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Abstract

A neural network classifier is presented, which is based
on geometrical fuzzy sets. Starting from the construction of
the Voronoi diagram of the training patterns, an aggregation
of Voronoi regions is performed leading to the identification
of larger regions belonging exclusively to one of the pattern
classes. The resulting scheme is a constructive algorithm
that defines fuzzy clusters of patterns. Based on observations
concerning the grade of membership of the training patterns
to the created regions, decision probabilities are computed
through which the final classification is performed. Exper-
imental results concerning several classification problems
indicate that the proposed method achieves high classifica-
tion rates and compares favorably with other well-known
approaches.

1. Introduction

Computational intelligence embraces many approaches
to pattern recognition that result from the combination of
techniques belonging to different fields. In this sense, sev-
eral models combining fuzzy systems and neural networks
have been developed that build efficient pattern classifiers
exploiting the particular advantages offered by each tech-
nique in a synergistic manner [3, 7, 16, 17]. Most of these
methods use the training set to produce geometrical hyper-
boxes and then compute suitable membership functions in
order to specify the desicion boundaries of pattern classes.

A popular approach to the partitioning of the input space
given a set of points is based on the construction of Voronoi
diagrams. A Voronoi diagram, also known as Dirichlet tes-
selation or Thiessen polygon, is a partition of the pattern
space into convex regions. Each of these regions contains
points with minimum distance from a specific point (the re-
gion generator) compared to their distance from the other

points used for the construction of the diagram. Voronoi di-
agrams have been largely used in pattern recognition prob-
lems because they provide a topological division of the pat-
tern space based on the nearest neighbor property. This
property has been widely exploited in pattern recognition
approaches.

The proposed fuzzy neural approach creates fuzzy sets
from the Voronoi diagram of the training patterns and builds
class boundaries in a statistical manner. Given a set of points
in the feature space, the resulting Voronoi diagram can be
viewed as a puzzle and the Voronoi regions as the pieces
of this puzzle. We can assemble neighboring pieces ac-
cording to their position and class, in order to appropriately
specify the boundaries between classes. This formulation
leads to a reduced Voronoi diagram where the new broader
regions contain more than one adjoining Voronoi regions
having the same class label. The resulting aggregate regions
are no longer convex and may be considered as fuzzy sets
by defining membership functions indicating the degree of
belongingness of points of the input space to each region.
Each fuzzy set is characterized by a set of hyperplanes (sep-
arating the corresponding region from other regions) and a
class label.

After constructing the fuzzy sets, decision probabilities
are computed based on the density of membership values
for each region and the respective performance in the se-
lection of the correct region. Through discretization of the
membership axis, a probabilistic function is created that es-
tablishes a correspondence between membership values in a
specific region and the probability of correct classification.
Mapping the above procedure into a neural architecture we
are able to obtain an algorithm for the design of fuzzy neural
networks for pattern classification.

Voronoi diagrams, with reference to their use in con-
structing neural network architectures, are briefly discussed
in Section 2. Section 3 deals with the construction of the
reduced Voronoi diagram, while Section 4 concerns the
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Figure 1. Classical Voronoi diagram

computation of decision probabilities. The architecture of
the proposed fuzzy neural classifier is described in Section
5. Experimental results of the application of the proposed
scheme and comparisons with other established classifica-
tion methods are provided in Section 6. Finally, Section 7
contains conclusions and directions for further research.

2. Voronoi Diagrams and Neural Networks

The Voronoi diagram or Dirichlet tesselation is a funda-
mental concept in computational geometry with many ap-
plications. Voronoi diagrams reveal proximity information
about a set of given points in a very explicit and computa-
tionally useful manner. This makes them applicable to many
diverse areas, among which are biology, visual perception
and crystallography [1].

Let D(a; b) denote the Euclidean distance between two
points a and b in <d. Given a finite set A = fa1; : : : ; aNg
of points in <d, a Voronoi region Vn (n = 1; : : : ; N) is
defined as the set of points:Vn = fx 2 <d j D(x; an) � D(x; ak) 8k 6= ng (1)

Each Voronoi region Vn contains those points of <d for
which the pointan is the closest. The partition of<d implied
by the Voronoi regions V1; : : : ; VN is the Voronoi diagram
for the set A. Each element of A is called a generator of
the Voronoi diagram. A common boundary of two Voronoi
regions is the perpendicular bisector (hyperplane) of the
segment joining the pair of respective generators. Thus,
each Voronoi region is defined as the interesection of a finite
number of halfspaces determined by the hyperplanes. A
point at which boundaries of three or more Voronoi regions
meet is called a Voronoi point. An example of a Voronoi
diagram in 2-dimensional space is given in Fig. 1.

Several algorithms for the construction of Voronoi dia-
grams have been proposed. Classical Voronoi diagrams can
be constructed by obtaining the convex hull of the given set

of points [14, 1, 2] or by incremental insertion of the Voronoi
regions [9, 6, 10].

The application of Voronoi diagrams to the design of
neural networks has been considered recently. In [13] two
neural network construction algorithms for pattern classi-
fication are proposed that rely directly or indirectly on the
Voronoi tesselation of the input space produced by the given
training patterns. A systematic procedure for designing
neural networks following the same principle is proposed in
[5, 8]. These methods specify the architecture of the neural
model based on the construction of corresponding Voronoi
diagrams for the training data. They also describe ways to
specify the values of the connection weights and thresholds
of each node at all layers of the neural architecture. The
neural network design is robust and adaptable in order to
accomodate new training patterns. It must be noted that
these approaches essentially suggest ways to implement a
Voronoi diagram using a neural architecture and the classi-
fication behaviour of the resulting networks is equivalent to
that of nearest neighbor techniques.

In [4] an analogous construction approach was presented
which incorporated the idea of fuzzy classification by defin-
ing fuzzy decision boundaries for the regions of the tessela-
tion. This scheme is based on an approximate incremental
construction of Voronoi diagrams and allows on-line super-
vised learning using appropriately defined fuzzy member-
ship functions.

3. Reducing the Voronoi regions

Consider a classification problem with d continuous at-
tributes, such that N d-dimensional patterns belong to K
distinct classes. By constructing the Voronoi diagram of
these generators the d-dimensional feature space is divided
into N regions reflecting the proximity property.

In pattern recognition we are mostly interested in dividing
the input space into a number of regions (clusters) charac-
terized by the same class label. In general, the number of
clusters is much smaller than the number of patterns. The
Voronoi diagram divides the space into a number of com-
partments as many as the input patterns, which is not very
convenient. Nevertheless, if we managed to join Voronoi
regions that are of the same class, we would only consider
clusters of patterns. This can be achieved by removing all
those hyperplanes (boundaries) of the Voronoi regions that
bisect pairs of patterns (generators) belonging to the same
class. In this way, the feature space is divided into regions
larger than Voronoi regions, where each of these regions
is associated with exactly one class label. We shall refer
to these major regions as class regions, as they come from
the union of neighboring Voronoi regions whose generators
correspond to the same class. Fig. 2 illustrates such a con-
struction on the 2-dimensional space for a set of 10 input
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points belonging to 2 classes (dotted lines are present in a
classical Voronoi diagram).

More specifically, we can define a class region as the
union of a set of Voronoi regions, such that each region is
adjoining (has common boundaries) to at least one other
region of the set and their generators belong to the same
class. Each class region is characterized by a set of equations
that describe the hyperplanes defining class borders. The
number of new regions may be equal to or greater than the
numberK of classes. We only keep large class regions, since
small regions containing few generators may be considered
as outliers or black holes inside large clusters and therefore
they can be ignored.

In fact, the Voronoi diagram can be treated as an undi-
rected graph, where vertices represent generators (or equiv-
alently regions) and edges join vertices corresponding to ad-
joining Voronoi regions. This graph configuration is equiv-
alent to the construction known as Delaunay triangulation.
In order to form class regions we start with an arbitrary
Voronoi region and mark it as belonging to the first class
region. Then we perform a search of the graph structure.
The information available from the original construction of
the Voronoi diagram is sufficient for performing the search.
(Depth-first or breadth-first search could be used.) All re-
gions connected to the starting region and bearing the same
class label are marked as belonging to the same class region.
Neighboring regions bearing a different class label are left
unmarked to be included in some subsequent aggregation.
A similar procedure is followed from any region marked
during the search. When the search is exhausted, i.e. no
more Voronoi regions can be included in the current class
region, a new unmarked region is selected and the procedure
is repeated to construct a new class region, until there are no
more unmarked Voronoi regions.

In order to encourage the formation of nearly-convex
class regions we impose the following restriction during the
above aggregation phase. The search can only proceed from

the current Voronoi region if the number of neighboring re-
gions bearing the same class label as the current one exceeds
a given threshold value �. If this criterion is not satisfied,
the remaining neighboring regions of the current one are left
unmarked (independently of their class label) and the search
is continued from some other region. The choice of the
value of � is related to the average number of boundaries of
a Voronoi region which in turn depends upon the dimension
of the feature space. In our implementation, appropriate
values of the parameter � were determined experimentally
for the different classification problems considered.

After construction of the reduced Voronoi diagram, it is
possible to exploit proximity information for the purposes
of classification. In order to formulate the problem as a
fuzzy classification problem, we must give an estimation of
how much a new pattern belongs to each class region, thus
considering class regions as fuzzy sets. When a new input
pattern a = (a1; : : : ; ad) is presented, an appropriate fuzzy
membership value (in [0; 1]) is computed. The membership
function �i(a) for the ith class region must measure the
degree to which the given pattern falls inside or outside the
region. This can be considered as a measurement of how far
the pattern is situated from all the hyperplanes which define
the boundaries of the class region. When the pattern a is in
the interior of the region and far from the hyperplanes then
the value of �i(a) is large, which means that the point is
close to some generator having participated to the formation
of that class region. When the pattern falls outside the
region then the membership value approaches zero, which
means that the point is close to some generator belonging to
a different class region.

A function respecting the above guidelines is the average
value of the exponential differences between the vertical
distances xh(a) of the input pattern from all hyperplanesh supporting the class region i and the distances lh of the
respective generators from each hyperplane h. (Clearly,
within each class region, there is a generator associated with
each supporting hyperplane of the region.) It must be noted
that the information concerning the distances lh is already
known from the original Voronoi diagram, and is stored for
each hyperplane h. The vertical distance xh(a) of a patterna = (a1; : : : ; ad) from a hyperplane h (described by the
equation �h1x1 + : : :+ �hdxd + �h;d+1 = 0) is computed
as follows: xh(a) = jPdj=1 �hjaj + �h;d+1jqPdj=1 �2hj (2)

Each hyperplane h divides the pattern space into two
halfspaces. Consider the quantities uih(a) which take the
values 1 or -1 depending on whether or not the generator
corresponding to hyperplane h and belonging to region i is
situated in the same halfspace (defined by h) as the patterna.
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Figure 3. Fuzzy decision boundaries

The membership function of class region i can be com-
puted as follows:�i(a) = 12jHij Xh2Himhi (a) + 12 (3)

where Hi is the set of hyperplanes defining class region i
(having cardinality jHij) and mhi has the following form :mhi (a) = 8>>><>>>: uih(a) exp(�jxh(a)�lhj�1 ) if xh(a) � lhuih(a) exp(�jxh(a)�lhj�2 ) if xh(a) > lh

and uih(a) = 1�1 otherwise
(4)

A graphical representation of Eq. 4 is shown in Fig.
3, which represents mhi as a function of the quantityuih(a)xh(a). Based on this quantity, we divide the space
into three zones with respect to the hyperplane h, each zone
being characterized by different properties. In the first zone
the pattern is close to the hyperplane (xh(a) � lh) inde-
pendently of the side of the region border on which it is
situated. Starting from the value �1 (when xh(a) = lh
and uih(a) = �1), the value of mhi increases with a steep
slope until it reaches the highest value 1 (when xh(a) = lh
and uih(a) = 1). The second zone is related to the case
where the pattern and the generator are on the same halfs-
pace but the pattern is far from the hyperplane (xh(a) > lh
and uih(a) = 1). Although the pattern lies on the good side
of the hyperplane with respect to the class region, we must
be cautious to avoid circumstances where the pattern is at
long distance from the hyperplane and does not belong to
the class region. For this reason the value of mhi decreases
to zero (but with a smoother slope) as the vertical distancexh(a) from the hyperplane grows. From the above specifi-
cation it is clear that the value of �1 in the first zone must
be higher than the value of �2 in the second zone to achieve
the desired slope. The third zone represents the case where
the pattern is situated far outside the region of interest and
far from the hyperplane h (xh(a) > lh and uih(a) = �1).
In this case, mhi takes its lowest value -1.

It must be noted here that mhi (a) does not include pre-
cise information about whether or not the pattern is situated
inside the class region. Even when the pattern and the gener-
ator are in the same halfspace with respect to the hyperplane,
we are not aware of what happens with other hyperplanes as
we individually examine each hyperplane and not the whole
region. After computing all the mhi (a) values, we obtain a
global estimation of the degree of belongingness of patterna to the region i through the value of the membership �i(a).

The above membership function takes into account use-
ful proximity information provided by the characteristics
of the original Voronoi construction, such as the equations
describing hyperplanes, the position of generators relative
to hyperplanes and the vertical distances lh. In addition,
it exploits information related to class regions, such as the
hyperplanes defining the boundaries of each class region.

4. Computing Decision Probabilities

In the previous sections we have described the first phase
of the proposed approach to pattern classification that incor-
porates the construction of the Voronoi diagram correspond-
ing to the training patterns, the integration of Voronoi regions
to a number of class regions and the definition of appropriate
membership functions. With this kind of preprocessing the
problem of selecting the correct class is transformed to the
problem of selecting the correct region. In this section we
describe how the membership values of the training patterns
are used to construct models providing decision probabil-
ities that a pattern with a given membership value can be
assigned to a specific region.

After having computed the membership values corre-
sponding to an input pattern we could perform the classifi-
cation procedure simply by selecting the class of the region
with the maximum membership value. This is what hap-
pens in most fuzzy approaches to pattern classification (e.g
in the fuzzy min-max network). Unfortunately, this decision
scheme does not seem to provide good classification results,
since some regions tend to constantly exhibit higher mem-
bership values compared to other regions. It seems more
effective to evaluate the membership of a given pattern to a
region by taking into account the distribution of membership
values of the training patterns to this region. This leads to
the construction of a probability model for each class region,
which provides useful information for the selection of the
appropriate region during classification.

The construction of the probability models is based on
the search for ranges of membership values that have more
chance to lead to the successful selection of a region. More
specifically, considering class region i, the interval [0; 1] of
membership values is divided into a numberLi of equal-size
cells. To each cell v (v = 1; : : : ; Li) we assign a probability
value pvi computed as the percentage of the training patterns
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belonging to region i that have their membership value in
the cell v. An example of the above histogram construction
is displayed in Fig. 4.

It should be observed that, after the membership values
of training patterns to each region have been computed, it
is possible to view the classification problem as mapping
from the space of membership vectors to the set of classes,c : (�1; : : : ; �R) ! f1; : : : ;Kg (where R is the number of
class regions and K is the number of classes). Such a map-
ping can be easily constructed using for example a multilayer
perceptron trained by the backpropagation algorithm or any
of its variants. Although this approach is intuitively more
appealing and exhibited excellent performance on training
sets, its performance on the test set was inferior (in all ex-
amined datasets) compared with the approach based on the
probability model.

5. Neural Network Implementation

In the previous sections we have shown how one can
construct fuzzy sets (corresponding to class regions) start-
ing from a Voronoi diagram, as well as how a model of
probabilities can be built for each fuzzy set using the dis-
tribution of membership values. The proposed construction
algorithm can be summarized into the following steps:

1. Construct the classical Voronoi diagram of a set of N
patternsA = fa1; : : : ; aNg, in a d-dimensional space.

2. Reduce the Voronoi diagram into a number of class
regions.

3. Discard small class regions and let R be the number of
the remaining large class regions.

4. For each pattern aj , j = 1; : : : ; N , compute the mem-
bership values �i(aj), i = 1; : : : ; R.

5. For each region i, i = 1; : : : ; R, categorize the mem-
bership values in a histogram using a number Li of
equal-size cells in [0; 1].

6. Compute selection probabilities pvi , i = 1; : : : ; R, v =1; : : : ; Li.

mhia1a2ad �1�K�i pvi
Hyperplanes HistogramInputs Classes

Cells
Class

Regions

Figure 5. Neural network architecture

In order to use the method for the classification of a new
pattern, first the membership values of the pattern to each
region i are computed. Then the correspondingprobabilitiespvi are determined (where v represents the cell containing the
membership value of the pattern) and the region iwith max-
imum pvi is selected. The class of this region is considered
as the final classification desicion.

The above desicion approach can be implemented by
means of a neural network architecture as illustrated in Fig.
5. The architecture consists of five layers and connections
exist only between successive layers. The first layer is the
input layer having as many nodes as the dimension of pat-
terns. The nodes in the second layer represent hyperplanes
that define class regions. For each class region i there arejHij nodes, one for each hyperplane supporting that class.
As a hyperplane separates two regions, there will generally
be two nodes referring to the same hyperplane (except for
hyperplanes supporting small regions that were discarded
during construction). Each second layer node computes the
value of the function mhi for an input pattern using Eq. 4.
The third layer contains as many nodes as the number R
of class regions. The output of each node i of this layer
provides the membership value �i of the pattern to the cor-
responding region as computed in Eq. 3. The connections
between nodes of the second and third layer assume binary
values 1 or 0 to associate regions with their supporting hy-
perplanes.

The fourth layer implements the membership histogram.
Each region i of the third layer is connected to Li nodes of
the fourth layer corresponding to the cells of the histogram.
Each such node v (v = 1; : : : ; Li) fires only in the case
where the �i value falls inside the corresponding cell and
provides the respective probability pvi , otherwise the output
of the node is zero. This representation allows an efficient
implementation of the histogram by means of simple nodes



yielding a fixed output on an on-off basis.
The fifth layer embodies one node for each of the K

classes. If region i has class label k then the set of Li nodes
of the fourth layer (representing the histogram of region i) is
connected to node k of the fourth layer. In other words, the
connections between nodes of the fourth and fifth layer take
binary values 1 or 0 to associate class regions (histogram
cells) with class labels. The output �k of each node k of
the last layer is taken equal to the maximum of the outputs
(probabilities pvi ) of the cell nodes connected to that node.
Finally, the class k with the maximum �k is the decision of
the fuzzy neural classification network.

When a new pattern a is applied to the network, the mem-
bership values �i(a) of the pattern to each class region i are
initially computed. The computation proceeds by deter-
mining the probabilities pvi corresponding to the respective
histogram cells. The decision of the network is the class of
the region with the maximum probability pvi , expressed by
the quantity �k. As is the case with other neural network
designs based on Voronoi diagram information [5, 8, 4], the
method has the ability to completely define the neural struc-
ture, namely the number of hidden layers and nodes of each
layer along with the connection values between nodes of
successive layers. The proposed neural architecture incor-
porates an additional layer with respect to other approaches
accounting for the computation of decision probabilities.

6. Experimental results

We have studied the proposed fuzzy neural network clas-
sifier on a variety of classification problems, by performing
experiments with known datasets, some of which are noisy
containing hard examples. In addition we have conducted
comparative experiments with many other well-studied clas-
sification techniques.

The first dataset we used to train and test our fuzzy neural
classifier was the Fisher’s Iris dataset. Iris data is a collec-
tion of 150 four-dimensional feature vectors in three separate
classes, 50 for each class. We considered a training set and
a test set of size 75, each of them containing 25 examples of
each of the three iris classes. We have also tried the James
Cook University Thyroid gland database. Thyroid database
contains a set of 215 feature vectors (belonging to one of
three classes) that contain 5 continuous attributes. The three
classes represent the classification of a patient’s thyroid to
euthyroidism, hypothyroidism and hyperthyroidism respec-
tively. The database is divided into 150 instances of the first
class, 35 instances of the second and 30 of the last class. We
used a training set of size 100 (in a manner proportional to
the distribution of patterns to classes), while the remaining
data set (of size 115) was used for testing.

Another dataset used in our experiments was the synthetic
two-class problem taken from Ripley [15]. It is a realistic
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Figure 6. Graphical representation of the syn-
thetic two-class dataset

problem with 1250 2-dimensional patterns that belong to 2
classes, where 250 and 1000 patterns were used for training
and testing respectively. Finally, we have also considered
the clouds database. Clouds is an artificial collection of
5000 two-dimensional patterns divided into two equal size
sets that correspond to two overlapping decision classes.
The first 2000 clouds data were handled as the training set
while the remaining 3000 data applied to the constructed
fuzzy neural classifier for testing. Figs. 6 and 7 provide a
graphical representation of the last two datasets.

The parameters in our approach are the number of cellsLi for each class region i and the construction parameter �,
as well as the �1, �2 values for the membership function
(Eq. 4). Although we could select a different value Li
for each region (depending on characteristics of patterns
belonging to the region),we have opted for the use of a global
value L for all class regions, depending on the difficulty
of the considered problem. In the first two problems (iris
and thyroid), that are relatively easy, the specification ofL was not very critical. For almost all experiments with
different values ofL (L � 4) the network achieved the same
classification rate on training and testing phases. Moreover,
the number of class regions obtained in the case of these two
datasets was exactly the same as the number of classes (i.e.R = 3), suggesting that the classes in these problems are
well separated. Specifically, in the case of the iris dataset a
total of 306 hyperplanes were needed for the separation of
class regions, where 142, 262 and 208 of these were used
to define each one of the three regions respectively. In the
thyroid problem the required number of hyperplanes was
equal to 676 and the three classes were defined using 527,
386 and 439 hyperplanes repsectively.

The other two datasets (synthetic and clouds) are noisy.
As illustrated in Figs. 6, 7 the class boundaries in both
problems are not very clear, therefore classification is dif-
ficult. The Voronoi diagram in the case of the synthetic
problem was reduced to 10 class regions, where only two of
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them were big enough including a large number of patterns
(R = 2). The other eight regions were very small contain-
ing only one or two patterns and were rejected as outliers.
The two selected class regions were separated with 106 and
112 hyperplanes from a set of 140 hyperplanes of the re-
duced Voronoi scheme (the difference is due to discarded
regions). In the case of the clouds dataset, the number of
constructed class regions was equal to 68 out of which we
eventually chose only four (R = 4). The number of required
hyperplanes was 258, 464, 450 and 117 respectively. In this
kind of problems, the selection of the parameter L was crit-
ical. We observed that in the range of L = 10; : : : ; 20 the
fuzzy neural network classifier had the same classification
behaviour achieving the best classification rate.

In what concerns the effect of the parameter � on the
classification performance the following observations can
be made. As stated in Section 3, greater values of �, lead
to more convex and uniform class regions, since the regions
are derived from the union of Voronoi regions having at least� neighboring regions of the same class. The selection of
the best value for this parameter depends on the dimension
of the pattern space. In the case of the first two examined
problems there was a large interval of � values leading to the
construction of exactly the same reduced Voronoi diagrams
(� = 1; : : : ; 9 for the iris problem and � = 1; : : : ; 15 for the
thyroid problem) and thus yielding the same best classifica-
tion rate. As the value of � was growing, the class regions
contained less generators and the number of such regions
increased, leading to degradation in the performance of the
method. In the last two classification problems the effect
of the parameter � was identical and exhibited the follow-
ing characteristics. For the first two values (� = 1; 2) we
obtained similar rates and similar constructed regions. As
the value of � was increased, the network achieved better
classification rates attaining the highest values for � = 3
and � = 4 for the synthetic and clouds problems respec-
tively. Although the number of constructed class regions in

these cases was the same as for the previous values of �,
they contained less generators and were characterized by in-
creased generalization capabilities. It must be noted that in
all the examined classification problems, when the value of
the threshold�was big enough, the reduced Voronoi scheme
was the same as the original Voronoi diagram. Finally, as
far as the �1, �2 parameters are concerened, the appropriate
values were determined experimentally and were generally
less than 3.

In order to assess the potential of the proposed classi-
fier, we have also applied some other known neural network
methods to the same datasets. For that reason we have used
the fuzzy min-max classification neural network (FMM), a
multilayer perceptron (MLP) trained with the backpropaga-
tion algorithm, as well as the learning vector quantization
(LVQ) algorithm. We have applied also a simple nearest-
neighbor approach (1-NN), which consisted of assigning to
a given pattern the class label of its closest training pattern.

The fuzzy min-max classifier [16, 12] is an on-line su-
pervised learning classifier whose operation and training
are based on the concept of hyperbox fuzzy sets. The MLP
neural network was a single hidden-layer network with a
learning rate of 0:09 and a momentum rate of 0:9. The spe-
cific LVQ scheme used was the LVQ1 algorithm [11] having
a learning rate equal to 0:03. The best results were obtained
by considering 6, 6, 6 and 8 centers for the four databases re-
spectively. For these approaches several experiments were
conducted using different seed values and taking the best
classification rate as the performance measure.

Table 6 summarizes the performance of the proposed
classification scheme, denoted RVoD (Reduced Voronoi Di-
agram), in comparison with the FMM, MLP, LVQ and 1-
NN approaches in terms of the classification rate on the test
set for the four selected databases. The superiority of the
proposed fuzzy neural classifier is apparent. The results
indicate that the simple nearest-neighbor scheme (and con-
sequently the approaches based on pure Voronoi diagrams)
have been considerably improved so as to outperform the
other well-known algorithms.

If we compare our approach to the fuzzy min-max algo-
rithm, we can observe that, in the case of the fuzzy min-max
algorithm, the created hyperboxes have only the informa-
tion of their min and max values along each dimension. The
hyperboxes are of finite volume (therefore the technique can
be considered as ’local’) and their geometrical structure is
not so flexible to be able to adapt to strange class bound-
aries. In the proposed approach, hyperplanes are used to
separate classes (therefore the technique can be considered
as ’global’), the class regions have in most cases a convex
shape and the nearest neighbor criterion is more explicitly
taken into account. Apart from the geometrical differences,
the FMM algorithm is based on the selection of the hyper-
box with the maximum membership value and accept as final



Table 1. Comparative results (classification rates)

Problem RVoD FMM MLP LVQ 1-NN
Iris 97.33% 97.33% 94.67% 97.33% 94.67%

Thyroid 98.26% 97.39% 94.78% 95.65% 95.65%
Synthetic 91.14% 90.60% 88.00% 89.50% 85.50%
Clouds 88.27% 84.83% 79.77% 80.13% 84.27%

decision the class of the selected hyperbox. On the other
hand the proposed fuzzy neural classifier is able to decide
in a more informative manner, since the decision is based
on the distribution of the membership values of the training
patterns to the constructed regions. Moreover, the proposed
method requires no normalization of the feature values of
the patterns as is the case with many other approaches.

7. Conclusions

We have proposed a neural network classifier that is based
on geometrical fuzzy sets. The approach is based on the
construction of Voronoi diagrams in the pattern space and
the creation of region aggregates inside the Voronoi puzzle.
For the constructed class regions, decision probabilities are
computed in terms of the distribution of membership values
to these regions. The whole technique can be implemented
by means of a five-layer feedforward neural network archi-
tecture.

Experimental results concerning several classification
problems indicate that the proposed method is effective in
terms of the rate of correct classification. Comparisons
with other established approaches have shown that the pro-
posed scheme can overcome the difficulties arising from the
problem of overlapping classes. Moreover, it has the charac-
teristic of maintaining the powerful geometrical features of
the Voronoi structure as well as of creating efficient decision
boundaries through the statistical processing of membership
values.

This work allows us to further experiment with the use
of proximity based approaches to the construction of fuzzy
neural classifiers and to discover more efficient techniques
in the area of soft decision making. Since the complexity of
the construction of Voronoi diagrams becomes high as the
dimension of the feature space grows, we are interested in
applying effective geometrical algorithms that can suggest
neighbors of a given pattern (in the sense of the Voronoi
diagram) for large dimensional problems.

References

[1] F. Aurenhammer. Voronoi Diagrams - A Survey of a Funta-
mental Geometric Data Structure. ACM Computing Surveys,

3:345–405, 1991.
[2] C. Barber, D. Dobkin, and H. Huhdanpaa. The Quickhull

Algorithm for Convex Hulls. ACM Transactions on Mathe-
matical Software, 22:469–483, 1996.

[3] J. Bezdek and S. Pal. Fuzzy Models for Pattern Recognition.
IEEE Press, 1992.

[4] K. Blekas, A. Likas, and A. Stafylopatis. A Fuzzy Neu-
ral Network Approach Based on Dirichlet Tesselations for
Nearest Neighbor Classification of Patterns. In Proc. of IEEE
Workshop on Neural Networks for Signal Processing (NNSP
’95), pages 153–161, 1995.

[5] N. Bose and A. Garga. Neural Network Design Using
Voronoi Diagrams. IEEE Trans. on Neural Networks, 4:778–
787, 1993.

[6] A. Bowyer. Computing Dirichlet Tesselations. The Com-
puter Journal, 24:162–166, 1981.

[7] G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds, and
D. Rosen. Fuzzy ARTMAP: A Neural Network Architecture
for Incremental Supervised Learning of Analog Multidimen-
sional Maps. IEEE Trans. on Neural Networks, 3(5):698–
713, 1992.

[8] A. Garga and N. Bose. A Neural Network Approach to the
Construction of Delaunay Tesselation of Poinds inRd. IEEE
Trans. on Circuits and Systems-I: Fundamental Theory and
Applications, 41:611–613, 1994.

[9] P. Green and R. Sibson. Computing Dirichlet tesselations in
the plane. The Computer Journal, 4:778–787, 1978.

[10] L. Guibas, D. Knuth, and M. Sharir. Randomized incremen-
tal construction of Delaunay and Voronoi diagrams. Algo-
rithmica, 9:534–560, 1992.

[11] T. Kohonen. The self-organization map. Proceedings of the
IEEE, 78:1464–1480, 1990.

[12] A. Likas, K. Blekas, and A. Stafylopatis. Application of
the Fuzzy Min-Max Neural Network Classifier to Problems
with Continuous and Discrete Attributes. In Proc. of IEEE
Workshop on Neural Networks for Signal Processing (NNSP
’94), pages 163–170, 1994.

[13] D. Murphy. Nearest Neighbor Pattern Classification Percep-
trons. Proceedings of the IEEE, 78:1595–1598, 1990.

[14] F. Preparata and M. Shamos. Computational Geometry - An
Introduction. New York: Springer-Verlag, 1985.

[15] B. Ripley. Pattern Recognition and Neural Networks. Cam-
bridge University Press, 1996.

[16] P. Simpson. Fuzzy Min-Max Neural Networks-Part 1: Clas-
sification. IEEE Trans. on Neural Networks, 3(5):776–786,
1992.

[17] L. Tsoukalas and R. Uhrig. Fuzzy and Neural Approaches
in Engineering. John Wiley & Sons, New York, NY, 1996.


