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Abstract. In this study we propose a systematic methodology for con-
structing a sparse affinity matrix to be used in an advantageous spec-
tral clustering approach. Newton’s equations of motion are employed
to concentrate the data points around their cluster centers, using an
appropriate potential. During this process possibly overlapping clusters
are separated, and simultaneously, useful similarity information is gained
leading to the enrichment of the affinity matrix. The method was further
developed to treat high-dimensional data with application to document
clustering. We have tested the method on several benchmark data sets
and we witness a superior performance in comparison with the standard
approach.

1 Introduction

Given a set of data points, the problem of clustering is to discover a number
of subsets, called clusters, that contain points with similar properties. In the
literature there is a plethora of clustering approaches that have been proposed
rather recently. In this work we concentrate on the class of methods which are
based on spectral clustering [1], [2]. Spectral clustering has become increasingly
popular during the last decade. Such algorithms are based on similarity infor-
mation between data points. That is, similar data points (or points with high
affinity) are more likely to belong to the same cluster than points with low affin-
ity. These kind of algorithms have proved to be quite successful in numerous
application domains, such as computer vision [3], [4], [5], speech recognition [6],
bioinformatics [7], [8], text mining [9], etc.

Spectral clustering techniques make use of information obtained from an ap-
propriately defined affinity matrix. Their primary strength is their ability to
treat complex data shapes where other well-known methods (such as k-means)
either cannot be directly applied, or fail. The similarity matrix must be built
in such a way so as to reflect the topological characteristics of the data set. In
addition sparsity is another desired property, since it offers computational ad-
vantages [2], [10]. In applications of computer vision and related problems, the
similarity matrix is naturally sparse due to the local character of the similarities.

Methodologies leading to sparse affinity matrices have been proposed in the
past [2]. For instance, the ε-neighborhood technique connects only points whose
pairwise distances are smaller than ε. Another similar method is the (mutual)
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k-nearest neighbor, where every point is connected only with its k nearest neigh-
bors. However, these methods heavily depend on the choice of the control pa-
rameter (ε or k) that acts as a threshold for cutting some edges of the associated
graph.

We present here an alternative spectral clustering method that consists of
two phases. The data points are initially manipulated in a way suggested in
the Newtonian clustering [11], where the original data set is transformed and
the cluster appearance becomes more prominent. This is done via a dynamic
procedure based on Newton’s equation of motion using a properly constructed
potential function. During the next phase, the affinity matrix is calculated not
in the usual way, but with extra information embedded that was gained in the
previous phase. At the same time this information has a sparsifying effect, and
hence our affinity matrix is both sparser and richer. We further modified our
method in order to treat problems of high dimensionality, such as those ap-
pearing in document clustering. The modification is carried out by choosing a
different potential function and likewise a slightly different equation of motion.
We have tested our method on a suite of well known benchmarks ranging from
continuous feature data to image segmentation and document clustering prob-
lems. We compare to the standard spectral clustering method and the classical
k-means algorithm.

In section 2 we lay out an algorithmic description of the proposed Newtonian
spectral clustering while in section 3 we report experimental results for several
data sets. Finally in section 4 we summarize and conclude with some remarks.

2 The Proposed Method

2.1 Spectral Clustering with a Dynamic Procedure

Let the set X = {x1, . . . , xN} denote the input set of N observations that we
want to partition into K groups. We consider that the data points correspond
to particles of unit mass, interacting via a two-body attractive, short-range
potential. Let Vij be the potential between particles located at points xi and
xj . In this section we will consider a simple potential of Gaussian form given by:

Vij = − exp(−||xi − xj ||2
2σ2

) , (1)

where the scale parameter (σ) determines the range of the potential. The value
of σ is important since it affects the dynamic procedure that shrinks the clusters,
as well as the performance of the subsequent spectral clustering application. The
determination of this parameter will be detailed later on.

Under this consideration, the data points move under the influence of a force.
Data that move toward different clusters either repel each other, or they are too
far to interact. We expect that after an ample number of steps in time, points
belong to the same cluster will come together forming to shrank clusters. The
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proposed dynamic procedure is governed by the Newton’s equations of motion,
which are:

d2xi(t)
dt2

= −∇i

N∑

j=1
j �=i

Vij ≡ Fi, ∀i = 1, 2, · · · , N . (2)

The initial positions are taken to be the original data points, i.e. xi(t = 0) = xi

(∀i = 1, . . . , N), while the initial velocities (vi ≡ dxi

dt
) are set to zero. We

integrate the equations of motion in small time steps δt, considering that the
forces Fi remain constant during this short time interval. At each step we reset
the velocities to zero in order to avoid artifacts due to “heating”. Hence we
obtain the following motion scheme:

xi(t + δt) = xi(t) +
1
2
δt2Fi . (3)

Since the interaction is attractive, after a time period T the particles belonging
to the same neighborhood-cluster will concentrate around its center. So an ini-
tially spread–out cluster is being shrunk as a result of the dynamic procedure.
The simulation terminates, after a certain number of steps or when the steps
become too small and further iterations hardly make any difference. Two typical
examples are presented in Fig. 1 (a) and (c), where the initial data points (red)
are concentrated (black) after 100 steps.
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Fig. 1. Two typical examples of the effect of the dynamic procedure

The path traveled by each particle can offer useful information. In particular,
at the end of the dynamic process every point xi = xi(0) has been moved into a
new position xi(T ). Let distij(t) denote the distance between two points xi and
xj at time t. The elements of the affinity matrix A are then given by:

Aij = bij exp(−dist2ij(T )
2σ2

) , (4)

where bij = 0 if distij(T ) > distij(0) and bij = 1 otherwise. The above rule
denotes that when two points move apart, they belong to different cluster and
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hence have zero affinity. Points that cluster together have a prominent affin-
ity since distij(T ) < distij(0). Figure 1 (b) and (d) shows the sparsity of the
affinity matrix in the case of the two artificial data sets of Figure 1 (a) and (c),
respectively. More than 20% of the Affinity matrix elements are discarded (white
pixels) due to the shrinking effect.

Spectral clustering is based on the data set’s affinity matrix. In the litera-
ture there are several variations of the standard methodology described in [1],
which we follow in our study. After having calculated the affinity matrix A, the
Laplacian matrix L is then given by

L = D−1/2AD−1/2 , (5)

where D is a diagonal matrix with elements Dii =
∑N

j=1 Aij . The Laplacian
matrix is known to be symmetric and positive semi-definite. Next, the K nor-
malized eigenvectors u1, . . . , uK of matrix L (where K is the desired number of
clusters) that correspond to the largest eigenvalues are computed and eventually
fed into the k-means algorithm in order to estimate the final clustering solution.

Estimating the scale parameter σ2. As mentioned before, the determination
of the scale parameter σ is crucial and has to be chosen carefully. Sparse data
sets require a longer range than dense data sets. Hence σ depends on the data
set. An automatic determination of its value was suggested in [1] by running the
clustering algorithm repeatedly for a number of values of σ and selecting the one
which provides the least distorted clustering solution.

In this direction, we present here a more systematic methodology. The average
nearest-neighbor (NN) distance and order statistics are keys to our analysis. In
particular, let the average NN distance of order m be given by

< dm >=
1
N

N∑

i=1

d(i)
m , ∀ m = 1, 2, · · · , N − 1 , (6)

where d
(i)
m is the distance between point at xi and its mth nearest neighbor. We

studied its variance σ̃2
m as obtained by

σ̃2
m =

1
m

m∑

k=1

(
< d2

k > − < dk >2
)

, (7)

using order statistics. It was found in [11] that in the case of a single cluster the
functional form of σ̃2

m is given as

σ̃2
m = α(m + 1)2 + β(m + 1) . (8)

When there are more than one clusters within the data set, < dm > acquires
discontinuities and the cumulative quantity σ̃2

m is given by a superposition of
translated quadratics. Then, the value for the range of the potential is estimated
by finding the number of neighbors m∗ for which the second difference of σ̃2

m

m+1
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(with respect to m) vanishes. Figure 2 illustrates this behavior by plotting the
quantity σ̃2

m

m+1 versus m, in the case of two typical examples of Fig. 1. As our
experiments have shown, there is a wide stability region around m∗ for estimat-
ing the range value (σ2 = σ2

m∗), where the performance of our approach was
identical. A detailed description of the above method for estimating the proper
value of σ can be found in [11].
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Fig. 2. Plots of second difference of quantity
σ̃2

M,m

m + 1
with respect to m where the

number m∗ is estimated

2.2 Extension to Document Clustering

An important issue in clustering is treating high-dimensional data. Since spectral
clustering is a common technique used for this purpose, we have tried to adjust
the proposed method to deal with such problems. Document clustering is a very
interesting application in text mining and information retrieval, aiming to the
division of a collection of documents into groups based on their similarity.

In our study, each input document is transformed into a feature vector xi ∈
RM , where M is the size of the corpus vocabulary, such that every feature
denotes the weight of the corresponding term. We have applied the TF-IDF (term
frequency, inverse document frequency) weighting scheme for creating feature
vectors. Moreover, the proximity between each pair of documents is computed
used the cosine similarity metric. Since documents are normalized vectors, the
similarity measure is reduced to the following simple rule:

Vij = xT
i xj . (9)

The above metric is also used as the potential function Vij during the New-
tonian dynamic procedure (see Eq. 1 - Eq. 3). The introduction of such kind of
potential requires an alternative motion scheme of data points. Now, the inter-
action is not always attractive. Naturally, any particle is influenced positively
from similar documents (that belong to the same cluster) and their interaction
is attractive (positive force). In the opposite case, dissimilar document vectors
have a repulsive effect to the particle and thus offering a negative sign force
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within its motion update rule. It can be easily found that the formulation of the
force Fi now becomes as:

Fi =
N∑

j=1
j �=i

cij(t)xj , where cij(t) =
{

+1 if Vij > V ij/2
−1 otherwise

. (10)

In fact the quantity V ij/2 acts as a threshold similarity value for distinguishing
between attractive and repulsive documents.

3 Experimental Results

Several experiments have been performed in order to examine the effectiveness
of the proposed Newtonian Spectral Clustering approach (NSC). We have con-
sidered both simulated data sets and other widely used benchmarks. We com-
pare with the standard Spectral Clustering (SC) and the traditional k-means
algorithm. During all experiments the number of Newtonian steps was fixed at
T = 100, while the value of time step was set to δt = 10−5. Moreover, both
approaches, NSC and SC, used the same value of σ in the Gaussian similarity
function as estimated by the proposed method. Finally, since we were aware of
the true class label of data, all clustering methods were evaluated using the pu-
rity metric (classification accuracy), by assuming that all objects of a cluster are
assigned to its dominant class.

The first series of experiments was performed on two simulated datasets (150
points per class) with two class (K = 2) presented in Fig. 1 (a) and 1 (c). By
considering different levels of noise, we performed 50 experiments for each noise
value and kept record of the mean accuracy for every method. The depicted
comparative results are illustrated in the two diagrams of Fig. 3 in terms of dif-
ferent noise values. As it was expected, in the first data set with two spheres all
three methods displayed identical behavior, since data were generated by sam-
pling from two Gaussian densities that have the same spherical-type covariance
matrix of the form σ2I. In the second data set (Fig. 1 (c)) which is more com-
plex with two concentric clusters, our method performs better than the standard
SC method especially in high-level noisy environments. The traditional k-means
algorithm fails in situations with non-spherical data shapes.

Additional experiments were made using four known benchmarks (Fig. 4).
The first one Fig. 4(a) is a two-class problem with a moon and a sun shape,
while the next Fig. 4(b) is the CRAB data set of Ripley [12], that contains
N = 200 data belonging to four clusters (K = 4). Here, we have created a 2-
dimensional data set by projecting the data on the plane defined by the second
and third principal components. We have also studied two UCI benchmarks [13]
the renowned Fisher-IRIS data set Fig. 4(b) with N = 150 points belonging
to three clusters (K = 3) (projected on the plane using the first two principal
components), and the wine set consisted of N = 178 K = 3-classes data with 13
features (were we have applied zero-mean normalization). Table 1 summarizes
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Fig. 3. Comparative results of NSC and its peers in terms of noise value using the two
data sets of Fig. 1
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Fig. 4. Three known benchmarks used in our experiments: (a) the moon & sun, (b)
the crabs and (c) the iris data set

the results obtained by the application of the three comparative approaches to
the above mentioned data sets. In these cases the performance of NSC and the
SC yielded comparable results, while being superior to k-means.

We have also applied our method to tackle the problem of image segmen-
tation. For this purpose, we have selected six colored images from the Berkeley
segmentation database1 presented in Fig. 5, all with resolution around 150×150.
We note here that in this series of experiments, since the number of input data is
large, we have followed the Nyström method [14] for finding a numerical approxi-
mation to eigendecomposition. Fig. 5 illustrates the segmentation results of each
method, where in the reconstructed images every pixel takes the intensity value
of the cluster center that belongs. It is interesting to notice here that the NSC
creates much smoother regions in comparison with the standard SC. We believe
that if we take into account additional information, such as spatial, texture, etc.
the resulting segmentation will be improved.

Finally, we have studied the performance of our method when dealing with
high-dimensional spaces. For this purpose we have selected sets of documents

1 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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original NSC SC K-means

Fig. 5. Segmentation results obtained by three comparative clustering methods in six
real colored images. NSC creates smoother regions.
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Table 1. Comparative results using four known experimental data sets

Experimental dataset Performance of
NSC SC k-means

moon & sun (Fig. 4(a)) 0.94 0.94 0.92

crabs (Fig. 4(b)) 0.94 0.93 0.93

iris (Fig. 4(c)) 0.93 0.91 0.89

wine 0.98 0.98 0.97

and in particular four subsets of the popular 20-Newsgroup collection2. Their
characteristics are presented in Table 2. The first set Talk3 consists of documents
of the talk subjects (politics.guns, politics.mideast, politics.misc), the next two of
scientific documents (crypt, electronics, med, space), and the fourth set has docu-
ments from five newsgroups (comp.graphics, rec.motorcycles, rec.sport.baseball,
sci.space, talk.politics.mideast). Table 2 shows also the results from the above
data obtained by both approaches, NSC and SC. As it can be observed, the per-
formance of our method is significantly better showing that the proposed way
of constructing affinity matrix is worthwhile in high-dimensional data. Several
other experiments were made with other subsets from the same data collection
with similar results.

Table 2. Document data used in our experiments and the accuracy results obtained
by both NSC and SC methods

Document dataset Performance of

name description NSC SC

Talk3 N = 300, K = 3, M = 4515 0.78 0.71

Science4-400 N = 400, K = 4, M = 4855 0.71 0.62

Science4-2000 N = 2000, K = 4, M = 10250 0.74 0.73

Multi5 N = 500, K = 5, M = 5589 0.75 0.63

4 Conclusions

In this study we presented a novel method, the Newtonian spectral clustering,
that inherits from Newtonian clustering information such that renders possible
the formation of a proper affinity matrix that is sparse and contains enriched
information. An extension of this approach has also been presented in order to
deal with high-dimensional data such as documents. We have applied the method
to several benchmark problems and we noticed performance superior to the
standard spectral clustering approach. It is our intention to further pursue and
develop the method to handle different problems with complex type of data such
as time-series, multimedia data, discrete sequences, etc. Finally, the persistent
2 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html
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issue of discovering the optimal number of clusters may be examined in the
framework of this method as well.
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