
Parallel Recombinative ReinforcementLearningAristidis Likas, Konstantinos Blekas and Andreas StafylopatisComputer Science DivisionDepartment of Electrical and Computer EngineeringNational Technical University of Athens157 73 Zographou, Athens, GreeceAbstractA technique is presented which is suitable for function optimization in high-dimensionalbinary domains. The method allows an e�cient parallel implementation and is basedon the combination of genetic algorithms and reinforcement learning schemes. Morespeci�cally, a population of probability vectors is considered, each member corre-sponding to a reinforcement learning optimizer. Each probability vector representsthe adaptable parameters of a team of stochastic units whose binary outputs pro-vide a point of the function state space. At each step of the proposed techniquethe population members are updated according to a reinforcement learning rule andthen recombined in a manner analogous to traditional genetic algorithm operation.Special care is devoted to ensuring the desirable properties of sustained explorationcapability and sustained population diversity. The e�ciency of the method is testedon two deceptive problems that constitute typical benchmarks yielding very promis-ing results.1 IntroductionThis paper presents a population-based technique for the solution of function optimizationproblems de�ned on high-dimensional binary domains. The method does not assume anya priori knowledge regarding the function to be optimized. Information can be collected bygenerating points in the function domain and observing the corresponding function value.Therefore, the only way to proceed is through a generate and test search process, which ateach step samples one or more points in the problem state space and based on the receivedvalues adjusts its state and/or the sampling strategy.The majority of search techniques of this kind are point-based, in the sense that at eachstep they consider as current state the position of one point in the function space andthey generally select the next point to be evaluated from the neighborhood of the currentpoint. Population-based search techniques consider as current state the locations of manypoints in the state space and derive new points by suitably manipulating the current ones.



Such techniques have gained much attention mainly since they are suitable for parallelimplementation.A degenerate example of population-based search technique is parallel point-based hill-climbing, where there is a population of point-based hillclimbers operating in parallel andindependently, with no information exchange among them. Their exploration capabilityis limited by the capabilities of individual optimizers. The main interest is focused onrecombinative population-based techniques which generate points for testing by combin-ing information from the current population. They are characterized by great 
exibilityconcerning the ways in which the current population members can be combined and thestrategy under which the generated points will replace the old ones. In addition, they ex-hibit a high degree of parallelism which makes attractive their implementation on parallelmachines.The most widely studied recombinative population-based optimization procedures arebased on genetic algorithms [12, 8, 13]. All other techniques have been developed ashybrids that extend the traditional simple genetic approach by incorporating more sophis-ticated hillclimbing procedures. The �rst such hybrid that has been developed was theSIGH algorithm (Stochastic Iterated Genetic Hillclimbing)[1] and many other attemptsfollowed, mainly aiming at combining features of genetic algorithms and simulated anneal-ing [5, 10, 4]. One promising such technique is Parallel Recombinative Simulated Annealing(PRSA) [15] which seems to improve many of the weaknesses of both genetic algorithmsand simulated annealing.An interesting type of point-based optimizers has been developed from results in thecontext of reinforcement learning theory applied to connectionist networks [2, 17, 11, 18,19]. A special class of such algorithms called REINFORCE has been proved to followthe stochastic hillclimbing property [16, 19]. Reinforcement learning algorithms exhibittwo desirable properties which are crucial for the e�ectiveness of any search technique [1]:learn while searching, i.e., guide the search towards the more promising regions of the statespace, and sustain exploration, i.e., gradually switch from local to global search in order toattain other promising regions.The technique presented in this paper constitutes a population-based method that isbased on the parallel operation and combination of individual reinforcement learning opti-mizers. The approach can be considered as an extension of traditional genetic algorithmsin that it considers vectors of probabilities instead of bit vectors as population members.At each step these members are recombined and, in addition, the components of the result-2



ing vectors of probabilities are adjusted according to the reinforcement learning rules. Theresulting scheme exhibits the properties of learning while searching and sustained explo-ration, since such properties are ensured by the employed reinforcement learning schemes.In addition, since we are dealing with a population-based method, care should be taken tomaintain the diversity of the members so that the situation does not reduce to a populationof almost identical optimizers simultaneously searching the same region of the space. Wecall this third desirable property sustained diversity and the decisions made in developingour scheme were signi�cantly a�ected by this objective. We shall denote the proposedpopulation-based approach as Parallel Recombinative Reinforcement Learning (PRRL) inanalogy with the de�nition of PRSA.The next section provides a brief description of genetic algorithms and reinforcementlearning schemes. The proposed recombinative approach is described in Section 3, whereasexperimental results from applying PRRL to test problems are reported in Section 4.Section 5 summarizes the main conclusions and directions of further research.2 Genetic Algorithms and Reinforcement LearningIn this section the basic features of traditional genetic algorithms and reinforcement learn-ing algorithms are brie
y visited. This short presentation will facilitate the description ofthe characteristics of the proposed approach.2.1 Genetic AlgorithmsGenetic algorithms in their simple form constitute the �rst population-based optimizationmethod [12]. There are many variations of the basic approach [8]. In their traditionalformulation they assume a population of binary strings and at each generation step newmembers are created by applying genetic operators to appropriately selected strings.The most commonly used string selection scheme follows the principle of `survival ofthe �ttest', i.e., considering maximization problems, strings are selected for reproductionwith probability proportional to their corresponding �tness (function value). The crossoveroperator is responsible for the recombination of the selected strings. Usually two parentsare considered for recombination, although even the whole population can participate inthe generation of one string, as happens for example in the election scheme of the SIGHalgorithm [1]. The two parents can be combined in a variety of ways (sometimes dependingon the characteristics of the function to be optimized), the single-point crossover and3



the uniform crossover being the most commonly used. In addition, the basic geneticalgorithm employs a mutation operator which introduces randomness in the search processby randomly 
ipping some bit values in the population strings.Viewed as a population of point-based optimizers, the traditional genetic algorithmperforms a kind of parallel recombinative random search, in the sense that each populationmember can be considered as a point-based random optimizer that performs pure randomsearch using the mutation operator. Of course the main search task is accomblished throughrecombination of these naive optimizers using the crossover operator, but the simplicity ofthe mutation operator reduces the e�ectiveness of the algorithm in performing local search.The main problem with simple genetic algorithms is that they exhibit a fast conver-gence behavior, mainly due to the e�ects of the selection scheme which is biased towardsstrings having high function values and the crossover operator which cannot reintroducediversity [15]. The crossover between nearly identical strings provides strings similar totheir parents. Population diversity can be introduced only through mutation but its e�ec-tiveness is rather limited. Therefore, this property of gradual decrease of diversity in thepopulation limits the sustained exploration capabilities of simple genetic algorithms, sinceit inhibits continuing search which is necessary in solving di�cult problems.2.2 Optimization Using Reinforcement LearningIn the reinforcement learning approach to function optimization [17, 18, 14] the stateof the learning system is determined through a probability distribution. At each step,a point in the function space is generated according to the above distribution, and thecorresponding function value which is called reinforcement is provided to the system. Then,the parameters of the distribution are updated so as to direct the search towards thegenerated point in case of a high reinforcement value. In the opposite case, the point ismade less probable to be sampled again in the upcoming trials. In order to judge whethera point is `good' or not, a standard of comparison must be speci�ed which in most cases isconsidered as a trace (weighted average) of past reinforcement values.Reinforcement learning schemes have been applied to both continuous [11] and discrete[17, 18, 14] function optimization problems. In what concerns the application to problemsde�ned on binary domains, the simplest scheme considers that the point y = (y1; : : : ; yn)(yj 2 f0; 1g) to be evaluated at each step is generated by a team of Bernoulli units. EachBernoulli unit j determines the component yj of the output vector through a Bernoulliselection with probability pj = f(wj), where W = (w1; : : : ; wn) is the vector of adjustable4



parameters (weights) and f is a sigmoid function of the formpj = f(wj) = 1=(1 + exp(�wj)) (1)REINFORCE algorithms [16, 19] constitute an important class of reinforcement learn-ing algorithms. When applied to a team of Bernoulli units a REINFORCE algorithmprescribes that at each step weights are updated according to the formula:�wj = �j(r � r)(yj � pj) (2)where �j is the learning rate factor, r is the reinforcement signal delivered by the environ-ment and r the reinforcement comparison:r(t) = 
r(t� 1) + (1� 
)r(t) (3)
 is a decay rate positive and less than 1, which in all our experiments was set equal to0:9.An important result proved in [16, 19] is that for any REINFORCE algorithm theaverage update in parameter space W lies in a direction for which the expected value of ris increasing, i.e., the algorithm is characterized by the stochastic hillclimbing property.Since the above pure REINFORCE schemes converge, a simple modi�cation has beensuggested [17] that incorporates a decay term ��wj in the update equation (2) in order toachieve the sustained exploration objective:�wj = �j(r � r)(yj � pj)� �wj (4)where 0 < � < 1.As already stated in the introduction, our scheme is based on manipulating the vectorsof probabilities Pi = (pi1 : : : ; pin) which actually constitute the members of the population.For this reason the weights wj have been discarded and the necessary updates are performeddirectly on the probability values, according to the following equation which is derived from(1) and (4): pij := f  (1� �) ln pij1� pij + �ij(ri � ri)(yij � pij)! (5)3 The Recombinative SchemeParallel Recombinative Reinforcement Learning can be considered as a population-basedextension of the reinforcement learning approach to function optimization. From a dif-ferent point of view, it can be considered as a mutation-adaptive genetic algorithm in the5



sense that the mutation probability is adapted as the search proceeds. The mutation prob-ability is not a global parameter having the same value for the whole population, but eachcomponent of every string has its individual probability of being 0 or 1.3.1 The Basic ApproachConsider a PRRL approach with p population members. Each population member i isa vector Pi of probabilities pij (i = 1; : : : ; p, j = 1; : : : ; n) that constitute the state ofa reinforcement learning optimizer. In this sense, we can say that each reinforcementoptimizer i is assigned one population slot where its probability state vector Pi is kept. Ateach step, �rst a reproduction procedure takes place during which the probability vectorsare recombined and a new generation of vectors is created. Then a sampling procedure isperformed and p points Yi = (yi1; : : : ; yin) (i = 1; : : : ; p) of the function space are generatedwith Bernoulli selection using the corresponding probabilities pij. The �tness ri of eachpoint Yi is evaluated and a reinforcement update of the probabilities takes place usingequation (5) so that the search is guided towards promising regions of the space.At each generation step, the p new population members are created as follows: foreach current member i we decide with probability pc whether crossover will be applied ornot. If the decision is negative, the state of slot i does not change, otherwise, anothermember k is randomly selected and crossover is performed between the probability vectorscorresponding to the two parents. The recombination operator that we have adopted is avariant of single-point crossover. The new probability vector Pl is created in the followingmanner:� We randomly select the crossover point t (1 � t � n� 1).� If t � dn=2e, then we set plj = pkj for j = 1; : : : ; t and plj = pij for j = t + 1; : : : ; n.� If t > dn=2e, then we set plj = pij for j = 1; : : : ; t and plj = pkj for j = t+ 1; : : : ; n.According to the above approach, the new vector Pl remains as close as possible to thevector Pi. That child becomes the new state vector Pi for slot i. In this way, the char-acteristics of individual population members are preserved to some extent, thus retardingthe decrease of population diversity.It must be noted that the above reproduction scheme is synchronous, i.e., all p childrencan be created simultaneously and independently based on the precedent generation, thusachieving a high degree of parallelism. 6



Reproduction is followed by the sampling (based on the new probability vectors) andevaluation phase for the p population members. Then the reinforcement update takes placeaccording to the learning rule of equation (5). There are two main alternative ways forcomputing the reinforcement comparison:� Consider a global reinforcement comparison value r for the whole population as aweighted average of prior averaged reinforcement values, i.e., r(t) in equation (3) istaken equal to r(t) = 1=p Ppi=1 ri(t).� Consider a separate reinforcement comparison value ri for each population slot, i.e.,compute a weighted average of prior reinforcement values ri concerning optimizer i.After exprimenting with both approaches, we have adopted the second one. The reasonis that the employment of more detailed values for reinforcement comparison leads tobetter local exploration and better exploitation of the reinforcement updates. Moreover, itmakes our algorithm compatible with the non-recombinative approach, in the sense that,if the probability of crossover is set equal to zero, our scheme reduces exactly to the caseof a population of independently running reinforcement optimizers. Another reason isthat the �rst alternative implies a tight coupling among population members, which isunfavourable to parallel implementation. Therefore, in addition to the probability vectorPi, the reinforcement comparison value ri is kept for each i and is updated at each step.(We also keep the value rmaxi which is the maximum function value that has been sampledat slot i. This is necessary for keeping track of the best value found by the system up toany given instant, as well as for application of the apathy principle as will be shown next.)At the beginning, all the components of the probability vectors are set equal to 0:5, i.e.,no initial knowledge is provided to the learning system. In case no decay term is used in thereinforcement update rule, the search process converges, in the sense that all probabilityvectors tend to be similar to each other and, in addition, their individual componentstend to be 1 or 0. In this case, the same point is continuously sampled by all populationmembers and the corresponding di�erences ri � ri become zero not allowing any furtherupdates of the probabilities pij. This convergence behavior is justi�ed by the use of boththe crossover mechanism and the reinforcement update rule. The crossover mechanismdestroys population diversity and causes the optimizers that search regions of low �tnessto be oriented towards regions of higher �tness already explored by other members. Inthis way, eventually all optimizers search the same region of the function space. On theother hand, the local search performed through the use of reinforcement updates eventually7



converges to a point of high �tness.If a decay term is added, the search algorithm does not converge, in the sense that itdoes not continuously produce the same points. Thus, sustained exploration is achieved,but we still have a lack of sustained diversity due to the e�ects of crossover, since the statesof the member probabilities are relatively close.It is clear that the PRRL algorithm as formulated so far is characterized by a highdegree of parallelism since all operations can be performed simultaneously for all membersof the population.3.2 Sustained DiversityIn order to reduce the e�ects of crossover and avoid genetic drift [7] we have chosen not toemploy a selection and replacement scheme based on the `survival of the �ttest' principle.Instead, a uniform random selection scheme concerning all population members has beenapplied. Another decision already mentioned was to replace each current population mem-ber with the closest of the two generated children, so as to avoid a serious disruption of thestates of local optimizers. A third approach that has proved very e�ective in maintainingpopulation diversity is based on the notion of apathy [1].According to the latter approach, some population members remain apathetic for somegenerations in the sense that they cannot be selected for recombination. Apathetic mem-bers cannot change their state through crossover, but can be chosen for crossover by othermembers of the population. To e�ectively apply this principle, a criterion is needed for amember to become apathetic as a well as a criterion for becoming active again. We havechosen to put a member into apathy whenever it generates a point of the state space yield-ing a higher �tness than the best value achieved so far. Thus, from the moment the searchattains a high �tness region, the optimizer is allowed to explore that region following thereinforcement learning rule. If for a speci�ed number of steps no better solution is obtainedthe member is brought back to the active state. Thus, an apathy step counter is necessaryfor each population member.Based on the features described above the PRRL algorithm takes the following form.� Initialize all probabilities to the value 0.5.� Repeatedly generate a new population from the current one until a maximum numberof generations is attained. Each new population is created by performing the followingsteps for each location i = 1; : : : ; p: 8



1. If member i is in apathy proceed to Step 4.2. With probability pc decide whether crossover will be performed or not. If thedecision is negative proceed to Step 4.3. Randomly choose a member from the rest of the population following a uniformdistribution. Combine the two parents to produce a new probability vector asdescribed previously. The new vector replaces the current one in location i.4. Based on the probability vector generate a point of the state space and evaluateits �tness ri.5. Update the probabilities of location i according to the reinforcement learningrule.6. If ri > rmaxi set rmaxi = ri. If moreover the population member i is not in apathythen put it into apathy and proceed to Step 8.7. If the member is in apathy increase the value of its counter by 1. If the value ofthe counter is the maximum allowed put the member back into the active stateand set the counter to zero.8. Update the value of reinforcement comparison ri.4 Experimental ResultsThe test problems that were selected for evaluating the e�ectiveness of our approach areversions of the order-3 deceptive problem that have been commonly employed to test theexploration capabilities of genetic schemes [6, 9].The order-3 deceptive subfunction is described in Table 1. The problems consideredhere are the same as in [15] and assume eight subfunctions of the above type, thus thedimension of the binary space is 24. The �tness of each 24-bit string results from the sumof the corresponding values of the eight subfunctions.The �rst of the examined problems (called the tight problem [15]) is a concatenationof eight subfunctions, where the �rst three bits of the string are the domain of the �rstsubfunction, the next three bits are the domain of the second subfunction and so on. Inthe second problem (called the loose problem) bits 0, 8, and 16 constitute the domain ofthe �rst subfunction, bits 1, 9 and 17 are the domain of the second subfunction and so on.Thus, the bits of each subfunction are maximally separated throughout the string.9



x f(x) x f(x)000 28 100 14001 26 101 0010 22 110 0011 0 111 30Table 1: The order-3 deceptive subfunctionThe selected problems are useful in order to gain insight into the behaviour of thealgorithm when dealing with di�cult optimization problem instances, without making thestate space very large and the search process intractable. Both problems have 255 localmaxima and only one global maximum with value 240. They are called deceptive because(as can be observed from Table 1) each subfunction, apart from the global maximum, hasalso a local maximum (called deceptive) which is more easy to approach through localhilliclimbing than the global one which is isolated. It is obvious that in the case of thetight problem the crossover operation will be very bene�cial, while in the case of the looseproblem its contribution will be rather insigni�cant with stochastic local hillclimbing beingthe major exploration mechanism.In all experiments the algorithm was terminated when the global maximum was foundor when 5000 generations had been performed. In the latter case the result was the bestsolution found during the search.Experiments were carried out for the proposed PRRL method considering di�erentsizes of the population p. For each population size 30 experiments were performed usingdi�erent seed values for the random number generator. The values of the parameters were� = 0:05 and � = 0:02, whereas the crossover probability was pc = 1 and the maximumallowed value for the apathy counter was set equal to 150.The same experiments were carried out using a Parallel Reinforcement Learning (PRL)scheme, as well as a simple genetic algorithm (GA). The PRL scheme considers a populationof reinforcement learning optimizers that operate independently (without crossover). TheGA algorithm considered follows the traditional genetic approach with crossover probabilityequal to 0.6 and mutation probability equal to 0.1.The results concerning PRRL and PRL are summarized in Tables 2 and 3 for the tightand the loose problem respectively. The displayed results represent the percentage of casesin which the global maximum was found, as well as the the average number of generation10



PRRL PRLp Success (%) Avg. Nb. Steps Success (%) Avg. Nb. Steps8 46.6 1900 20.016 80.0 1019 46.6 113332 100.0 640 93.3 109764 100.0 530 100.0 1143Table 2: Comparative results for the `tight' problemPRRL PRLp Success (%) Avg. Nb. Steps Success (%) Avg. Nb. Steps8 33.3 2746 28.0 328716 62.0 1896 49.3 301032 88.3 1465 75.0 255964 100.0 1249 93.3 1973Table 3: Comparative results for the `loose' problemsteps required to �nd it. The superiority of PRRL is apparent in both the success rate andthe required number of generations. It should be observed that PRRL performs better onthe tight problem than on the loose one. This is due to the e�ect of single-point crossoverwhich is well adapted to the structure of the tight problem. It is possible that uniform ormulti-point crossover would be more appropriate for the loose problem.Results are not reported for the simple GA, because in very few cases was it successfulin �nding the optimum within the 5000 generations. This is not surprising since it is knownthat the solution of deceptive problems is a very hard task for simple genetic algorithms[6, 9, 15].Our results show that the proposed technique o�ers clear advantage over conventionalgenetic algorithms and parallel reinforcement learning. This illustrates the improvementdue to the combined use of features such as recombination, reinforcement learning, sus-tained exploration and sustained diversity, which lead to a more e�ective exploration ofthe state space.
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