
Model-based reinforcement learning using on-line
clustering

Nikolaos Tziortziotis and Konstantinos Blekas
Department of Computer Science, University of Ioannina

P.O.Box 1186, Ioannina 45110 - Greece
Email:{ntziorzi,kblekas}@cs.uoi.gr

Abstract—A significant issue in representing reinforcement
learning agents in Markov decision processes is how to design
efficient feature spaces in order to estimate optimal policy. The
particular study addresses this challenge by proposing a compact
framework that employs an on-line clustering approach for
building appropriate basis functions. Also, it performs a state-
action trajectory analysis to gain valuable affinity information
among clusters and estimate their transition dynamics. Value
function approximation is used for policy evaluation in a least-
squares temporal difference framework. The proposed method
is evaluated in several simulated and real environments, where
we took promising results.

Index Terms—mixture models, on-line EM, clustering, model-
based reinforcement learning

I. INTRODUCTION

Reinforcement Learning (RL) aims at controlling an au-
tonomous agent in unknown stochastic environments [1].
Typically, the environment is modelled as a Markov Decision
Process (MDP), where the agent receives a scalar reward signal
that evaluates every transition. The objective is to maximize its
long-term profit that is equivalent to maximizing the expected
total discounted reward. Value function is used for measuring
the quality of a policy, which associates to every state the ex-
pected discounted reward when starting from this state and all
decisions are made following the particular policy. However,
in cases with large or infinite state spaces the value function
cannot be calculated explicitly. In such domains a common
strategy is to employ function approximation methodologies,
by representing the value function as a linear combination of
some set of basis functions [2].

The Temporal Difference (TD) family of algorithms [1]
provides a nice framework for policy evaluation, where the
least-squares temporal difference (LSTD) [3] is one of the
most popular mechanism for approximating the value function
of a given policy. The least square policy iteration (LSPI) [4]
is an off-policy method that extends the LSTD to control
problems, where the policy is refined iteratively. Recently,
an online version of the LSPI have been proposed [5] that
overcome the limitation of the LSPI in online problems. Also,
kernelized RL methods [6] have been paid a lot of attention
last years by employing kernel techniques to standard RL
methods [7] and Gaussian Processes as a description model
for the value function [8]. In most cases the basis functions
used for estimating the value function remain fixed during
the learning process, as for example a recent work presented

in [9] where a number of fixed Fourier basis functions are
used for value function approximation. However, there are
some works where the basis functions are estimated during
the learning process. In [10] for example, a steady number of
basis functions are tuned in a batch manner by building a graph
over the state space and then calculating the k eigenvectors of
the graph Laplacian matrix. In another work [11] a set of k
RBF basis function are adjusted directly over the Bellman’s
equation of the value function. Finally, in [12] the probability
density function and the reward model, which are assumed to
be known, are used for creating basis function from Krylov
space vectors (powers of the transition matrix used to systems
of linear equations).

In the particular work, we propose a model-based approach
for value function approximation which is based on an on-
line clustering approach for partitioning the state-action input
space into clusters. This is done by considering an appropriate
mixture model that is trained incrementally through an on-line
version of the Expectation-Maximization (EM) algorithm [13],
[14]. A kernel-based mechanism for creating new clusters is
also incorporated. The number and the structure of the created
clusters compose a dictionary of basis functions which used
next for policy evaluation. In addition, during the clustering
procedure the transitions among adjacent clusters are observed
and the transition probabilities are computed, as well as their
average reward. Policy is then evaluated at each step by
estimating the linear weights of the value function through
the least-squares framework. The proposed methodology has
been tested to several known simulated and real environments
where we measure its efficiency in discovering the optimal
policy. Comparisons have been made using an online version
of LSPI algorithm [5].

In Section 2, we briefly present some preliminaries and
review the basic LSTD scheme for value function approxima-
tion. Section 3 describes the online clustering scheme and the
model-based approach. In Section 4 the experimental results
are presend and finally, in Section 5 we give conclusions and
suggestions for future research.

II. BACKGROUND

A Markov Decision Process (MDP) is a tuple
(S,A, P,R, γ), where S is a set of states; A a set of
actions; P : S × A × S → [0, 1] is a Markovian transition
model that specifies the probability P (s′|s, a) of transition



to state s′ when taken an action a in state s; R : S → R is
the reward function for a state-action pair; and γ ∈ (0, 1) is
the discount factor for future rewards. A stationary policy
π : S → A is a mapping from states to actions and denotes
a mechanism for choosing actions. An episode is a sequence
of transitions: (s1, a1, r1, s2, . . .).

The notion of value function is of central interest in rein-
forcement learning tasks. Given a policy π, the value V π(s) of
a state s is defined as the expected discounted sum of rewards
obtained when starting from this state until the current episode
terminates:

V π(s) = Eπ [R(st) + γV π(st+1)|st = s] , (1)

that satisfies the Bellman equations, which expresses a rela-
tionship between the values of successive states in the same
episode. Similarly, the state-action value function Q(s, a)
denotes the expected cumulative reward as received by taking
action a in state s

Qπ(s, a) = Ra(s) + γ
∑
s′∈S

P (s′|s, a) max
a

Q(s′, a) , (2)

where Ra(s) specifies the average reward for executing a in
s. The objective of RL problems is to estimate an optimal
policy π∗ by choosing actions that yields the optimal action-
state value function Q∗:

π∗(s) = arg max
a

Q∗(s, a) (3)

A common choice for representing the value function is
through a linear function approximation using a set of k basis
functions φj(s, a):

Q(s, a) = φ(s, a)>w =

k∑
j=1

φj(s, a)wj , (4)

where w = (w1, . . . , wk) is a vector of weights which
are unknown and must be estimated so as to minimize the
approximation error. The selection of the basis functions is
very important and must be chosen to encode properties of
the state and action relevant to the proper determination of
the Q values.

The LSTD approach combines the Bellman operator with
the least-squares estimation procedure. If we assume a N -
length trajectory of transitions (si, ai, ri, si+1) sampled from
the MDP, a set of N equations is obtained:

ri = (φ(si, ai)− γφ(si+1, ai+1))>w , (5)

which can be further written as

R = HΦw , (6)

where

H =


1 −γ 0 · · · 0
0 1 −γ · · · 0
...

...
0 0 · · · 0 1

 , (7)

Φ = [φ(s1, a1)>, . . . , φ(sN , aN )>] and (8)
R = [r1, . . . , rN ]. (9)

Then, the LSTD approach estimates the weights of the above
linear equation according to the least-squares solution:

ŵ = (Φ>HΦ)−1Φ>R . (10)

III. ON-LINE CLUSTERING AND VALUE FUNCTION
APPROXIMATION

The proposed methodology is based on a policy evalu-
ation scheme that incrementally separates the input space
into clusters and estimates the transition probabilities among
them. Thus a dictionary of features is dynamically constructed
for modeling the value functions. To what follows we will
assume that the input samples are state-action pairs, denoted
as xn = (sn, an). We will also consider a finite action space
of size M .

Suppose we are given a data set of N samples
{x1, x2, . . . , xN}. The task of clustering aims at partitioning
the input set into k disjoint clusters, containing samples
with common properties. Mixture modeling [14] provides a
convenient and elegant framework for clustering, where we
consider that the properties of a single cluster j is described
implicitly via a probability distribution with parameters θj .
This can be formulated as:

p(x|Θk) =

k∑
j=1

πjp(x|θj) , (11)

where Θk denotes the set of mixture model parameters. The
parameters 0 < πj ≤ 1 represent the mixing weights satisfying∑k
j=1 πj = 1. Since we are dealing with two source of

information (state-actions), in our scheme we assume that the
conditional density for each cluster is written as a product of
two pdfs:
• a Gaussian pdf N (s;µj ,Σj) for the state s and
• a multinomial pdf Mu(a;ρj) =

∏M
i=1 ρ

I(a,i)
ji for the

action a, where ρj is a M -length probabilistic vector
while I(a, i) is a binary indicator function (1 if a = i; 0
otherwise).

This can be written as:

p(x|θj) = N (s;µj ,Σj)Mu(a;ρj) , where θj = {µj ,Σj ,ρj} .
(12)

Mixture modelling treats clustering as an estimation prob-
lem for the model parameters Θk = {πj , θj}kj=1 by maximiz-
ing the log-likelihood function:

L(Θk) =

N∑
n=1

log{
k∑
j=1

πjN (sn;µj ,Σj)Mu(an;ρj)} . (13)

The Expectation-Maximization (EM) algorithm [13] is an
efficient framework that can be used for this purpose. It
iteratively performs two steps: The E-step, where the current
posterior probabilities of samples to belong to each cluster are
calculated:

znj =
πjp(xn|θj)∑k

j′=1 πj′p(xn|θj′)
, (14)



and the M-step, where the maximization of the expected
complete log-likelihood is performed. This leads to closed-
form update rules for the model parameters [14].

In our case the samples are non-stationary and are gener-
ated sequentially. We present here an extension of the EM
algorithm [15] for online estimating mixture models that suits
our particular needs. It consists of two phases: first we have
a mechanism for deciding whether or not a new cluster must
be created, and secondly the main EM procedure is performed
for adjusting the structure of clusters so as to incorporate the
new sample.

Lets assume that a random sample xn = (sn, an) is
observed. The method first performs the E-step and calculates
the posterior probabilities values znj (Eq. 14) based on the
current k-order mixture model. The winner cluster j∗ ∈ [1, k]
is then found according to the maximum posterior value, i.e.

j∗ = arg
k

max
j=1
{znj}. (15)

If the degree of belongingness of xn to cluster j∗, as given
by the next kernel function:

K(xn, j
∗) = Ks(xn, j

∗)Ka(xn, j
∗) , (16)

where

Ks(xn, j
∗) = exp(−0.5(sn − µj∗)>Σ−1

j∗ (sn − µj∗)),

and

Ka(xn, j
∗) =

M∏
i=1

ρ
I(an,i)
j∗i ,

is less than a predefined threshold value Kmin, a new cluster
(k+1) must be created. This is done by initializing it properly:

µk+1 = sn,

Σk+1 = 0.5× Σj∗ ,

ρk+1,i =

{
ξ, if i = a
1−ξ
M−1 , otherwise

,

where ξ is set to a large value (e.g. ξ = 0.9). The M-step is
applied next that provides a step-wise update procedure for
the model parameters using the next rules:

πj = (1− λ)πj + λznj , (17)

µj = µj + λznjsn , (18)

Σj = Σj + λznj(si − µj)(si − µj)> , (19)

nji = nji + I(an, i)znj and ρji =
nji∑M
l=1 njl

, (20)

where the term λ takes a small value (e.g. 0.09) and it can
be decreased over episode. That is necessary to remark here
is the following: In the M-step of the normal (off-line) EM
algorithm, the update rules for both Gaussian parameters have
the quantity

∑N
n=1 znj in the denominator (and the size N

for the weights πj) e.g. µj =
∑

n znjsn∑
n znj

. During the on-
line version, each new sample contributes to the computation

of these parameters by a factor equal to znj/
∑N
n=1 znj .

Therefore, when the number of observations becomes too
large, the incoming new sample will barely influence the
model parameters. To avoid this situation we have selected
the above update rules where we fix the contribution of new
samples to λ.

A. Model-based approximation

As it is obvious from the previous discussion, the EM-based
on-line clustering approach performs a partitioning of the input
(state-action) space into clusters that have also the same tran-
sition dynamics. Clusters can be seen as nodes of a directed
(not full) graph that communicate to each other. The learning
process construct new nodes in this graph (by performing
a splitting process) and can also provide useful information
(frequency and distance) between adjacent nodes. In another
point of view, the proposed scheme can be seen as a type
of relocatable action model (RAM), that has been proposed
recently [16] and provides a decomposition or factorization of
the transition function.

We assume a trajectory of transitions (si, ai, ri, si+1) in the
same episode. During the on-line clustering we maintain for
each cluster j = 1, . . . , k the following quantities:
• t̄j,j′ : the mean number of time-steps between two suc-

cessively observed clusters j, j′

• R(j, j′): the mean total reward of the transition from
cluster j to cluster j′

• nj,j′ : the total number of times (frequency) that we have
observed this transition

• nj : the total number of times that the cluster j is visited.
Furthermore, another two useful quantities can be calculated:
The transition probabilities P (j′|j) between two (adjacent)
clusters from their relative frequencies, i.e. P (j′|j) =

nj,j′

nj
,

and the mean value of the reward function for any cluster j as
R(j) =

∑
j′ P (j′|j)R(j, j′). These can be used for the policy

estimation process.
The equation for the action value function for a cluster j

then becomes

Q(j) = R(j) +
∑
j′

P (j′|j)γ t̄j,j′Q(j′) , (21)

where the summation is made over the neighbourhood of
cluster j (adjacent clusters j′ where P (j′|j) > 0). Thus, a
set of k equations are available for the k quantities R(j)
(observations):

Rk = HkΦkwk , (22)

where we have considered linear function approximation for
the action value function. In this case the kernel design
matrix Φk = [φ1 . . .φk] is explicitly derived from the online
clustering solution using the kernel function of Eq. 16:

[Φk]jj′ = exp(−0.5(µj−µj′)>Σ−1
j′ (µj−µj′))ρ>j ρj′ . (23)

Also, the matrix Hk contains the coefficients of Eq. 21, i.e. at
each line j we have [Hk]jj = 1 and [Hk]j,j′ = −P (j′|j)γ t̄j,j′
in case where two clusters are adjacent (P (j′|j) > 0). Finally,



Rk is the vector of the calculated mean reward values per
cluster, i.e. Rk = [R(1), . . . , R(k)]. The least-square solution
for the linear weights wk can be obtained then as

ŵk = (Φ>k HkΦk)−1Φ>kRk. (24)

Thus, for an input state-action pair x = (s, a) we can estimate
the action value function according to the current policy as:

Q(s, a) = φ(s, a)>ŵk, (25)

where φ(s, a) = [K(x, 1), . . . ,K(x,M)]. The above proce-
dure is repeated until convergence, or a number of episodes
is found. The method starts with a single cluster k = 1
initialized by the first sample taken by the agent. At every
time step the EM-based on-line clustering procedure and the
policy evaluation stage are sequentially performed. The overall
scheme of the proposed methodology is given in Algorithm 1.

Algorithm 1 General framework of the proposed methodology
1: Start with k = 1 and use first point xi = (s1, a1) for

initializing it. Set a random value to weight w1. t = 0.
2: while convergence or maximum number of episodes not

found do
3: Suppose previous input xi = (si, ai).
4: Observe new state si+1.
5: Select action according to the current policy

ai+1 = arg maxMl=1Q(si+1, l).
6: Find the winning cluster j∗ = arg maxkj=1{znj}.
7: if K(xi+1,mj∗) < Kmin then
8: Create a new cluster (k = k + 1) and initialize its

prototype mk with xi+1.
9: Create a new weight wk of linear model and initialize

it randomly. wt = wt ∪ wk.
10: else
11: Update the prototype mj∗ of the winning cluster

using Eqs. 17-20.
12: end if
13: Obtain the new k basis functions as: φj(s, a) =

K((s, a),mj), ∀ j = 1, . . . , k.
14: Update the environment statistics.
15: Update the model weights wt according to Eq. 24.
16: t = t+ 1
17: end while

IV. EXPERIMENTAL RESULTS

A series of experiments have been conducted in a va-
riety of well-known simulated benchmarks as well as in
real environments, in order to study the performance of the
proposed model-based approach. More specifically, the three
well-known simulated benchmark where was used in our
experiments is the Boyan’s Chain, the Puddle World and the
Mountain Car, illustrated in Fig.1. At the same time, using the
Pioneer/People mobile robot (Fig.2) we achieve to examine the
proposed methodology in more realistic environments which
incorporates in their models a number of physical restrictions.

Comparisons have been made by using two famous method-
ologies: the least square temporal difference (LSTD) [3] in
the case of policy evaluation problem (Boyan’s Chain), i.e to
evaluate the value function of a given policy, and the online
least square policy iteration (LSPI) [5] in the case of control
learning problem, i.e. discover the optimal policy. In the case
of online LSPI, the action value function is representing as
a linear model by using an equidistant fixed N × N grid of
Gaussian radial basis functions (RBFs) over the state space,
while each basis function is replicated for every action so that
each action has each own parameters. Furthermore, the policy
is updated after each 10 steps. In all domains, the discount
factor γ was set equal to 1, while the thresholod Kmin for
creating new clusters was set as Kmin = 0.7. Finally, in
order to introduce stochasticity into the transitions and to attain
better exploration of the environment, the actions are chosen
ε-greedy. In the case of the proposed method the ε is initially
set equal to 0.1 and decreases steady at each step. On the other
hand, in the online LSPI the exploration probability is initially
set to value ε0 = 1, and decays exponential once each time
step with the decay rate, εd = 0.9962.

A. Experiments in Simulated environments

The first series of experiments was made with the classical
Boyan’s chain problem (Fig. 1(a)) with N = 13 and N = 98
states [3]. In this application states are connected in a chain,
where an agent located in a state x > 2 can move into
states s − 1 and s − 2 with the same probability receiving
a reward of −3 (r = −3). On the other hand, from states
2 and 1, there are only deterministic transitions to states 1
and 0 where the received rewards are −2 and 0, respectively.
Every episode starts at state N and terminates at state 0. In
the specific domain, both the policy evaluation problem as
well as the problem of discovering the optimal policy have
been considered. It must be noted that both LSTD and online
LSPI methods had a number of RBF kernels equal to the
number of states with a kernel width equal to 1. Also, we
have allowed our method to construct the same number of
clusters, in an attempt to focus our study on the effect of the
clusters’ transition probabilities. The results are illustrated in
Fig. 3 plotting the root mean square error (RMSE) between the
true and the estimated value function (1st problem), as well
as the mean returns of the last 100 episodes (2nd problem)
per method. As it is obvious, the proposed method performs
better exploration estimating the optimal value function more
accurately than the LSTD. On the control problem, both
methodologies achieve to discover the optimal policies but the
proposed method converges in a higher rate than the online
LSPI.

Another two simulated environments used in our experi-
ments are the Puddle World [17] and the Mountain Car [1]
(Figs. 1(b),(c)), found on the RL-Glue Library1. The Puddle
World is a continuous world with two oval puddles and the
goal is to reach the upper right corner from any random

1Available at http://library.rl-community.org/wiki



(a) Boyan’s Chain (b) Puddle World (c) Mountain Car
Fig. 1. Simulated experimental domains

(a) Pioneer/PeopleBot (b) Stage world S1 (c) Stage world S2

Fig. 2. The mobile robot and the 2D-grid maps used in our experiments. These are two snapshots from the MobileSim simulator with visualization of the
robot’s laser and sonar range scanners.

position, avoiding the two puddles. The environmental states
are 2-dimensional (x and y coordinates) and it can choose
one of four actions that correspond to the four major compass
directions: up, right, left, or right. The received reward is −1
except for the puddle region where a penalty between 0 and
−40 is received, depending on the proximity to the middle
of the puddle. In the Mountain Car simulation problem the
objective is to drive an underpowered car up a steep mountain
road from a valley to the top of the right slope. There are two
continuous environmental variables (horizontal position and
velocity) and three possible actions: +1 (full throttle forward),
−1 (full throttle reverse) and 0 (zero throttle). The reward
that received at each time step is r = −1 except for the case
where the goal state is reached (r = 0). At the beginning of
each episode, the car is standing motionless in a random initial
position. An episode is terminated either when the car reaches
the goal, or the total number of steps exceeds a maximum
allowable value (e.g. 1000).

In both problems, comparisons have been made with the
online LSPI method where an equidistant fixed 20 × 20 grid
of Gaussian RBFs is used over the state spaces. The depicted
results are illustrated in Fig. 4 that gives the mean number of
returns received during the last 30 episodes. As it is obvious,
our method manages to discover faster the optimal policy,
where in the case of mountain car the difference is quite
noticeable. That is interesting to note here is that (as it was

expected) experiments have shown a significant sensitivity
of the online LSPI to the value of the RBF’s kernel width
parameter. Here we show the best results found.

B. Experiments in Real Environments

A number of experiments have also been conducted in
a number of real environments by using the wheeled real
mobile robot platform Pioneer/PeopleBot, shown in Fig. 2(a),
based on the robust P3-DX base. The robot is equipped with
advanced tools for communication and control, like the ARIA
(Advanced Robot Interface for Applications) library which
provides a nice framework for controlling and receiving data
from the MobileRobots platforms. At the same time a plethora
of sensors are included into the specific type of robot, such
as sonar, laser, bumpers and a pan-tilt-zoom camera. For
the purposes of our experiments, only the sonar and laser
sensors were used in the case of the obstacle avoidance.
Furthermore, an embedded motion controller provide at each
time step, the robot state such as the robot position (x, y, θ),
sensors range sensing data, e.t.c. Due to numerous physical
restrictions, such as the strict battery life, the training of the
specific methodologies are achieved by using the MobileSim2

simulator. The specific simulator is built on the famous Stage

2more details can be found at http://robots.mobilerobots.com/wiki/MobileSim



0 200 400 600 800 1000
10

−2

10
−1

10
0

10
1

Episodes

R
M

S
E

 o
f 

a
ll 

V

 

 

Online EM

LSTD

0 200 400 600 800 1000
−25

−24

−23

−22

−21

−20

−19

−18

Episodes

M
e

a
n

 R
e

tu
rn

s
 o

f 
th

e
 L

a
s
t 

1
0

0
 E

p
is

o
d

e
s

 

 

Online EM
Online LSPl

(a)13-states chain

0 200 400 600 800 1000
10

−1

10
0

10
1

Episodes

R
M

S
E

 o
f 

a
ll 

V

 

 

Online EM

LSTD

0 200 400 600 800 1000
−220

−210

−200

−190

−180

−170

−160

−150

−140

Episodes

M
e

a
n

 R
e

tu
rn

s
 i
n

 t
h

e
 L

a
s
t 

1
0

0
 E

p
is

o
d

e
s

 

 

Online EM

Online LSPI

(b) 98-states chain
Fig. 3. Comparative results on policy evaluation and learned policy in Boyan’s chain domain with 13 and 98 states. Each curve is the average of 30
independent trials.

0 20 40 60 80 100
−1500

−1000

−500

0

Episodes

M
e

a
n

 R
e

tu
rn

s
 o

f 
th

e
 L

a
s
t 

3
0

 E
p

is
o

d
e

s

 

 

Online EM
Online LSPI

0 20 40 60 80 100
−800

−700

−600

−500

−400

−300

−200

−100

Episodes

M
e

a
n

 R
e

tu
rn

s
 o

f 
th

e
 L

a
s
t 

3
0

 E
p

is
o

d
e

s

 

 

Online EM

KLSPI

(a) Puddle World (b) Mountain Car
Fig. 4. Comparative results in the simulated environments.



platform and manages to simulate the real environment with
satisfactory precision and realism.

Two different grid maps (stage worlds) have been selected
during our experiments, as shown in Fig.2(b),(c), each of
which has its own peculiarities (different types of obstacles).
The specific two worlds have been designed and edited by
using the Mapper tool kit. The objective of the robot in these
tasks is to find a steady landmark (shown with a rectangular
green box in each map of Fig.2(b),(c)) with the minimum
number of steps, starting from any position in the world and
performing a finite number of actions. The particular tasks are
episodic and a new episode starts when one of the following
incidents comes first: the maximum allowed number of steps
per episode is expired (in our case was set to 100), an obstacle
is hit, or the target is reached. The state space consists of two
continuous variables: the x and y coordinates which specify
the situation of the robot in the world. At each time step, the
robot receives an immediate reward of −1, except in the case
that an obstacle is hit where the received reward is −100. The
action space has been discretized into the 8 major compass
winds, while the length of each step was set equal to 1m.

The comparative results on the two worlds are illustrated
in Fig. 5, where each plot represents mean returns received
by the agent in the last 100 episodes. In the case of LSPI
algorithm, we have used an equidistant fixed 10 × 10 grid
of Gaussian RBFs is used over the state spaces (800 RBFs
are used). As it becomes obvious, the proposed methodology
achieves to discover an optimal policy in a much higher rate.
On the other hand, our method don’t need a so huge number
of basis function as the online LSPI do, in order to discover
an optimal policy. More specifically, the proposed algorithm
constructs approximately 300 − 400 clusters in both world
stages, that specify the basis functions of our model. Finally,
Figs. 6,7 represents the learned policies of both methods after
500 episodes.

V. CONCLUSION

In this study we have presented a model-based reinforce-
ment learning scheme for learning optimally in MDPs. The
proposed method is based on online partitioning the state-
action space into clusters and simultaneously constructing a
Markov transition matrix by counting the observed transitions
that each cluster conformation undergoes over time steps. It is
our intention to further pursue and develop the method in two
directions: At first we can employ regularized least-squares
methods, such as Lasso or a Bayesian sparse methodologies
to eliminate the problem of overfitting. Also, during our
experiments we have observed a tendency of our method to
produce large number of clusters, some of them may become
inactivated. Thus, a mechanism for merging clusters to the
body of the online EM procedure constitutes an interesting
direction for future work.

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press Cambridge, USA, 1998.

[2] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators.
CRC Press, 2010.

[3] J. A. Boyan, “Technical update: Least-squares temporal difference
learning,” Machine Learning, pp. 233–246, 2002.

[4] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal
of Machine Learning Research, vol. 4, pp. 1107–1149, 2003.

[5] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Online least-
squares policy iteration for reinforcement learning control,” in Proceed-
ings of the 2010 American Control Conference, 2010, pp. 486–491.

[6] G. Taylor and R. Parr, “Kernelized value function approximation for
reinforcement learning,” in International Conference on Machine Learn-
ing, 2009, pp. 1017–1024.

[7] X. Xu, H. Hu, and B. Dai, “Adaptive sample collection using active
learning for kernel-based approximate policy iteration,” in Proceedings
of the Adaptive Dynamic Programming and Reinforcement Learning,
2011, pp. 56–61.

[8] Y. Engel, S. Mannor, and R. Meir, “Reinforcement learning with
gaussian process,” in International Conference on Machine Learning,
2005, pp. 201–208.

[9] G. Konidaris, S. Osentoski, and P. Thomas, “Value function approxima-
tion in reinforcement learning using the fourier basis,” in AAAI Conf.
on Artificial Intelligence, 2011, pp. 380–385.

[10] S. Mahadevan and M. Maggioni, “Proto-value Functions: A Laplacian
Framework for Learning Representation and Control in Markov Decision
Processes,” Journal of Machine Learning Research, vol. 8, pp. 2169–
2231, 2007.

[11] I. Menache, S. Mannor, and N. Shimkin, “Basis Function Adaptation
in Temporal Difference Reinforcement Learning,” Annals of Operations
Research, vol. 134, pp. 215–238, 2005.

[12] M. Petrik, “An analysis of laplacian methods for value function ap-
proximation in mdps,” in International Joint Conference on Artificial
Intelligence, 2007, pp. 2574–2579.

[13] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from
incomplete data via the EM algorithm,” J. Roy. Statist. Soc. B, vol. 39,
pp. 1–38, 1977.

[14] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[15] R. Neal and G. Hinton, “A view of the em algorithm that justifies

incremental, sparse, and other variants,” in NATO Adv. Study Inst. on
Learn. Graph. Models, 1998, pp. 355–368.

[16] B. R. Leffler, M. L. Littman, and T. Edmunds, “Efficient reinforcement
learning with relocatable action models,” in Proceedings of the Twenty-
Second Conference on Artificial Intelligence, 2007, pp. 572–577.

[17] R. S. Sutton, “Generalization in reinforcement learning: Successful ex-
amples using sparse coarse coding,” in Advances in Neural Information
Processing Systems 8. MIT Press, 1996, pp. 1038–1044.



0 100 200 300 400 500
−100

−80

−60

−40

−20

0

Episodes

M
e

a
n

 R
e

tu
rn

s
 o

f 
th

e
 L

a
s
t 

1
0

0
 E

p
is

o
d

e
s

 

 

Online LSPI

0 100 200 300 400 500
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Episodes

M
e
a
n
 R

e
tu

rn
s
 i
n
 t
h
e
 L

a
s
t 
1
0
0
 E

p
is

o
d
e
s

 

 

Online EM

Online LSPl

(a) Stadium S1 (b) Stadium S2

Fig. 5. Comparative results in two simulated environments.

(a) Online EM (b) Online LSPI

Fig. 6. Learned policies by both comparative methods in the case of test world S1.

(a) Online EM (b) Online LSPI

Fig. 7. Learned policies by both comparative methods in the case of test world S2.


