An online kernel-based clustering approach for
value function approximation

N. Tziortziotis and K. Blekas

Department of Computer Science, University of loannina
P.O.Box 1186, Ioannina 45110 - Greece

{ntziorzi,kblekas}@cs.uoi.gr

Abstract. Value function approximation is a critical task in solving
Markov decision processes and accurately representing reinforcement learn-
ing agents. A significant issue is how to construct efficient feature spaces
from agent’s samples in order to obtain optimal policy. This study ad-
dresses this challenge by proposing an online kernel-based clustering ap-
proach for building appropriate basis functions during the learning pro-
cess. The method uses a kernel function capable of handling pairs of
state-action as sequentially generated by the agent. At each time step,
the procedure either adds new clusters, or adjusts the winning cluster’s
parameters. By considering the value function as a linear combination of
the constructed basis functions, the weights are simultaneously optimized
in a temporal-difference framework in order to minimize the Bellman ap-
proximation error. The proposed method is evaluated in numerous known
simulated environments.

1 Introduction

The goal of Reinforcement Learning (RL) [1,2] is to control an autonomous agent
in unknown environments. The agent interacts with the environment which is
typically modeled as a Markov Decision Process (MDP), and receives a scalar
reward signal that evaluates the quality of the selected transitions. The decision
making procedure is designed so as to choose actions with the optimum expected
rewards. The quality of such a policy is quantified by the so-called value function
which associates to every state the expected discounted reward when starting
from this state and all decisions are made following this policy. However, in cases
with large or infinite state spaces the value function cannot be calculated explic-
itly. In such domains a common strategy is to employ function approximation,
by representing the value function as a linear combination of some set of basis
functions.

The Temporal Difference (TD) family of algorithms [3] provide a nice frame-
work for policy evaluation. The parameters of the value function are usually
learned from data, as in the case of incremental TD and the Least-Squares TD
(LSTD) methods [4,5]. Also, kernelized reinforcement learning methods have
been paid a lot of attention by employing kernel techniques to standard RL
methods [6] and Gaussian Processes for approximating the value function [7-9].

However, in most cases the basis functions used for estimating the value
function remain fixed during the learning process, as for example a recent work
presented in [10] uses fixed Fourier basis functions for value function approxi-
mation. Alternatively, A steady number of basis functions are tuned in a batch
manner, as in the cases presented in [11,12] that build a graph over the state
space after selecting a large number of input data and then generates the k
eigenvectors of the graph Laplacian matrix. In another work in [13] a set of
k RBF basis function are adjusted directly over the Bellman’s equation of the
value function. Finally, in [14] the probability density function and the reward
model, which are assumed to be known, are used for creating basis function from
Krylov space vectors (powers of the transition matrix used to systems of linear
equations).

In this paper we propose a novel framework for value function approxima-
tion which addresses the issue of online construction of basis functions. An on-
line kernel-based clustering approach is used for separating the input space that
contains pairs of state-action by appropriate considered a kernel function that
encapsulates both kind of information. The clustering procedure selects itera-
tively a winning prototype and applies a learning procedure for the adaptation
of its parameters based on stochastic gradient descent. In addition, it provides
a mechanism for automatically adding clusters. The parameters of the clusters
can be further used for building a dictionary of basis function which can be
employed to the policy evaluation procedure for the adaptation of weights of
the value function linear model. These two stages act simultaneously during the
learning process aiming at estimating optimal policy after convergence. The pro-
posed method has been tested to several known simulated environments where
we have made comparisons with a recent value function approximation approach
that uses fixed Fourier basis functions.

The remaining of this paper is organized as follows. In Section 2, we briefly
we present some preliminaries and review the basic TD scheme for value function
approximation. Section 3 contains the main contribution of this paper where we
describe an efficient online kernel-based clustering algorithm for constructing
basis functions and how it can be embedded to the basic TD learning scheme.
In Section 4 we present experimental results and finally, in section 5 we give
conclusions and suggestions for future research.

2 Background and preliminaries

A Markov Decision Process (MDP) is a tuple (S, A, P, R,~v), where S is a set
of states; A a set of actions; P : § x A x S — [0,1] is a Markovian transition
model that specifies the probability P(s,a,s’) of transition to a state s’ when
taken an action a in state s; R : & — R is the reward function for a state-
action pair; and v € (0, 1) is the discount factor for future rewards. A stationary
policy 7 : S — A for a MDP is a mapping from states to actions and denotes
a mechanism for choosing actions. An episode is a sequence of state transitions:

< s1,a1,71,82,...,>. An agent repeatedly chooses actions until the current
episode terminates, and then a new episode starts over again.

The notion of value function is of central interest in reinforcement learning
tasks. Given a policy =, the value V™ (s) of a state s is defined as the expected
discounted sum of rewards obtained when starting from this state until the
current episode terminates following policy :

V™(s) = E[> 7' R(se)|so = 5.7] , (1)
t=0

As it is well-known the value function must obey the Bellman’s equation:
V7(s) = Ex[R(s¢) + V7 (st41)]s¢ = 8] (2)

which expresses a relationship between the values of successive states in the same
episode. Similarly, the state-action value function (Q-function) Q(s,a) denotes
the expected cumulative reward as received by taking action a in state s following
the policy .

o0

Q" (s,a) = E, Z'th(stﬂso =s,a0 =a . (3)

t=0
In this study we will be focused on @ functions dealing with state-action pairs

(s,a).
The objective of RL problems is to estimate an optimal policy 7* by choosing
actions that yields the optimal action-state value function Q*:

T (s) = argmng*(s,a). (4)

A common choice for representing the value function is through a linear function
approximation using a set of k basis functions {¢;(s,a)};:

k
Q(s,a;w) = ¢(s,a) w = Zgbj(s, a)wj , (5)
j=1
where w = (w1, ..., wg) is a vector of weights which are unknown and must be

estimated so as to minimize the approximation error. The selection of the basis
functions is very important and must be chosen to encode properties of the state
and action relevant to the proper determination of the @ values. As we will se
later, our method provides an adaptive incremental procedure for discovering
basis functions through online clustering.

One of the most popular TD algorithms used in on-policy RL is the SARSA
[1] that is based on bootstrapping technique. Assuming that an action a; is taken
and the agent moves from belief state s; to a new state s;1 while receiving a
reward 7, a new action a;41 is chosen according to the current policy. Then, the
predicted @ value of this new state is used to calculate an improved estimate for
the @ value of the previous state:

6 = 16 +7Q (8141, A1) — Q(St, ar) = 1t +Y(D(S41, ars1) — d(St,ar)) Twy , (6)

which is the scalar one-step temporal-difference (TD) error. This is used next for
adjusting the weights of the policy by performing a stochastic gradient descent
scheme:

Wi = Wi + 0tV Q(St, at) (7)

where o is the learning rate which set to some small value (e.g. 0.05) and can be
decreased over time. Note that sometimes it is useful to use the version of SARSA
with the eligibility traces, SARSA(\), that allows the update rule to propagate
rewards backward over the current trajectory of states during the episode. This
is done by modifying the above equation (Eq. 7) as w1 = wy + azdreq, where
= vAei—1 + VuQ(st,at) is the vector of eligibility traces with A being a
parameter in [0, 1]. This is the version we have adopted in our approach.

3 The proposed method

The proposed methodology is based on a policy evaluation scheme that incremen-
tally builds a dictionary of basis functions for modeling the value functions. This
is accomplished by using an online clustering scheme that decomposes appropri-
ately an efficient kernel space of the inputs so as to achieve optimal exploration
of the value function. To what follows and for simplicity we will assume that the
input samples that are generated by the agent are state-action pairs, denoted as
x; = (84,a;). We will also consider that the action space is discrete of size M.
Assuming a given data set of N samples {x1,2a,...,zx} the task of clus-
tering aims at partitioning the input set into k£ disjoint clusters, ci1,ca, ..., ck
containing samples with common properties. The kernel k-means [15,16], is an
extension of the standard k-means algorithm that is based on transforming data
to a feature space through appropriate kernel functions and minimizing the clus-
tering error in this space. In particular, the objective function is given by

me{ K(z;,mj)} (8)

where m; are some representatives for each cluster. In our study we have con-
sidered that every cluster c; is characterized by the following features:

— py: its centroid in state space S,
— JY;: diagonal covariance matrix over the state space,
- p;= (pj1,--.,pjm): the density function over the M discrete actions, giving

the probabilities of each action (Z%Zl Pjm = 1).
These features constitute the representative vector m; for every cluster.
The kernel function K (z;,m;) for an arbitrary sample, z; = (s;, a;), gen-

erated by the agent with the c; cluster that has a representative vector m; =
(p,j, X;,pj) is derived as a product of two kernels, one for each space:

K(xi;mj) :Ks(siyujazj)Ka(aiypj)) (9)

For the state space we have used Gaussian-type kernel:
Ky(siypj0 25) = exp((si — p) ' 27 (85 —) (10)

while for the action space the kernel function is derived from the probability for
this action of the cluster action distribution, i.e.

Ka(aiapj) = DPj,a; - (11)

Note that in fact the above kernel function in the action space is the cosine
similarity between the probability vector for actions and an indicator vector of
the input action a; with zeros in all positions except for the position of a; that
has one.

In our case the samples are non-stationary and are generated sequentially (i.e.
time-varying). Online clustering provides a framework for constructing recursive
learning rules taking into account model evolutions over time. The proposed
online kernel-based clustering method is performed iteratively as follows: For
a random taken data point x; = (s;,a;), the method first selects the winning
cluster j* according to the current kernel values, i.e.

J* = argmi K (a;,m;) (12)
If the maximum kernel value is less than a predefined threshold value K.y,
then a new cluster is created k = k + 1 by initializing it properly. This is done
by setting the state s; as the cluster state centroid, p; = s;, while for the
action density probability p;, we give a large value for the action probability of
action a; (€.g. pr,qa; = 0.8) and normalize the others so as to hold the constraint

The next step is the adaptation phase where the prototype m;- of the winning
cluster must be adjusted. This is accomplished by using the next update rules:

(new)

By = e+ 0K (T, mg) (s — pye) (13)

) = it kK (i, my)diag((si — p{M) (s — pP)T) L (14)

n (15)

gm

new _) Mim + 1, it m=a;
MNjm, otherwise

where the term 7 is the learning rate taking a small value (e.g. 0.05) and which
again can be reduced over time. It must be noted that the density of actions p;,
is guided by the frequency distribution n,, and thus it is more convenient to keep
record of frequencies. Then, the probabilities p;,, are calculated by the relative
frequencies. From the above rule, it is easily to show that the probability of action
a; will be increased by (v; —njm)/(vj(v; + 1), while the probability of the other
M — 1 actions will be decreased by —njn,/(v;(v; + 1), where v; = ZM

m=1 njm iS
the total frequency of cluster c;.

The above procedure is repeated until convergence, or the number of episodes
reaches a prespecified value. The method starts with a single cluster k = 1, where
it is initialized as described previously by the first data point seen by the agent
x1 = (81,a1). At every time step the policy evaluation stage uses the k basis
functions as (currently) taken by the clustering procedure. Therefore, the online
clustering approach provides not only the shape, but also the proper number of
basis functions for estimating the value function. At a second level, the linear
weights are re-estimated following the temporal difference (TD) learning process,
as described previously.

Algorithm 1 summarizes the overall scheme of the proposed methodology.

Algorithm 1 The proposed method for value function approximation

1: Start with & = 1 and use first point z; = (s1,a1) for initializing it. Set a random
value to weight wi. t = 0.

2: while convergence or maximum number of episodes not found do

3 Suppose previous input x; = (s;, a;). Observe new state S;y1.

4: Select action according to the current policy ait1 = arg maxi?, Q(sit1,1).

5: Find the winning cluster j* = arg maxle K(xzi,mj).

6: if maz; K(zi,mj) < Kmin then

7 Create a new cluster (k = k + 1) and initialize its prototype my with x;11.
8 Create a new weight wy of linear model initialized randomly. w: = w U wg.
9: else
10: Update the prototype mj+ of the winning cluster using Egs. 13-15.
11: end if
12: Obtain the new k basis functions as: ¢;(s,a) = K((s,a),m;)Vj=1,... k.
13: Update the weights w; of Q function according to Egs. 6, 7.
14: t=t+1
15: end while

4 Experimental results

A number of experiments have been conducted using three well-known contin-
uous benchmarks in order to assess the performance of the proposed methodol-
ogy. These environments can be found on the RL-Glue software which are freely
available at http://glue.rl-community.org/. Comparison has been made with a
recent method presented in [10] that uses fixed Fourier basis functions of order
3 (denoted as ’O(3)Fourier’) !. This methd In all experiments we have set the
discount factor « equal to 1, the parameter A equal to 0.9, and the threshold for
adding a new cluster as K,,;, = 0.5.

The first benchmark is the famous cart pole where the objective is to keep
the pole balanced and the cart within its limits by applying a fixed magnitude
force either to the left, or to the right (two actions). There are four continuous

! open source code for this method can be found in the RL-Glue library

variables: the horizontal position and the velocity of the cart, as well as the angle
and the angular velocity of the pole, while the reward received is +1.

The second environment is the mountain car, where the objective is to drive
an under-powered car up a steep mountain road from a valley to the right tophill
using three actions. The state consists of two continuous variables: the position
and the current velocity of the car, while at every step a negative reward r = —1
is received.

In the last domain the agent controls a simulated acrobot attached by the
hands to a fixed location. The goal is to apply torque to the hips of the robot
and swing the feet above a pre-specified threshold. There are four continuous
variables: the angle and the angular velocity of the two joints. The agent can
select between three actions: positive torque , negative torque and zero torque
on the second joint. A negative reward (r = —1) is received at each time step
except for the case where the goal is reached (r = 0). An episode is terminated
only when the goal is reached.

Cart Pole Mountain Car Acrobot
OF===—== T 1,500 1500

—Our Method
—Our Method | ---0(3) Fourier - --0(3) Fourier
- —Our Method -

200

---0(3)Fourier

400 1,000fs 1000 b 4

Steps
Steps
Steps

600

500/ | 500

800

1000 100
0

0 50 100 150 200 0 20 40 60 80 100 0 20 40 60 80 100
Episode Episodes Episodes

Fig. 1. Comparative results in three simulated environments.

The depicted results on these three benchmarks are illustrated in Fig. 1,
where each curve gives the number of steps that the agent makes per episode.
Note these are the mean curves obtained by 10 runs per problem. As it is obvious
our method has the tendency to converge to the optimum solution faster than
the *O(3)Fourier’ method that employs (256) fixed Fourier basis function. It
is interesting to note that in the case of the 'mountain car’ and the ’acrobot’
environments the proposed managed to discover additionally better policy.

5 Conclusions and future directions

In this study we have presented a novel framework for learning representation
of reinforcement learning agents and control in Markov decision processes. An
online kernel-based clustering approach is used as a mechanism for creating and
adjusting clusters over the input state-action pairs generated by the agent. At
each step, the current cluster parameters are used for building an efficient kernel
space that provides with appropriate basis functions to the temporal-difference

learning framework. Thus, the linear weights used for value function approxima-
tion are sequentially adjusted in a more optimal way. The initial results of our
method obtained from the comparative study are very promising and promote
directions for further research: Since the proposed scheme of constructing basis
functions is general, it allows the possibility to study its impact to other tem-
poral difference algorithms for learning the weights of the value function, such
as the Least-Squares Temporal Difference (LSTD) or Gaussian Process Tem-
poral Difference (GPTD). Also, alternative schemes of online clustering can be
examined, as well as to make an extensive comparison with other value function
approximation approaches.

References

1. R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press
Cambridge, USA, 1998.

2. L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement learning: A survey.
Journal of Artificial Inteligence Research, 4:237-285, 1996.

3. R. Sutton. Learning to predict by the method of temporal differences. Machine
Learning, 3(1):9-44, 1988.

4. J. A. Boyan. Technical update: Least-squares temporal difference learning. Ma-
chine Learning, pages 233-246, 2002.

5. M. G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine
Learning Research, 4:1107-1149, 2003.

6. X. Xu, D. Hu, and X. Lu. Kernel-based least squares policy iteration for reinforce-
ment learning. IEEE Transactions on Neural Networks, 18(4):973-992, 2007.

7. C.E. Rasmussen and M. Kuss. Gaussian processes in reinforcement learning. In
Advances in Neural Information Processing Systems 16, pages 751-759, 2004.

8. Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with gaussian process.
In International Conference on Machine Learning, pages 201-208, 2005.

9. A. M. Farahmand, M. Ghavamzadeh, C. Szepesvari, and S. Mannor. Regularized
policy iteration. In NIPS, pages 441-448, 2008.

10. G.D. Konidaris, S. Osentoski, and P.S. Thomas. Value function approximation
in reinforcement learning using the fourier basis. In AAAI Conf. on Artificial
Intelligence, pages 380-385, 2011.

11. S. Mahadevan. Samuel meets amarel: Automating value function approximation
using global state space analysis. In AAAI 2005.

12. S. Mahadevan and M. Maggioni. Proto-value Functions: A Laplacian Framework
for Learning Representation and Control in Markov Decision Processes. Journal
of Machine Learning Research, 8:2169-2231, 2007.

13. 1. Menache, S. Mannor, and N. Shimkin. Basis Function Adaptation in Temporal
Difference Reinforcement Learning. Annals of Operations Research, 134:215-238,
2005.

14. M. Petrik. An analysis of laplacian methods for value function approximation in
mdps. In International Joint Conference on Artificial Intelligence, pages 2574—
2579, 2007.

15. B. Scholkopf, A. J. Smola, and K.-R. Muller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998.

16. G. Tzortzis and A. Likas. The Global Kernel k-Means Clustering Algorithm. IEEE
Trans on Neural Networks, 20(7):1181-1194, 2009.

