
A Fuzzy Neural Network Approach Based on DirichletTesselations for Nearest Neighbor Classi�cation ofPatternsK. Blekas, A. Likas and A. StafylopatisDepartment of Electrical and Computer EngineeringNational Technical University of Athens157 73 Zographou, Athens, GreeceTel.: +301 7485056, Fax: +301 7784578e-mail: andreas@theseas.ntua.grAbstractA neural network classi�er using fuzzy set representation of pattern classes ispresented. Network construction and learning is performed incrementally in a singlepass by building an aggregate of space-�lling regions that constitutes a simpli�edvariant of the construction known as Dirichlet tesselation (or Voronoi diagram). Eachregion is delimited by a set of hyperplanes and is endowed by a fuzzy membershipfunction that forms the basis of learning and recall. Experimental results concerningdi�cult recognition problems show that the proposed approach is very successful inapplying fuzzy sets to pattern classi�cation.1 IntroductionSeveral models have been developed during the last years in an attempt to combine fuzzysystems and neural networks. Some of them focus on applying this synergistic combinationto building e�cient pattern classi�ers [5, 7, 9], as the application of fuzzy sets to patternclassi�cation has been considered for many years.The fuzzy neural network presented here is an example of neural network classi�er thatbuilds decision boundaries by creating subsets of the pattern space. The creation of fuzzysubsets is based on the partition of the n-dimensional space in a way that constitutes adirect adaptation of the notion of Dirichlet tesselations, also known as Voronoi diagramsor Thiessen polygons [1].A Dirichlet tesselation of a set S of points (called sites) is a partition of the n-dimensional space into convex polytopes. Each polytope which is also called `cell' or`tile' belongs to one site of the set S and contains all points of the space for which this site1



is the closest, or the one with the dominant inuence. Each cell is de�ned with respect toan arrangement of halfspaces as the intersection of a �nite number of hypeplanes, whichare the perpendicular bisectors of the segments joining pairs of sites. >From a given setof n-dimensional points classical Dirichlet tesselation can be constructed by obtaining theconvex hull of these points [1] or by incremental insertion of the regions of these sites [3, 4].Dirichlet tesselations express the proximity information of a set of given points in a veryexplicit and computationally useful manner that makes it applicable in many diverse areasamong which are biology, visual perception, crystallography and archeology.The application of Dirichlet tesselations to the design of neural networks has been con-sidered recently. In [8] two neural network construction algorithms for pattern classi�cationare proposed that rely directly or indirectly on the Dirichlet tesselation of the space basedon the given training patterns. An e�cient adaptation of the above algorithms is presentedin [6], whereas a systematic procedure for designing neural networks following the sameprinciple is formulated in [2]. In this paper we develop an analogous construction approachwhich incorporates the idea of fuzzy set classes by de�ning fuzzy decision boundaries forthe regions of the tesselation. The proposed scheme allows for e�cient on-line supervisedlearning using appropriately de�ned fuzzy membership functions during both learning andrecall.A description of the proposed fuzzy classi�cation network is provided in the next sec-tion, while the network construction algorithm is presented in Section 3. Section 4 concernsexperimental results from the application of the approach to di�cult classi�cation prob-lems. Section 5 briey describes the extension of the model to the case of both continuousand discrete attributes, and �nally Section 6 summarizes the main conclusions.2 Fuzzy Set Classes and Network TopologyConsider a classi�cation problem with n continuous attributes, such that the n-dimensionalpatterns belong to p distinct classes. By means of the proposed construction scheme, weshall de�ne a set of regions �lling the feature space such that each region is associated withexactly one from the pattern classes. A properly computed fuzzy membership function(taking values in [0; 1]) indicates the degree to which a pattern is contained within eachof the regions. During operation, the region with the maximum membership value isselected and the class associated with the winning region is considered as the desicion ofthe network.Learning in the fuzzy classi�cation network consists of creating and adjusting regionsand associating a class label to each of them. Each region is characterized by a point, whichwill be called the site of the region, and can be expressed as the intersection of a �nite num-ber of closed half-spaces de�ned by hyperplanes that separate regions of di�erent classes.Regions corresponding to the same class can be overlapping. In general, not all trainingpatterns constitute sites of regions. Following the principle of Dirichlet tesselations, thepoints of a region are closer to the site of the region than to all other sites belonging todi�erent classes. This feature constitutes a relaxation with respect to the strict de�nition
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Figure 1: A partition of the planeof Dirichlet tesselations and implies a construction scheme that prescribes no separatinghyperplane between regions of the same class. Figure 1 represents such a convex construc-tion on the 2-dimensional space, based on the Dirichlet tesselation principle, for a set of10 input points with three seperated classes (dotted lines would be present in a classicalVoronoi diagram).When an input pattern a = (a1; : : : ; an) is presented to the network during operation,the corresponding membership function for each region is computed. The membershipfunction �i(a) for the ith region must measure the degree to which the given pattern fallsinside or outside the region. This can be considered as a measurement of how far is situatedthe pattern from all the hyperplanes which de�ne the region. When the pattern a is inthe interior of the region and far from the hyperplanes then bi(a) approaches 1, the value1 meaning that the point is very close to the site of the region. When the pattern fallsoutside the region then the membership value approaches zero, the value 0 meaning thatthis point is close to some other site. A function following the above guidelines is theaverage value of the normalized vertical distances xh of the pattern from all hyperplanesh supporting the region. Each distance xh is normalized with respect to the distance lh ofthe site of the region from hyperplane h.Consider the function signh(a) which describes on which side of the hyperplane h liesthe pattern a. If it lies in the positive half space h+ we have signh(a) = 1, else if it lies inthe negative half space h� then signh(a) = �1. Also consider the quantities vih which takethe values 1 or -1 depending on whether the site i is situated in the positive or negativehalf-space de�ned by the hyperplane h, respectively.
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Figure 2: Fuzzy decision boundariesThe membership function taking values in [0; 1] can be computed as follows:�i(a) = 12jHij Xh2Hi vihmh(a) + 12 (1)where Hi is the set of hyperplanes de�ning the region i (having cardinality jHij) and mhhas the following form (Figure 2):mh(a) = 8><>: 1 if xh > lh and signh(a) = 1�1 if xh > lh and signh(a) = �1signh(a)xh=lh otherwise (2)Other choices can be made for the computation of the membership functions, e.g. the formadopted in [5].The fuzzy classi�er can be implemented as a neural network that exploits the fuzzy setstructure and allows for e�cient implementation. Figure 3 illustrates the neural networkthat implements this approach. It consists of three layers such that connections existbetween successive layers. The number of nodes in the �rst layer is equal to the numberq of hyperplanes that de�ne regions. Each �rst layer node computes the value of thefunction mh for every input pattern using equation (2). The second layer contains as manynodes as the number r of regions. The output of each node of this layer represents themembership value of the pattern for the corresponding region as computed in equation (1).The connections between nodes of the �rst and second layer associate regions with theirsupporting hyperplanes and assume the values vih de�ned above. The last layer embodies
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Figure 3: The Fuzzy Neural Network Classi�ernodes which correspond to the set of p classes. The connections uji between the secondand third layer take binary values, such that uji = 1 if i is a region of class j and uji = 0otherwise. Each node of the third layer computes the degree to which the input pattern�ts within class j. The function that performs this computation is the fuzzy union of theappropriate region fuzzy set values. This operation is de�ned for each of the p classes as�j = rmaxi=1 [ujibi(a)] (3)3 Learning and ConstructionConsider a set A of training patterns. The learning algorithm creates a division of thefeature space by appropriately constructing regions. Each region is de�ned by hyperplanesthat are successively created to separate neighboring regions of di�erent classes. Imple-mentation of the below scheme requires the de�nition of the appropriate data structuresfor holding all the information necessary during the construction.At an initialization step, the �rst two training patterns considered (which should be ofdi�erent classes) become the sites of the �rst regions which are originally separated by ahyperplane (the perpendicular bisector of the segment joining the two sites). These regionswill be restricted in the sequel as new sites are created.During learning, each training pattern ak is presented once and the following generalstep is performed.



� First we compute the values of the membership functions �i(ak), as de�ned previously,for all existing regions i. Then we �nd the regions whose membership values exceed agiven threshold value � (0 � � � 1), which is generally taken high (typically, greaterthan 0.7).� If all the regions meeting the above criterion belong to the same class as the presentedpattern ak, no further action is taken.� If one or more of the selected regions belong to classes di�erent than that of pat-tern ak, then the latter becomes a new site and its region is constructed by drawingbisecting hyperplanes between this site and its neighboring sites of di�erent classes.No hyperplane is created between the new site and sites belonging to the same class,thus allowing for overlapping. The neighboring regions of the new region are suc-cessively determined by applying a simple adaptation of standard techniques used inthe creation of Dirichlet tesselations by incremental insertion of sites [3, 4].� The new site acquires its region by winning territory from the regions of its neighbors(belonging to di�erent classes). As some of the already presented (non-site) patternsmay be contained in the a�ected regions, it should be checked whether such patternsare now included in the newly created region. Thus, these patterns are successivelyexamined and if they are contained in the new region they create their own newregions by winning territory from the latter, following the procedure applied in theprevious step for ak. Obviously, this construction of new regions need not take placefor all such points, since several of them may be covered by each newly created regionof the correct class.4 Experimental ResultsWe have studied the proposed fuzzy neural network classi�er on a variety of di�cult clas-si�cation problems. We have tried to select databases whose instances are de�ned on ahigh-dimensional space so that the applicability of the Dirichlet tesselation approach onsuch problems could be evaluated. In addition, some of the data sets were noisy contain-ing hard examples so as to illustrate the operation and performance of the fuzzy neuralnetwork classi�er. To evaluate the e�ectiveness of our model we have mainly compared itwith the fuzzy min-max classi�er [9].The �rst data set is the Johns Hopkins University ionosphere database which is acollection of radar data. The ionosphere data set consisted of 351 feature vectors describedby 34 continuous valued attributes with two decision classes (either show evidence of sometype of structure in the ionosphere or not). The data set was divided into a training setof 200 examples that were used to adjust the network hypeplanes and convex polytopes,while the remaining 151 examples were applied to the constructed network structure toestimate the performance of the proposed fuzzy neural classi�er. In all of our experimentswe trained the network for certain � values and then computed the percentage of correct



classi�cation over the test set. Best results were found for � = 0:75. For this parametervalue the network consisted of 127 cells and the success rate was 97%. On the otherhand, using the same data set to train a fuzzy min-max neural network classi�er severalexperiments were conducted for di�erent values of �. The best classi�cation rate obtainedwas 95.5%The second data set we used to train and test our fuzzy neural classi�er was the Fisher'sIris data. Iris data is a collection of 150 four-dimensional featute vectors in three separateclasses, 50 for each class. We considered a training set and a test set of size 75, each ofthem containing 25 examples of each of the three iris classes. After a series of experimentsusing di�erent values of the parameter � we found the best classi�cation rate 97.3% for� = 0:75 in which we obtained 22 polygon cells. For the fuzzy min-max classi�er the bestclassi�cation rate for the same data set was exactly the same [9].We have also used the James Cook University Thyroid gland database in our model.Thyroid database is a collection of 215 feature vectors consisting of 5 continuous attributes,such that the vectors belong to three classes. Any of these three decision classes de�nes aprediction of a patient's thyroid to the class of euthyroidism, hypothyroidism or hyperthy-roidism. The database is divided into 150 instances of �rst class, 35 instances of secondand 30 of last class. We used a training set of size 100 while the remaining data set (size115) was used as testing set. Best performance was obtained for � = 0:8 (34 polygon cells)with classi�cation rate 94%. Training and testing the fuzzy min-max classi�er networkwith the same data sets we were able to achieve a success rate of 90.5% using parametervalue � = 0:082 (60 cells).It must be noted that in all the experiments the choice of the value of the parameter� was not very critical with respect to the success rate as was the case with the fuzzymin-max neural network. There were intervals of � values where the rate remained thesame and only the number of the hyperplanes and the convex polygons being created weredi�erent. Besides, while the value of � was increasing the network structure (hypeplanesand cells) was reduced, and so we were choosing the maximum � value of such intervals soas to achieve the least network architecture with the best overall success rate.5 Treating Discrete AttributesThe model of fuzzy neural network based of Dirichlet Tesselations considers as basic as-sumption that all attributes take continuous values. Thus, we are able to map the patternspace corresponding to each class to a number of regions (convex polygons) by creatingperpedincular bisectors (hyperplanes) between sites of di�erent classes. Nevertheless, whenthe data set consists of both continuous and discrete attributes we cannot treat the discretefeatures in the same way, and so it is necessary to �nd another mode of operation.Suppose that D, nD = jDj and C, nC = jCj denote the set and the number of thediscrete and the continuous attributes respectively. Let also Dj be the domain of eachdiscrete attribute j 2 D. A n-dimensional pattern a = (a1; a2; : : : ; an) having both types ofattributes, consists of continuous features aj for j 2 C and discrete aj 2 Dj for j 2 D. Each



polygon i is described by providing the proper hyperplanes with respect to the continuousattributes and moreover a set of attribute values Dij � Dj for discrete attributes j 2 D.It is obvious that the sets Dij must be crisp, i.e., an element either belongs to a set(membership value is 1) or not (membership value is 0). Including the above analysis tothe computation of the membership function of a pattern a to a polygon i, equation (1)takes the following form:�i(a) = 14jHij Xh2Hi vihmh(a�) + 14 + 12nD Xj2DmDij (aj) (4)where a� denotes the subvector of a containing only continuous attributes and mS(x) isthe membership function corresponding to the crisp set S. It must be noted that if a newinput pattern ak is contained in a cell i of the same class, i.e., no creation of new cell takesplace, the crisp sets Dij are adjusted as follows: Dnewij = Doldij [ akj.6 ConclusionsWe have introduced a new model of fuzzy neural network classi�er by representing fuzzysets through a suitable partition of the solution space into a number of convex regionsfollowing the principle of Dirichlet tesselations. This type of network has the advantageof fast one-shot training and is very e�cient for hard pattern classi�cation problems asindicated by the experiments. Further research is focused on the introduction of a learningcomponent for adaptively determining good parameter values.References[1] F. Aurenhammer, "Voronoi Diagrams | A Survey of a Fundamental Geometric DataStructure," ACM Computing Surveys, Vol. 23, No. 3, pp. 345{405, Sept. 1991.[2] N.K. Bose and A.K. Garga, "Neural Network Design Using Voronoi Diagrams," IEEETrans. on Neural Networks, Vol. 4, No. 5, pp. 778{787, Sept. 1993.[3] A. Bowyer, "Computing Dirichlet Tesselations," The Computer Journal, Vol. 24, No.2, pp. 168{173, 1978.[4] P.J. Green and R. Sibson, "Computing Dirichlet Tesselations in the Plane," The Com-puter Journal, Vol. 21, No. 2, pp. 168{173, 1978.[5] J. Keller and D. Hunt, "Incorporating Fuzzy Membership Functions into the Percep-tron Algorithm," IEEE Trans. on Patt. Anal. and Mach. Intell., Vol. 7, pp. 693{699,1985.[6] K. Koutroumbas and N. Kalouptsidis, "Nearest Neighbor Pattern Classi�cation Neu-ral Networks," Proc. World Congress on Computational Intelligence, pp. 2911{2915,Orlando, Florida, July 1994.
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