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Abstract

A technique is presented which is suitable for function optimization in high-dimensional
binary domains. The method allows an efficient parallel implementation and is based
on the combination of genetic algorithms and reinforcement learning schemes. More
specifically, a population of probability vectors is considered, each member corre-
sponding to a reinforcement learning optimizer. Each probability vector represents
the adaptable parameters of a team of stochastic units whose binary outputs pro-
vide a point of the function state space. At each step of the proposed technique
the population members are updated according to a reinforcement learning rule and
then recombined in a manner analogous to traditional genetic algorithm operation.
Special care is devoted to ensuring the desirable properties of sustained exploration
capability and sustained population diversity. The efficiency of the method is tested
on two deceptive problems that constitute typical benchmarks yielding very promis-
ing results.

1 Introduction

This paper presents a population-based technique for the solution of function optimization
problems defined on high-dimensional binary domains. The method does not assume any
a priori knowledge regarding the function to be optimized. Information can be collected by
generating points in the function domain and observing the corresponding function value.
Therefore, the only way to proceed is through a generate and test search process, which at
each step samples one or more points in the problem state space and based on the received
values adjusts its state and/or the sampling strategy.

The majority of search techniques of this kind are point-based, in the sense that at each
step they consider as current state the position of one point in the function space and
they generally select the next point to be evaluated from the neighborhood of the current
point. Population-based search techniques consider as current state the locations of many

points in the state space and derive new points by suitably manipulating the current ones.



Such techniques have gained much attention mainly since they are suitable for parallel
implementation.

A degenerate example of population-based search technique is parallel point-based hill-
climbing, where there is a population of point-based hillclimbers operating in parallel and
independently, with no information exchange among them. Their exploration capability
is limited by the capabilities of individual optimizers. The main interest is focused on
recombinative population-based techniques which generate points for testing by combin-
ing information from the current population. They are characterized by great flexibility
concerning the ways in which the current population members can be combined and the
strategy under which the generated points will replace the old ones. In addition, they ex-
hibit a high degree of parallelism which makes attractive their implementation on parallel
machines.

The most widely studied recombinative population-based optimization procedures are
based on genetic algorithms [12, 8, 13]. All other techniques have been developed as
hybrids that extend the traditional simple genetic approach by incorporating more sophis-
ticated hillclimbing procedures. The first such hybrid that has been developed was the
SIGH algorithm (Stochastic Iterated Genetic Hillclimbing)[1] and many other attempts
followed, mainly aiming at combining features of genetic algorithms and simulated anneal-
ing [5, 10, 4]. One promising such technique is Parallel Recombinative Simulated Annealing
(PRSA) [15] which seems to improve many of the weaknesses of both genetic algorithms
and simulated annealing.

An interesting type of point-based optimizers has been developed from results in the
context of reinforcement learning theory applied to connectionist networks [2, 17, 11, 18,
19]. A special class of such algorithms called REINFORCE has been proved to follow
the stochastic hillclimbing property [16, 19]. Reinforcement learning algorithms exhibit
two desirable properties which are crucial for the effectiveness of any search technique [1]:
learn while searching, i.e., guide the search towards the more promising regions of the state
space, and sustain exploration, i.e., gradually switch from local to global search in order to
attain other promising regions.

The technique presented in this paper constitutes a population-based method that is
based on the parallel operation and combination of individual reinforcement learning opti-
mizers. The approach can be considered as an extension of traditional genetic algorithms
in that it considers vectors of probabilities instead of bit vectors as population members.

At each step these members are recombined and, in addition, the components of the result-



ing vectors of probabilities are adjusted according to the reinforcement learning rules. The
resulting scheme exhibits the properties of learning while searching and sustained explo-
ration, since such properties are ensured by the employed reinforcement learning schemes.
In addition, since we are dealing with a population-based method, care should be taken to
maintain the diversity of the members so that the situation does not reduce to a population
of almost identical optimizers simultaneously searching the same region of the space. We
call this third desirable property sustained diversity and the decisions made in developing
our scheme were significantly affected by this objective. We shall denote the proposed
population-based approach as Parallel Recombinative Reinforcement Learning (PRRL) in
analogy with the definition of PRSA.

The next section provides a brief description of genetic algorithms and reinforcement
learning schemes. The proposed recombinative approach is described in Section 3, whereas
experimental results from applying PRRL to test problems are reported in Section 4.

Section 5 summarizes the main conclusions and directions of further research.

2 Genetic Algorithms and Reinforcement Learning

In this section the basic features of traditional genetic algorithms and reinforcement learn-
ing algorithms are briefly visited. This short presentation will facilitate the description of

the characteristics of the proposed approach.

2.1 Genetic Algorithms

Genetic algorithms in their simple form constitute the first population-based optimization
method [12]. There are many variations of the basic approach [8]. In their traditional
formulation they assume a population of binary strings and at each generation step new
members are created by applying genetic operators to appropriately selected strings.

The most commonly used string selection scheme follows the principle of ‘survival of
the fittest’, i.e., considering maximization problems, strings are selected for reproduction
with probability proportional to their corresponding fitness (function value). The crossover
operator is responsible for the recombination of the selected strings. Usually two parents
are considered for recombination, although even the whole population can participate in
the generation of one string, as happens for example in the election scheme of the SIGH
algorithm [1]. The two parents can be combined in a variety of ways (sometimes depending

on the characteristics of the function to be optimized), the single-point crossover and



the uniform crossover being the most commonly used. In addition, the basic genetic
algorithm employs a mutation operator which introduces randomness in the search process
by randomly flipping some bit values in the population strings.

Viewed as a population of point-based optimizers, the traditional genetic algorithm
performs a kind of parallel recombinative random search, in the sense that each population
member can be considered as a point-based random optimizer that performs pure random
search using the mutation operator. Of course the main search task is accomblished through
recombination of these naive optimizers using the crossover operator, but the simplicity of
the mutation operator reduces the effectiveness of the algorithm in performing local search.

The main problem with simple genetic algorithms is that they exhibit a fast conver-
gence behavior, mainly due to the effects of the selection scheme which is biased towards
strings having high function values and the crossover operator which cannot reintroduce
diversity [15]. The crossover between nearly identical strings provides strings similar to
their parents. Population diversity can be introduced only through mutation but its effec-
tiveness is rather limited. Therefore, this property of gradual decrease of diversity in the
population limits the sustained exploration capabilities of simple genetic algorithms, since

it inhibits continuing search which is necessary in solving difficult problems.

2.2 Optimization Using Reinforcement Learning

In the reinforcement learning approach to function optimization [17, 18, 14] the state
of the learning system is determined through a probability distribution. At each step,
a point in the function space is generated according to the above distribution, and the
corresponding function value which is called reinforcement is provided to the system. Then,
the parameters of the distribution are updated so as to direct the search towards the
generated point in case of a high reinforcement value. In the opposite case, the point is
made less probable to be sampled again in the upcoming trials. In order to judge whether
a point is ‘good’ or not, a standard of comparison must be specified which in most cases is
considered as a trace (weighted average) of past reinforcement values.

Reinforcement learning schemes have been applied to both continuous [11] and discrete
[17, 18, 14] function optimization problems. In what concerns the application to problems
defined on binary domains, the simplest scheme considers that the point y = (yi,...,Yn)
(y; € {0,1}) to be evaluated at each step is generated by a team of Bernoulli units. Each
Bernoulli unit j determines the component y; of the output vector through a Bernoulli

selection with probability p; = f(w;), where W = (wq, ..., w,) is the vector of adjustable



parameters (weights) and f is a sigmoid function of the form

pj = f(w;) = 1/(1 + exp(—wy)) (1)

REINFORCE algorithms [16, 19] constitute an important class of reinforcement learn-
ing algorithms. When applied to a team of Bernoulli units a REINFORCE algorithm

prescribes that at each step weights are updated according to the formula:

Aw; = aj(r —T)(y; — pj) (2)

where «; is the learning rate factor, r is the reinforcement signal delivered by the environ-

ment and 7 the reinforcement comparison:

T(t) =Tt = 1) + (1 = )r(t) (3)

v is a decay rate positive and less than 1, which in all our experiments was set equal to
0.9.

An important result proved in [16, 19| is that for any REINFORCE algorithm the
average update in parameter space W lies in a direction for which the expected value of r
is increasing, i.e., the algorithm is characterized by the stochastic hillclimbing property.

Since the above pure REINFORCE schemes converge, a simple modification has been
suggested [17] that incorporates a decay term —dw; in the update equation (2) in order to

achieve the sustained exploration objective:
Aw; = o (r = T)(y; — p;) — dw; (4)

where 0 < § < 1.

As already stated in the introduction, our scheme is based on manipulating the vectors
of probabilities P; = (p;1 . . ., pin) which actually constitute the members of the population.
For this reason the weights w; have been discarded and the necessary updates are performed

directly on the probability values, according to the following equation which is derived from
(1) and (4):

pij = f ((1 —6)In 13722% + g (ri — 7i) (yij — Pij)) (5)
3 The Recombinative Scheme

Parallel Recombinative Reinforcement Learning can be considered as a population-based
extension of the reinforcement learning approach to function optimization. From a dif-

ferent point of view, it can be considered as a mutation-adaptive genetic algorithm in the
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sense that the mutation probability is adapted as the search proceeds. The mutation prob-
ability is not a global parameter having the same value for the whole population, but each

component of every string has its individual probability of being 0 or 1.

3.1 The Basic Approach

Consider a PRRL approach with p population members. Each population member i is
a vector P; of probabilities p;; (i = 1,...,p, j = 1,...,n) that constitute the state of
a reinforcement learning optimizer. In this sense, we can say that each reinforcement
optimizer i is assigned one population slot where its probability state vector P; is kept. At
each step, first a reproduction procedure takes place during which the probability vectors
are recombined and a new generation of vectors is created. Then a sampling procedure is
performed and p points Y; = (y;1,. .., yim) (i = 1,...,p) of the function space are generated
with Bernoulli selection using the corresponding probabilities p;;. The fitness r; of each
point Y; is evaluated and a reinforcement update of the probabilities takes place using
equation (5) so that the search is guided towards promising regions of the space.

At each generation step, the p new population members are created as follows: for
each current member ¢ we decide with probability p. whether crossover will be applied or
not. If the decision is negative, the state of slot ¢ does not change, otherwise, another
member £ is randomly selected and crossover is performed between the probability vectors
corresponding to the two parents. The recombination operator that we have adopted is a
variant of single-point crossover. The new probability vector P, is created in the following

manner:
e We randomly select the crossover point ¢ (1 <t <n —1).
o If t < [n/2], then we set p;; = py; for j=1,...,t and p;j =p;; for j =t +1,...,n.
e If t > [n/2], then we set pj; =p;; for j=1,...,tand p; =pgj for j=t+1,...,n.

According to the above approach, the new vector P, remains as close as possible to the
vector P;. That child becomes the new state vector P; for slot 7. In this way, the char-
acteristics of individual population members are preserved to some extent, thus retarding
the decrease of population diversity.

It must be noted that the above reproduction scheme is synchronous, i.e., all p children
can be created simultaneously and independently based on the precedent generation, thus

achieving a high degree of parallelism.



Reproduction is followed by the sampling (based on the new probability vectors) and
evaluation phase for the p population members. Then the reinforcement update takes place
according to the learning rule of equation (5). There are two main alternative ways for

computing the reinforcement comparison:

e Consider a global reinforcement comparison value 7 for the whole population as a
weighted average of prior averaged reinforcement values, i.e., 7(¢) in equation (3) is
taken equal to r(t) = 1/p YF_, ri(t).

e Consider a separate reinforcement comparison value 7; for each population slot, i.e.,

compute a weighted average of prior reinforcement values r; concerning optimizer 1.

After exprimenting with both approaches, we have adopted the second one. The reason
is that the employment of more detailed values for reinforcement comparison leads to
better local exploration and better exploitation of the reinforcement updates. Moreover, it
makes our algorithm compatible with the non-recombinative approach, in the sense that,
if the probability of crossover is set equal to zero, our scheme reduces exactly to the case
of a population of independently running reinforcement optimizers. Another reason is
that the first alternative implies a tight coupling among population members, which is
unfavourable to parallel implementation. Therefore, in addition to the probability vector

P;, the reinforcement comparison value 7; is kept for each ¢ and is updated at each step.

mazr
7

(We also keep the value r™*® which is the maximum function value that has been sampled
at slot 7. This is necessary for keeping track of the best value found by the system up to
any given instant, as well as for application of the apathy principle as will be shown next.)

At the beginning, all the components of the probability vectors are set equal to 0.5, i.e.,
no initial knowledge is provided to the learning system. In case no decay term is used in the
reinforcement update rule, the search process converges, in the sense that all probability
vectors tend to be similar to each other and, in addition, their individual components
tend to be 1 or 0. In this case, the same point is continuously sampled by all population
members and the corresponding differences r; — 7; become zero not allowing any further
updates of the probabilities p;;. This convergence behavior is justified by the use of both
the crossover mechanism and the reinforcement update rule. The crossover mechanism
destroys population diversity and causes the optimizers that search regions of low fitness
to be oriented towards regions of higher fitness already explored by other members. In
this way, eventually all optimizers search the same region of the function space. On the

other hand, the local search performed through the use of reinforcement updates eventually



converges to a point of high fitness.

If a decay term is added, the search algorithm does not converge, in the sense that it
does not continuously produce the same points. Thus, sustained exploration is achieved,
but we still have a lack of sustained diversity due to the effects of crossover, since the states
of the member probabilities are relatively close.

It is clear that the PRRL algorithm as formulated so far is characterized by a high
degree of parallelism since all operations can be performed simultaneously for all members

of the population.

3.2 Sustained Diversity

In order to reduce the effects of crossover and avoid genetic drift [7] we have chosen not to
employ a selection and replacement scheme based on the ‘survival of the fittest’ principle.
Instead, a uniform random selection scheme concerning all population members has been
applied. Another decision already mentioned was to replace each current population mem-
ber with the closest of the two generated children, so as to avoid a serious disruption of the
states of local optimizers. A third approach that has proved very effective in maintaining
population diversity is based on the notion of apathy [1].

According to the latter approach, some population members remain apathetic for some
generations in the sense that they cannot be selected for recombination. Apathetic mem-
bers cannot change their state through crossover, but can be chosen for crossover by other
members of the population. To effectively apply this principle, a criterion is needed for a
member to become apathetic as a well as a criterion for becoming active again. We have
chosen to put a member into apathy whenever it generates a point of the state space yield-
ing a higher fitness than the best value achieved so far. Thus, from the moment the search
attains a high fitness region, the optimizer is allowed to explore that region following the
reinforcement learning rule. If for a specified number of steps no better solution is obtained
the member is brought back to the active state. Thus, an apathy step counter is necessary
for each population member.

Based on the features described above the PRRL algorithm takes the following form.
e Initialize all probabilities to the value 0.5.

e Repeatedly generate a new population from the current one until a maximum number
of generations is attained. Each new population is created by performing the following

steps for each location i =1,...,p:



1. If member ¢ is in apathy proceed to Step 4.

2. With probability p. decide whether crossover will be performed or not. If the

decision is negative proceed to Step 4.

3. Randomly choose a member from the rest of the population following a uniform
distribution. Combine the two parents to produce a new probability vector as

described previously. The new vector replaces the current one in location .

4. Based on the probability vector generate a point of the state space and evaluate

its fitness r;.

5. Update the probabilities of location i according to the reinforcement learning

rule.

6. If r; > r"* set " = r;. If moreover the population member i is not in apathy

then put it into apathy and proceed to Step 8.

7. If the member is in apathy increase the value of its counter by 1. If the value of
the counter is the maximum allowed put the member back into the active state

and set the counter to zero.

8. Update the value of reinforcement comparison ;.

4 Experimental Results

The test problems that were selected for evaluating the effectiveness of our approach are
versions of the order-3 deceptive problem that have been commonly employed to test the
exploration capabilities of genetic schemes [6, 9].

The order-3 deceptive subfunction is described in Table 1. The problems considered
here are the same as in [15] and assume eight subfunctions of the above type, thus the
dimension of the binary space is 24. The fitness of each 24-bit string results from the sum
of the corresponding values of the eight subfunctions.

The first of the examined problems (called the tight problem [15]) is a concatenation
of eight subfunctions, where the first three bits of the string are the domain of the first
subfunction, the next three bits are the domain of the second subfunction and so on. In
the second problem (called the loose problem) bits 0, 8, and 16 constitute the domain of
the first subfunction, bits 1, 9 and 17 are the domain of the second subfunction and so on.

Thus, the bits of each subfunction are maximally separated throughout the string.



v | f(x) | @ | f(x)
000 | 28100 14
001 26101 O
010 | 22110 0
011 0111 ] 30

Table 1: The order-3 deceptive subfunction

The selected problems are useful in order to gain insight into the behaviour of the
algorithm when dealing with difficult optimization problem instances, without making the
state space very large and the search process intractable. Both problems have 255 local
maxima and only one global maximum with value 240. They are called deceptive because
(as can be observed from Table 1) each subfunction, apart from the global maximum, has
also a local maximum (called deceptive) which is more easy to approach through local
hilliclimbing than the global one which is isolated. It is obvious that in the case of the
tight problem the crossover operation will be very beneficial, while in the case of the loose
problem its contribution will be rather insignificant with stochastic local hillclimbing being
the major exploration mechanism.

In all experiments the algorithm was terminated when the global maximum was found
or when 5000 generations had been performed. In the latter case the result was the best
solution found during the search.

Experiments were carried out for the proposed PRRL method considering different
sizes of the population p. For each population size 30 experiments were performed using
different seed values for the random number generator. The values of the parameters were
a = 0.05 and § = 0.02, whereas the crossover probability was p. = 1 and the maximum
allowed value for the apathy counter was set equal to 150.

The same experiments were carried out using a Parallel Reinforcement Learning (PRL)
scheme, as well as a simple genetic algorithm (GA). The PRL scheme considers a population
of reinforcement learning optimizers that operate independently (without crossover). The
GA algorithm considered follows the traditional genetic approach with crossover probability
equal to 0.6 and mutation probability equal to 0.1.

The results concerning PRRL and PRL are summarized in Tables 2 and 3 for the tight
and the loose problem respectively. The displayed results represent the percentage of cases

in which the global maximum was found, as well as the the average number of generation
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PRRL PRL
p | Success (%) | Avg. Nb. Steps | Success (%) | Avg. Nb. Steps
8 46.6 1900 20.0
16 80.0 1019 46.6 1133
32 100.0 640 93.3 1097
64 100.0 530 100.0 1143
Table 2: Comparative results for the ‘tight’ problem
PRRL PRL
p | Success (%) | Avg. Nb. Steps | Success (%) | Avg. Nb. Steps
8 33.3 2746 28.0 3287
16 62.0 1896 49.3 3010
32 88.3 1465 75.0 2559
64 100.0 1249 93.3 1973

Table 3: Comparative results for the ‘loose’ problem

steps required to find it. The superiority of PRRL is apparent in both the success rate and
the required number of generations. It should be observed that PRRL performs better on
the tight problem than on the loose one. This is due to the effect of single-point crossover
which is well adapted to the structure of the tight problem. It is possible that uniform or
multi-point crossover would be more appropriate for the loose problem.

Results are not reported for the simple GA, because in very few cases was it successful
in finding the optimum within the 5000 generations. This is not surprising since it is known
that the solution of deceptive problems is a very hard task for simple genetic algorithms
[6, 9, 15].

Our results show that the proposed technique offers clear advantage over conventional
genetic algorithms and parallel reinforcement learning. This illustrates the improvement
due to the combined use of features such as recombination, reinforcement learning, sus-
tained exploration and sustained diversity, which lead to a more effective exploration of

the state space.
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5 Conclusions

We have introduced a recombinative technique for function optimization on high-dimensional
binary domains. The method borrows from genetic algorithms and reinforcement learning
and aims to retain useful characteristics of both approaches. Indeed, the benefits from
recombination are enhanced by the exploration capabilities of reinforcement learning al-
gorithms. The technique was tested on benchmark problems and exhibited very good
results in comparison to both simple genetic algorithms and non-recombinative reinforce-
ment learning. As the method is directly amenable to parallel implementation our current
research concerns the investigation of its performance on parallel hardware considering

other optimization problems of large size.
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