations, are correctly shown.
- Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal’s style. Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
- For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- The cover sheets (including the Copyright Transfer Statement and the Offprint Order Form) can either be scanned and sent electronically or sent by fax.
- If we do not receive your corrections within 48 hours, we will send you a reminder.

Please note

Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not possible.

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL:

http://dx.doi.org/10.1007/s00330-006-0506-9

If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information go to: http://www.springerlink.com.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us if you would like to have these documents returned.

The printed version will follow in a forthcoming issue.
Fax to: +1-202-3155796

From: Raul Boloron for Springer
Re: European Radiology DOI 10.1007/s00330-006-0506-9
Non-arteritic anterior ischaemic optic neuropathy: evaluation of the brain and optic pathway by conventional MRI and magnetisation transfer imaging

Authors: Argyropoulou · Zikou · Tzovara · Nikas · Blekas · Margariti · Galatsanos · Asproudis

I. Permission to publish

Dear Raul Boloron for Springer

I have checked the proofs of my article and

☐ I have no corrections. The article is ready to be published without changes.
☐ I have a few corrections. I am enclosing the following pages:
☐ I have made many corrections. Enclosed is the complete article.

II. Offprint order

☐ Offprint order enclosed ☐ I do not wish to order offprints

Remarks:

Date / signature _______________________________________

III. Copyright Transfer Statement (sign only if not submitted previously)

The copyright to this article is transferred to Springer-Verlag (for U.S. government employees to the extent transferable) effective if and when the article is accepted for publication. The author warrants that his/her contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.

An author may self-archive an author-created version of his/her article on his/her own website and his/her institution’s repository, including his/her final version; however he/she may not use the publisher’s PDF version which is posted on www.springerlink.com. Furthermore, the author may only post his/her version provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer’s website. The link must be accompanied by the following text: “The original publication is available at www.springerlink.com.”

The author is requested to use the appropriate DOI for the article (go to the Linking Options in the article, then to OpenURL and use the link with the DOI). Articles disseminated via www.springerlink.com are indexed, abstracted and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia.

After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted by Springer.

Date / Author’s signature ______________________________________
Offprint Order Form

- To determine if your journal provides free offprints, please check the journal’s instructions to authors.
- If you do not return this order form, we assume that you do not wish to order offprints.
- If you order offprints after the issue has gone to press, costs are much higher. Therefore, we can supply offprints only in quantities of 300 or more after this time.
- For orders involving more than 500 copies, please ask the production editor for a quotation.

Please enter your order for:

Pages	1-4	1-4	5-8	5-8	9-12	9-12	13-16	13-16	17-20	17-20	21-24	21-24	25-28	25-28	29-32	29-32	
Copies	EUR	USD															
50	250.00	275.00	300.00	330.00	370.00	360.00	405.00	430.00	475.00	500.00	550.00	525.00	575.00	575.00	630.00	610.00	670.00
100	300.00	330.00	365.00	405.00	465.00	510.00	525.00	580.00	625.00	685.00	655.00	720.00	715.00	785.00	765.00	840.00	
200	400.00	440.00	525.00	575.00	645.00	710.00	740.00	815.00	860.00	945.00	925.00	1,015.00	1,005.00	1,105.00	1,105.00	1,190.00	
300	500.00	550.00	680.00	750.00	825.00	910.00	955.00	1,050.00	1,095.00	1,205.00	1,190.00	1,310.00	1,295.00	1,425.00	1,425.00	1,530.00	
400	610.00	670.00	855.00	940.00	1,025.00	1,130.00	1,195.00	1,315.00	1,360.00	1,495.00	1,485.00	1,635.00	1,615.00	1,775.00	1,775.00	1,915.00	
500	720.00	790.00	1,025.00	1,130.00	1,225.00	1,350.00	1,430.00	1,575.00	1,625.00	1,780.00	1,780.00	1,960.00	1,930.00	2,125.00	2,090.00	2,300.00	

Orders will only be processed if a credit card number has been provided. For German authors, payment by direct debit is also possible.

I wish to be charged in □ Euro □ USD

Please charge my credit card

□ Eurocard/Access/Mastercard
□ American Express
□ Visa/Barclaycard/Americard

Number (incl. check digits):

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Valid until: _ _ / _ _

Date / Signature: ________________

Send receipt to: □ Maria I. Argyropoulou
Department of Radiology, Medical School, University of Ioannina, 45110, Ioannina, Greece

Ship offprints to: □ Maria I. Argyropoulou
Department of Radiology, Medical School, University of Ioannina, 45110, Ioannina, Greece

Prices include surface mail postage and handling. Customers in EU countries who are not registered for VAT should add VAT at the rate applicable in their country.

VAT registration number (EU countries only):

For authors resident in Germany: payment by direct debit:
I authorize Springer to debit the amount owed from my bank account at the due time.

Account no.: _______________________

Bank code: _________________________

Bank: ______________________________

Date / Signature: ___________________
Metadata of the article that will be visualized in OnlineFirst

<table>
<thead>
<tr>
<th></th>
<th>Article Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Non-arteritic anterior ischaemic optic neuropathy: evaluation of the brain and optic pathway by conventional MRI and magnetisation transfer imaging</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Journal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>European Radiology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Corresponding Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Family Name</td>
</tr>
<tr>
<td>4</td>
<td>Particle</td>
</tr>
<tr>
<td>5</td>
<td>Given Name</td>
</tr>
<tr>
<td>6</td>
<td>Suffix</td>
</tr>
<tr>
<td>7</td>
<td>Organization</td>
</tr>
<tr>
<td>8</td>
<td>Division</td>
</tr>
<tr>
<td>9</td>
<td>Address</td>
</tr>
<tr>
<td>10</td>
<td>e-mail</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Argyropoulou</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maria I.</td>
</tr>
<tr>
<td>2</td>
<td>University of Ioannina</td>
</tr>
<tr>
<td>3</td>
<td>Department of Radiology, Medical School</td>
</tr>
<tr>
<td>4</td>
<td>Ioannina 45110, Greece</td>
</tr>
<tr>
<td>5</td>
<td>margyrop@cc.uoi.gr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Family Name</td>
</tr>
<tr>
<td>12</td>
<td>Particle</td>
</tr>
<tr>
<td>13</td>
<td>Given Name</td>
</tr>
<tr>
<td>14</td>
<td>Suffix</td>
</tr>
<tr>
<td>15</td>
<td>Organization</td>
</tr>
<tr>
<td>16</td>
<td>Division</td>
</tr>
<tr>
<td>17</td>
<td>Address</td>
</tr>
<tr>
<td>18</td>
<td>e-mail</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Zikou</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Anastasia K.</td>
</tr>
<tr>
<td>20</td>
<td>University of Ioannina</td>
</tr>
<tr>
<td>21</td>
<td>Department of Radiology, Medical School</td>
</tr>
<tr>
<td>22</td>
<td>Ioannina 45110, Greece</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Family Name</td>
</tr>
<tr>
<td>24</td>
<td>Particle</td>
</tr>
<tr>
<td>25</td>
<td>Given Name</td>
</tr>
<tr>
<td>26</td>
<td>Suffix</td>
</tr>
<tr>
<td>27</td>
<td>Organization</td>
</tr>
<tr>
<td>28</td>
<td>Division</td>
</tr>
<tr>
<td>29</td>
<td>Address</td>
</tr>
<tr>
<td>30</td>
<td>e-mail</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Tzovara</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Ioanna</td>
</tr>
<tr>
<td>32</td>
<td>University of Ioannina</td>
</tr>
<tr>
<td>33</td>
<td>Department of Radiology, Medical School</td>
</tr>
<tr>
<td>34</td>
<td>Ioannina 45110, Greece</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Family Name</td>
</tr>
<tr>
<td>36</td>
<td>Particle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Nikas</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Alexios</td>
</tr>
<tr>
<td>38</td>
<td>University of Ioannina</td>
</tr>
<tr>
<td>39</td>
<td>Ophthalmologic Clinic, Medical School</td>
</tr>
<tr>
<td>40</td>
<td>Ioannina, Greece</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Family Name</td>
</tr>
<tr>
<td>42</td>
<td>Particle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Blekas</th>
</tr>
</thead>
</table>

The purpose of the study was to examine the brain and the visual pathway of patients with non-arteritic anterior ischaemic optic neuropathy (NAION) by using conventional MRI (cMRI) and volumetric magnetisation transfer imaging (MTI). Thirty NAION patients, aged 67.5 ± 8.14 years, and 28 age- and gender-matched controls were studied. MTI was used to measure the magnetisation transfer ratio (MTR) of the chiasm and for MTR histograms of the brain. The presence of areas of white matter hyperintensity (WMH) was evaluated on fluid-attenuated inversion recovery (FLAIR) images. Area of the optic nerves (ONs) and volume of the chiasm were assessed, as were coronal short-tau inversion recovery (STIR) and MTI images, respectively. More areas of WMH were
observed in patients (total 419; mean 14.4; SD 19) than in controls (total 127; mean 4.7; SD 5.7), $P < 0.001$. Area (in square millimetres) of the affected ONs, volume (in cubic millimetres) and MTR (in percent) of the chiasm (10.7 ± 4.6), (75.8 ± 20.2), (56.4 ± 6.5), respectively, were lower in patients than in controls (13.6 ± 4.3), (158.2 ± 75.3) (62.1 ± 6.2), respectively, $P < 0.05$. Mean MTR of brain histograms was lower in patients (53.0 ± 8.0) than in controls (58.0 ± 5.6), $P < 0.05$. NAION is characterised by decreased ON and chiasmatic size. The low MTR of the chiasm and brain associated with increased areas of WMH may be suggestive of demyelination and axonal damage due to generalised cerebral vascular disease.

Keywords
- Magnetic resonance imaging
- Non-arteritic anterior ischaemic optic neuropathy
- Visual pathway
- Magnetisation transfer ratio

Foot note

information
Non-arteritic anterior ischaemic optic neuropathy: evaluation of the brain and optic pathway by conventional MRI and magnetisation transfer imaging

Abstract The purpose of the study was to examine the brain and the visual pathway of patients with non-arteritic anterior ischaemic optic neuropathy (NAION) by using conventional MRI (cMRI) and volumetric magnetisation transfer imaging (MTI). Thirty NAION patients, aged 67.5±8.14 years, and 28 age- and gender-matched controls were studied. MTI was used to measure the magnetisation transfer ratio (MTR) of the chiasm and for MTR histograms of the brain. The presence of areas of white matter hyperintensity (WMH) was evaluated on fluid-attenuated inversion recovery (FLAIR) images. Area of the optic nerves (ONs) and volume of the chiasm were assessed, as were coronal short-tau inversion recovery (STIR) and MTI images, respectively. More areas of WMH were observed in patients (total 419; mean 14.4; SD 19) than in controls (total 127; mean 4.7; SD 5.7), P<0.001. Area (in square millimetres) of the affected ONs, volume (in cubic millimetres) and MTR (in percent) of the chiasm (10.7±4.6), (75.8±20.2), (56.4±6.5), respectively, were lower in patients than in controls (13.6±4.3), (158.2±75.3) (62.1±6.2), respectively, P<0.05. Mean MTR of brain histograms was lower in patients (53.0±8.0) than in controls (58.0±5.6), P<0.05. NAION is characterised by decreased ON and chiasmatic size. The low MTR of the chiasm and brain associated with increased areas of WMH may be suggestive of demyelination and axonal damage due to generalised cerebral vascular disease.

Keywords Magnetic resonance imaging · Non-arteritic anterior ischaemic optic neuropathy · Visual pathway · Magnetisation transfer ratio

Introduction

Non-arteritic anterior ischaemic optic neuropathy (NAION) refers to the development of an idiopathic ischaemic process in the anterior portion of the optic nerve [1, 2]. NAION typically presents in patients older than 50 years, as a sudden onset of unilateral painless visual loss [1, 2]. Sequential involvement of the second eye has been reported in 15% of cases, and simultaneous bilateral NAION may occur after surgical procedures (e.g. cardiopulmonary bypass) [2]. Painful onset (ocular pain or headache) has been reported in 10% of NAION patients [2]. A risk factor that has been consistently associated with NAION is a crowded optic disk, characterised by a small cup-to-disk ratio or absence of the cup [1–3]. Other risk factors are conditions leading to hypovolaemia and systemic hypotension [2, 4]. The pathogenesis of NAION is unknown, but most histopathological studies support the concept of vasculopathic occlusion in the territory of the short posterior ciliary arteries, and an increased incidence of cerebrovascular disease has been reported in these patients [5, 6]. There are few MRI studies, with small series evaluating the brain of NAION patients for areas of white matter hyperintensity (WMH) [7, 8]. Areas of WMH are increasingly common with advancing age; nevertheless, a significantly higher number of such areas has been reported in diseases predisposing to oblitative microangiopathy [9, 10]. Magnetisation transfer imaging (MTI), has been
proven to be superior to conventional MRI (cMRI) in
detecting and quantifying subtle central nervous system
(CNS) changes, especially those affecting white matter
[11–14]. Magnetisation transfer ratio (MTR) quantifies the
phenomenon of magnetisation transfer, and reduction of
this parameter is thought to represent axonal and myelin
loss in multiple sclerosis and periventricular leukomalacia
[12–14]. Serial MTI has been used for the evaluation of
acute optic neuritis, and changes in the MTR, consistent
with demyelination and remyelination processes, have
been found [15]. Histopathological data from NAION
patients and experimentally induced anterior optic nerve
ischaemia have demonstrated, throughout the optic nerve,
apoptosis of the retinal ganglion cells and oligodendrocytes
associated with axonal demyelination and Wallerian
degeneration [5, 16]. To the best of our knowledge there
are no studies evaluating by MTI the optic pathway and the
brain of patients with NAION.

The purpose of the study was to assess the degree of
optic nerve damage in NAION and to investigate the
presence of macroscopic and microscopic abnormalities of
the brain and chiasm in this disease, by using cMRI and
MTI.

Patients and methods

Thirty patients with NAION and 28 age- and gender-
matched controls were enrolled in the study. There were 16
women and 14 men, aged from 51 years to 86 years (mean
age 67.5 years; SD 8.14 years). The disease duration was 1–
123 months (mean 25.21 months; SD 26.67 months). Six of
the 30 patients had NAION bilaterally. Patients were
excluded from the study if they had a history of (1)
autoimmune vasculitis, (2) multiple sclerosis (3) herpes
virus infection and (4) temporal vasculitis. Each patient
underwent a complete ophthalmological examination. Clinical
disease variables included: (1) visual acuity, (2)
fundoscopic appearance, (3) visual fields and (4) presen-
tence of uncontrolled hypertension (blood pressure >
140/90 mmHg), nocturnal hypotension or diabetes mellitus.

All MR examinations were performed on the same 1.5 T
MR unit (Gyroscan ACS NT; Philips Medical Systems,
Best, The Netherlands) using a head coil, a field of view of
24 cm and an acquisition matrix of 256×256 pixels.
Subjects were asked to close their eyes and avoid any
deliberate eye movements during image acquisition.

Sequences were: axial and coronal short -tau inversion
recovery (STIR) (TR/2,650 ms, TE/90 ms), slice thickness
3 mm, intersection gap 0.3 mm, three excitations; axial
turbo-spin echo, T2-weighted (TR/3,000 ms, TE/90 ms),
slice thickness 6 mm, intersection gap 0.6 mm; and sagittal
and axial fluid-attenuated inversion recovery (FLAIR)
(TR/6,300 ms, TE/90 ms, TI/2,150 ms), slice thickness
5 mm, intersection gap 0.5 mm. To study the magnetisation
transfer (MT) phenomenon, we performed a three-dimen-
sional gradient-echo sequence (TR/32 ms, TE/8 ms, flip
angle 6°), slice thickness 2 mm, interslice gap 0 mm,
without and with the application of an MT binomial pre-
pulse (1-2-1) applied on resonance. The MT sequences
were performed in the axial plane (parallel to the
intercommissural line) and in the coronal plane (perpendic-
ular to the optic chiasm). Two radiologists (A.K.Z. and I.
T.), who were unaware of the clinical status of the patients
and the controls, evaluated all MR examinations in concert.
The presence and the number of areas of white matter
hyperintensity (WMH) were evaluated on axial FLAIR
images. The areas of WMH were counted, and the longest
diameter was measured (Fig. 1). Area and volume of the
retrobulbar optic nerve and of the optic chiasm were
measured on STIR and MTI images, respectively, using the
ANALYZE 4.0 software (Biomedical Imaging Resource,
Mayo Clinic, Minn., USA). Areas were outlined with a
method previously described by using the “Auto Trace"
function [17]. The measured areas were multiplied by the
slice thickness to determine the volume of the outlined
structures. This process was repeated for all slices, and the
volume of the optic chiasm was computed by summation of
the corresponding volumes of all slices.

MTR of the chiasm was evaluated by the region-of-
interest (ROI) method. Care was taken to avoid the partial
volume effect of cerebrospinal fluid (CSF) when we were
defining the ROIs. The MTR was calculated as: MTR=

Fig. 1 A 56-year-old female patient with non-arteritic anterior
ischaemic optic neuropathy: FLAIR (TR 6,300/TE 120/TI 2,150 ms)
axial MR image of the brain shows areas of white matter
hyperintensity (white arrows)
UNCORRECTED PROOF

148 \((\text{Si}_o - \text{Si}_m)/\text{Si}_o \times 100\) \(\%\), where \(\text{Si}_m\) refers to the signal intensity from an image acquired with an MT prepulse and \(\text{Si}_o\) to the signal intensity from the image acquired without an MT prepulse.

Segmentation was performed with a home-made software package developed by the IPAN group (http://www.cs.uoi.gr/~ipan), as follows: image data [in digital imaging and communications in medicine (DICOM) format] were accessed and read and a (binary) mask was created. MTR images were obtained by calculating the MTR for every voxel. These MTR images were segmented automatically by a method previously described [18]. We observed that no separate cluster for WMH could be obtained, and the number of clusters that best captured the spatial distribution of intracranial brain tissue (IBT), and CSF was 2. The cluster with the high level of pixel intensity values represented CSF, and the cluster with the low level of pixel intensity values represented IBT. MTR histograms were created. To allow comparison of histograms resulting from heads with different intracranial volumes, we corrected the MTR histograms by dividing the individual bins by the total number of intracranial voxels. From MTR histograms we derived the mean MTR value (mMTR); the peak height (H); the kurtosis which indicated the peakness of the histogram; the skewness which indicated the shouldering of the histogram.

Statistical analysis

Statistical analysis was performed with SPSS base 14 for Windows. The normality of distribution of the parameters was assessed by the Kolmogorov–Smirnov test. The Mann–Whitney U test was used to study differences in the number of areas of WMH between patients and controls. The unpaired two-tailed Student’s t-test was used to study differences in the area of the optic nerve, the volume and MTR of the chiasm, brain histogram parameters and visual acuity or visual field abnormalities. None of the patients had diabetes mellitus or uncontrolled hypertension. Sixteen patients were treated for arterial hypertension by angiotensin-converting enzyme.

Results

A significantly higher number of WMH areas was observed in patients (total 419; mean 14.4; SD 19) than in controls (total 127; mean 4.7; SD 5.7), \(P<0.001\). There were no confluent or patchy areas of WMH, and their longest diameter was <2 mm. mMTR of the brain histograms was significantly lower in patients (53.0±8.0) than in controls (58.2±5.6), \(P<0.05\) (Fig. 2). Area (in square millimetres) of the affected ON and volume (in cubic millimetres) and MTR (in percent) of the chiasm (10.7±4.6), (75.8±20.2), (56.4±6.5), respectively, were significantly lower in patients than in controls (13.6±4.3), (158.2±75.3) (62.1±6.2), respectively, \(P<0.05\) (Fig. 3). Area of the unaffected optic nerve was not significantly different in patients (12.8±4.4) compared with controls (13.6±4.3) (Fig. 4). There was no correlation between area of the optic nerve, volume and MTR of the chiasm, brain histogram parameters and visual acuity or visual field abnormalities.

Fig. 2 Magnetisation transfer histogram (MTR) after correction for intracranial volume (ICV) in patients and controls. The scale of the y-axis is arbitrary and reflects the corrected (corr.) number of voxels significantly lower in patients than in controls (13.6±4.3), (158.2±75.3) (62.1±6.2), respectively, \(P<0.05\) (Fig. 3).

Fig. 3 A 73-year-old male patient with non-arteritic anterior ischaemic optic neuropathy: STIR (TR/2,650 ms, TE/90 ms) coronal brain MR image shows atrophy of the left optic nerve (white arrow).
Discussion

The retina and the optic nerve are sensitive to ischaemia, and NAION is presumed to result from circulatory insufficiency within the territory of the short posterior ciliary arteries, leading to disruption of the normal nerve architecture and death of retinal ganglion cells (RGCs) [2, 5, 19]. Retrobulbar haemodynamics of NAION patients have been studied with colour Doppler, and decreased peak systolic velocities have been demonstrated in the territory of the central retinal artery and the nasal short posterior ciliary arteries [20]. Furthermore, studies with laser Doppler velocimetry have shown decreased velocities in the capillaries of the optic nerve head [21]. The sequence of events and the mechanisms responsible for anterior ischaemic optic neuropathy (AION) have been experimentally studied by using a c-fos transgenic mouse model [16]. c-Fos is a stress-response gene that is immediately expressed after ischaemic cellular stress [22]. Experimentally induced AION is characterised by early expression of c-fos followed by apoptotic cell death of the RGCs and the oligodendrocytes throughout the ON up to the chiasm [16].

Another important finding of AION is the significant axonal loss in the ON. Axonal loss is thought to result from different mechanisms, such as direct effect of ischaemia, Wallerian degeneration due to RGC death and demyelination due to extensive oligodendrocyte death. According to these experimental data the decreased size of the affected ON and chiasm observed in the NAION patients of the present study may be explained by extensive axonal and oligodendrocyte loss. Moreover, axonal loss and demyelination may be the histopathological substrate explaining the decreased MTR of the optic chiasm. MTI enables semi-quantitative tissue characterisation (MTR) using the phenomenon of saturation transfer between immobile macromolecular protons and the mobile water protons. Macromolecular protons are found in proteins and cellular membranes. The MTR is determined by the field strength and the scanning parameters, but principally by the concentration of macromolecules and the efficacy of interaction between the bound and free pool of protons [23, 24]. MT contrast and MTR of the brain are mainly related to the presence of myelin [11, 12]. The optic nerve and chiasm consist mainly of myelinated fibres derived from the ganglionic cells of the retina [19, 25]. Myelin sheath, which is essential for axonal survival, derives from oligodendrocytes [26]. Because each oligodendrocyte myelines many axons, death of oligodendrocytes may lead to demyelination and loss of a large number of axons throughout the ON up to the chiasm [26]. RGC death, taking place in the context of NAION, may further contribute to axonal loss through a process of Wallerian degeneration.

Increased numbers of WMH areas have been detected in brain MRI in two previous studies of NAION patients [7, 8]. Cerebral white matter lesions are the most commonly known brain changes associated with aging. Indeed, Areas of WMH have been reported to be frequent in subjects older than 50 years and seem to reflect zones of atrophic perivascular demyelination [9, 27]. Areas of non-confluent WMH are not progressive. In contrast, patchy or confluent WMH areas have been demonstrated to be associated with hypertension and older age. In the present study none of the subjects had uncontrolled hypertension and WMH areas were non-confluent in both patients and controls. Nevertheless, the higher number of WMH areas in patients than in controls may suggest that a mechanism (e.g. microangiopathy) other than aging is responsible for WMH in NAION. Microangiopathy might also be responsible for the lower mean MTR of the brain histograms in patients than in controls. Small but significant age-related reductions of the corpus callosum and frontal white matter MTR have been previously reported to be associated with normal aging [28]. Moreover, significant differences have been reported in the brain histogram parameters, such as mean, median, and peak height between younger and older subjects [29]. All these changes are thought to be associated with neuronal shrinkage, demyelination and axonal loss, which,
according to neuropathological studies, take place with advancing age [30]. More pronounced neuronal shrinkage, demyelination and axonal loss might account for the lower mMTR of the brain histograms in NAION patients. Previous studies have demonstrated that the MTR of WMH in elderly people is lower than that of normal white matter but higher than that of demyelinating lesions [31]. In this study, although segmentation did not identify any separate cluster for WMH, their larger number in patients might have influenced the mMTR of the brain histograms.

In the present study a lack of correlation was found between cMRI and MTI measurements and clinical parameters such as visual acuity. This is probably because normal vision can remain, despite the loss of 40% of the neural substrate. Visual acuity of 6/15 seems possible with 10% remaining of the neural substrate, and 6/60 with only 1%. The recovery and/or retention of function, despite continued axonal dysfunction or loss within the optic nerve, may also be a consequence of plasticity and functional remodelling within the visual system and higher centres [32].

To conclude, in NAION patients, cMRI and MTI reveal optic nerve and chiasmatic atrophy associated with increased numbers of areas of WMH and low MTR of the chiasm and the brain. The association of these findings may suggest hypoperfusion due to microangiopathy as the underlying cause of NAION.

References

Dear Author,

During the preparation of your manuscript for typesetting, some questions have arisen. These are listed below. Please check your typeset proof carefully and mark any corrections in the margin of the proof or compile them as a separate list.

Queries and/or remarks

<table>
<thead>
<tr>
<th>Location in Article</th>
<th>Query / remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figures:</td>
<td>Four figures and four legends are included in the file, but only three figures (Figs. 1, 2 and 3) are cited. Please cite Fig. 4. Please note, the figures must be cited in numerical order, so the citation for Fig. 4 would have to be after the citation for Fig. 3.</td>
</tr>
</tbody>
</table>
| References: | If the following have now been published, please provide volume and page numbers:

Thank you for your assistance.