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Abstract

A neural network classifier using fuzzy set representation of pattern classes is
presented. Network construction and learning is performed incrementally in a single
pass by building an aggregate of space-filling regions that constitutes a simplified
variant of the construction known as Dirichlet tesselation (or Voronoi diagram). Each
region is delimited by a set of hyperplanes and is endowed by a fuzzy membership
function that forms the basis of learning and recall. Experimental results concerning
difficult recognition problems show that the proposed approach is very successful in
applying fuzzy sets to pattern classification.

1 Introduction

Several models have been developed during the last years in an attempt to combine fuzzy
systems and neural networks. Some of them focus on applying this synergistic combination
to building efficient pattern classifiers [5, 7, 9], as the application of fuzzy sets to pattern
classification has been considered for many years.

The fuzzy neural network presented here is an example of neural network classifier that
builds decision boundaries by creating subsets of the pattern space. The creation of fuzzy
subsets is based on the partition of the n-dimensional space in a way that constitutes a
direct adaptation of the notion of Dirichlet tesselations, also known as Voronoi diagrams
or Thiessen polygons [1].

A Dirichlet tesselation of a set S of points (called sites) is a partition of the n-
dimensional space into convex polytopes. FEach polytope which is also called ‘cell’ or
‘tile’ belongs to one site of the set S and contains all points of the space for which this site



is the closest, or the one with the dominant influence. Each cell is defined with respect to
an arrangement of halfspaces as the intersection of a finite number of hypeplanes, which
are the perpendicular bisectors of the segments joining pairs of sites. ;From a given set
of n-dimensional points classical Dirichlet tesselation can be constructed by obtaining the
convex hull of these points [1] or by incremental insertion of the regions of these sites [3, 4].
Dirichlet tesselations express the proximity information of a set of given points in a very
explicit and computationally useful manner that makes it applicable in many diverse areas
among which are biology, visual perception, crystallography and archeology.

The application of Dirichlet tesselations to the design of neural networks has been con-
sidered recently. In [8] two neural network construction algorithms for pattern classification
are proposed that rely directly or indirectly on the Dirichlet tesselation of the space based
on the given training patterns. An efficient adaptation of the above algorithms is presented
in [6], whereas a systematic procedure for designing neural networks following the same
principle is formulated in [2]. In this paper we develop an analogous construction approach
which incorporates the idea of fuzzy set classes by defining fuzzy decision boundaries for
the regions of the tesselation. The proposed scheme allows for efficient on-line supervised
learning using appropriately defined fuzzy membership functions during both learning and
recall.

A description of the proposed fuzzy classification network is provided in the next sec-
tion, while the network construction algorithm is presented in Section 3. Section 4 concerns
experimental results from the application of the approach to difficult classification prob-
lems. Section 5 briefly describes the extension of the model to the case of both continuous
and discrete attributes, and finally Section 6 summarizes the main conclusions.

2 Fuzzy Set Classes and Network Topology

Consider a classification problem with n continuous attributes, such that the n-dimensional
patterns belong to p distinct classes. By means of the proposed construction scheme, we
shall define a set of regions filling the feature space such that each region is associated with
exactly one from the pattern classes. A properly computed fuzzy membership function
(taking values in [0, 1]) indicates the degree to which a pattern is contained within each
of the regions. During operation, the region with the maximum membership value is
selected and the class associated with the winning region is considered as the desicion of
the network.

Learning in the fuzzy classification network consists of creating and adjusting regions
and associating a class label to each of them. Each region is characterized by a point, which
will be called the site of the region, and can be expressed as the intersection of a finite num-
ber of closed half-spaces defined by hyperplanes that separate regions of different classes.
Regions corresponding to the same class can be overlapping. In general, not all training
patterns constitute sites of regions. Following the principle of Dirichlet tesselations, the
points of a region are closer to the site of the region than to all other sites belonging to
different classes. This feature constitutes a relaxation with respect to the strict definition



Figure 1: A partition of the plane

of Dirichlet tesselations and implies a construction scheme that prescribes no separating
hyperplane between regions of the same class. Figure 1 represents such a convex construc-
tion on the 2-dimensional space, based on the Dirichlet tesselation principle, for a set of
10 input points with three seperated classes (dotted lines would be present in a classical
Voronoi diagram).

When an input pattern a = (aq, ..., a,) is presented to the network during operation,
the corresponding membership function for each region is computed. The membership
function p;(a) for the ith region must measure the degree to which the given pattern falls
inside or outside the region. This can be considered as a measurement of how far is situated
the pattern from all the hyperplanes which define the region. When the pattern a is in
the interior of the region and far from the hyperplanes then b;(a) approaches 1, the value
1 meaning that the point is very close to the site of the region. When the pattern falls
outside the region then the membership value approaches zero, the value 0 meaning that
this point is close to some other site. A function following the above guidelines is the
average value of the normalized vertical distances x; of the pattern from all hyperplanes
h supporting the region. Each distance x; is normalized with respect to the distance [, of
the site of the region from hyperplane h.

Consider the function sign,(a) which describes on which side of the hyperplane h lies
the pattern a. If it lies in the positive half space h™ we have sign, (a) = 1, else if it lies in
the negative half space h~ then sign,(a) = —1. Also consider the quantities v;;, which take
the values 1 or -1 depending on whether the site ¢ is situated in the positive or negative
half-space defined by the hyperplane h, respectively.
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Figure 2: Fuzzy decision boundaries

The membership function taking values in [0, 1] can be computed as follows:

1 1
pi(a) = 5= D vinmu(a) + 5 (1)
2| Hj| h;,i 2

where H; is the set of hyperplanes defining the region i (having cardinality |H;|) and my,
has the following form (Figure 2):

1 if z, > 1, and sign,(a) = 1
mpy(a) = —1 if z, > 1, and sign,(a) = —1 (2)
sign, (a)xp/l, otherwise

Other choices can be made for the computation of the membership functions, e.g. the form
adopted in [5].

The fuzzy classifier can be implemented as a neural network that exploits the fuzzy set
structure and allows for efficient implementation. Figure 3 illustrates the neural network
that implements this approach. It consists of three layers such that connections exist
between successive layers. The number of nodes in the first layer is equal to the number
g of hyperplanes that define regions. Each first layer node computes the value of the
function my, for every input pattern using equation (2). The second layer contains as many
nodes as the number r of regions. The output of each node of this layer represents the
membership value of the pattern for the corresponding region as computed in equation (1).
The connections between nodes of the first and second layer associate regions with their
supporting hyperplanes and assume the values v;;, defined above. The last layer embodies
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Figure 3: The Fuzzy Neural Network Classifier

nodes which correspond to the set of p classes. The connections u;; between the second
and third layer take binary values, such that u;; = 1 if 7 is a region of class j and uj; =0
otherwise. Each node of the third layer computes the degree to which the input pattern
fits within class j. The function that performs this computation is the fuzzy union of the
appropriate region fuzzy set values. This operation is defined for each of the p classes as

& = max[u;ibi(a)] (3)

3 Learning and Construction

Consider a set A of training patterns. The learning algorithm creates a division of the
feature space by appropriately constructing regions. FEach region is defined by hyperplanes
that are successively created to separate neighboring regions of different classes. Imple-
mentation of the below scheme requires the definition of the appropriate data structures
for holding all the information necessary during the construction.

At an initialization step, the first two training patterns considered (which should be of
different classes) become the sites of the first regions which are originally separated by a
hyperplane (the perpendicular bisector of the segment joining the two sites). These regions
will be restricted in the sequel as new sites are created.

During learning, each training pattern ay is presented once and the following general
step is performed.



e First we compute the values of the membership functions p;(ay), as defined previously,
for all existing regions 7. Then we find the regions whose membership values exceed a
given threshold value # (0 < # < 1), which is generally taken high (typically, greater
than 0.7).

e [f all the regions meeting the above criterion belong to the same class as the presented
pattern ay, no further action is taken.

e If one or more of the selected regions belong to classes different than that of pat-
tern ag, then the latter becomes a new site and its region is constructed by drawing
bisecting hyperplanes between this site and its neighboring sites of different classes.
No hyperplane is created between the new site and sites belonging to the same class,
thus allowing for overlapping. The neighboring regions of the new region are suc-
cessively determined by applying a simple adaptation of standard techniques used in
the creation of Dirichlet tesselations by incremental insertion of sites [3, 4].

e The new site acquires its region by winning territory from the regions of its neighbors
(belonging to different classes). As some of the already presented (non-site) patterns
may be contained in the affected regions, it should be checked whether such patterns
are now included in the newly created region. Thus, these patterns are successively
examined and if they are contained in the new region they create their own new
regions by winning territory from the latter, following the procedure applied in the
previous step for a;. Obviously, this construction of new regions need not take place
for all such points, since several of them may be covered by each newly created region
of the correct class.

4 Experimental Results

We have studied the proposed fuzzy neural network classifier on a variety of difficult clas-
sification problems. We have tried to select databases whose instances are defined on a
high-dimensional space so that the applicability of the Dirichlet tesselation approach on
such problems could be evaluated. In addition, some of the data sets were noisy contain-
ing hard examples so as to illustrate the operation and performance of the fuzzy neural
network classifier. To evaluate the effectiveness of our model we have mainly compared it
with the fuzzy min-max classifier [9].

The first data set is the Johns Hopkins University ionosphere database which is a
collection of radar data. The ionosphere data set consisted of 351 feature vectors described
by 34 continuous valued attributes with two decision classes (either show evidence of some
type of structure in the ionosphere or not). The data set was divided into a training set
of 200 examples that were used to adjust the network hypeplanes and convex polytopes,
while the remaining 151 examples were applied to the constructed network structure to
estimate the performance of the proposed fuzzy neural classifier. In all of our experiments
we trained the network for certain # values and then computed the percentage of correct



classification over the test set. Best results were found for # = 0.75. For this parameter
value the network consisted of 127 cells and the success rate was 97%. On the other
hand, using the same data set to train a fuzzy min-max neural network classifier several
experiments were conducted for different values of . The best classification rate obtained
was 95.5%

The second data set we used to train and test our fuzzy neural classifier was the Fisher’s
Iris data. Iris data is a collection of 150 four-dimensional featute vectors in three separate
classes, 50 for each class. We considered a training set and a test set of size 75, each of
them containing 25 examples of each of the three iris classes. After a series of experiments
using different values of the parameter 6 we found the best classification rate 97.3% for
6 = 0.75 in which we obtained 22 polygon cells. For the fuzzy min-max classifier the best
classification rate for the same data set was exactly the same [9].

We have also used the James Cook University Thyroid gland database in our model.
Thyroid database is a collection of 215 feature vectors consisting of 5 continuous attributes,
such that the vectors belong to three classes. Any of these three decision classes defines a
prediction of a patient’s thyroid to the class of euthyroidism, hypothyroidism or hyperthy-
roidism. The database is divided into 150 instances of first class, 35 instances of second
and 30 of last class. We used a training set of size 100 while the remaining data set (size
115) was used as testing set. Best performance was obtained for # = 0.8 (34 polygon cells)
with classification rate 94%. Training and testing the fuzzy min-max classifier network
with the same data sets we were able to achieve a success rate of 90.5% using parameter
value 6 = 0.082 (60 cells).

It must be noted that in all the experiments the choice of the value of the parameter
f was not very critical with respect to the success rate as was the case with the fuzzy
min-max neural network. There were intervals of # values where the rate remained the
same and only the number of the hyperplanes and the convex polygons being created were
different. Besides, while the value of § was increasing the network structure (hypeplanes
and cells) was reduced, and so we were choosing the maximum 6 value of such intervals so
as to achieve the least network architecture with the best overall success rate.

5 Treating Discrete Attributes

The model of fuzzy neural network based of Dirichlet Tesselations considers as basic as-
sumption that all attributes take continuous values. Thus, we are able to map the pattern
space corresponding to each class to a number of regions (convex polygons) by creating
perpedincular bisectors (hyperplanes) between sites of different classes. Nevertheless, when
the data set consists of both continuous and discrete attributes we cannot treat the discrete
features in the same way, and so it is necessary to find another mode of operation.
Suppose that D, np = |D| and C, nc = |C| denote the set and the number of the
discrete and the continuous attributes respectively. Let also D’ be the domain of each
discrete attribute j € D. A n-dimensional pattern a = (ay, as, . . ., a,) having both types of
attributes, consists of continuous features a; for j € C and discrete a; € D7 for j € D. Each



polygon i is described by providing the proper hyperplanes with respect to the continuous
attributes and moreover a set of attribute values D;; C D7 for discrete attributes j € D.
It is obvious that the sets D;; must be crisp, i.e., an element either belongs to a set
(membership value is 1) or not (membership value is 0). Including the above analysis to
the computation of the membership function of a pattern a to a polygon i, equation (1)
takes the following form:
(@) = 1 (@) + 7 + 5= 3 mp, (@) (@)
wi(a) = vinmp(a -+ —> mp, (a,
! 4|Hz| heH; ! 4 277,D jeD AN

where a* denotes the subvector of a containing only continuous attributes and mg(z) is
the membership function corresponding to the crisp set S. It must be noted that if a new
input pattern a; is contained in a cell 7 of the same class, i.e., no creation of new cell takes
place, the crisp sets D;; are adjusted as follows: D" = ijd U ag;.

6 Conclusions

We have introduced a new model of fuzzy neural network classifier by representing fuzzy
sets through a suitable partition of the solution space into a number of convex regions
following the principle of Dirichlet tesselations. This type of network has the advantage
of fast one-shot training and is very efficient for hard pattern classification problems as
indicated by the experiments. Further research is focused on the introduction of a learning
component for adaptively determining good parameter values.
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