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Abstract. In this study we present a new sparse polynomial regression
mixture model for fitting time series. The contribution of this work is the
introduction of a smoothing prior over component regression coefficients
through a Bayesian framework. This is done by using an appropriate
Student-t distribution. The advantages of the sparsity-favouring prior is
to make model more robust, less independent on order p of polynomials
and improve the clustering procedure. The whole framework is converted
into a maximum a posteriori (MAP) approach, where the known EM al-
gorithm can be applied offering update equations for the model parame-
ters in closed forms. The efficiency of the proposed sparse mixture model
is experimentally shown by applying it on various real benchmarks and
by comparing it with the typical regression mixture and the K-means
algorithm. The results are very promising.
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1 Introduction

Clustering is a very interesting and challenging research problem and a wide
spectrum of methodologies has been used to address it. Probabilistic mixture
modeling is a well established model-based approach for clustering that offers
many advantages. One such advantage is that it provides a natural platform to
evaluate the quality of the clustering solution [1], [2]. Clustering time-series is a
special case of clustering in which the available data have one or both of the fol-
lowing two features: first they are of very large dimension and thus conventional
clustering methods are computationally prohibitive, and second they are not of
equal length and thus conventional clustering methods cannot straightforwardly
be applied. In such cases it is natural initially to fit the available data with a
parametric model and then to cluster based on that model. Different types of
functional models have been used to for such data. Among them polynomial and
spline regression are the most commonly used models [3] and have been success-
fully applied to a number of diverse applications, ranging from gene clustering
in bioinformatics to clustering of cyclone trajectories, see for example [4] [5], [6]
and [7].



Sparse Bayesian regression is methodology that has received a lot of attention
lately, see for example [8], [9], [10] and [11]. Enforcing sparsity is a fundamental
machine learning regularization principle and lies behind some well known sub-
jects such as feature selection. The key idea behind sparse priors is that we can
obtain more flexible inference methods by employing models with many more
degrees of freedom than could uniquely be adapted given data. In particular,
the target of sparse Bayesian regression is to impose a heavy tail priors to the
coefficients of the regressor. Such prior will zero out the coefficients that are
not significant and maintain only a few large coefficients that are considered
significant based on the model. The main advantage of such models is that they
address the problem of model order selection which is a very important prob-
lem in many model based applications including regression. If the order of the
regressor model is too large it overfits the observations and does not generalize
well. On the other hand if it is too small it might miss trends in the data.

In this paper we present a sparse regression mixture model for clustering time-
series data. It is based on treating the regression coefficients of each component
as Gaussian random variables, and sequentially the inverse of their variance
as Gamma hypepriors. These two hierarchical priors constitute the Student-t
distribution which has been proved to be very efficient [8]. Then, a maximum
a posteriori expectation maximization algorithm (MAP-EM) [12], [2] is applied
to learn this model and cluster the data. This is very efficient since it leads to
update rules of model parameters in closed form during the M -step and improves
data fitting.

The performance of the proposed methodology is evaluated using a variety of
real datasets. Comparative results are also obtained using the classical K-means
algorithm and also the typical regression mixture model without the sparse prior.
Since the ground truth is already known, we have used the percentage of correct
classification for evaluating each method. As experimentally have shown, the
main advantage of our method is through sparsity property to achieve more
flexibility and robustness with better solutions.

In section 2 we present the simple polynomial regression mixture model and
how the EM algorithm can be used for estimating its parameters. The proposed
sparse regression method is then given in section 3 describing the sparse Student-
t prior over the component regression coefficients. To assess the performance of
the proposed methodology we present in section 4 numerical experiments with
known benchmarks. Finally, in section 5 we give our conclusions and suggestions
for future research.

2 Regression Mixture Models

Suppose the set of N time-series data sequences Y = {yil}l=1,...,T
i=1,...,N , where l

denotes the temporal index that corresponds to time locations tl. It must be
noted that although during the present description of the regression model it is
assumed that all yi sequences are of equal length, this can be easily changed. In



such case, each yi for i = 1, . . . , N is of variable length Ti. This corresponds to
the general case of the model.

To model time-series yi we use p-order polynomial regression on the time
range t = (t1, . . . , tT ) with an additive noise term given by

yi = Xβ + ei , (1)

where X is the Vandermonde matrix, i.e.

X =




1 t1 . . . tp1
...

... . . .
...

1 tT . . . tpT




and β is the p + 1-vector of regression coefficients. Finally, the error term ei is
a T -dimensional vector that is assumed to be Gaussian and independent over
time, i.e. ei ∼ N (0, Σ) with a diagonal covariance matrix Σ = diag(σ2

1 , . . . , σ2
T ).

Thus, by assuming Xβ deterministic, we can model the joint probability density
of the sequence y with the normal distribution N (Xβ, Σ).

In this study we consider the problem of clustering time-series, i.e. the divi-
sion of the set of sequences yi with i = 1, . . . N into K clusters, where each cluster
will contain sequences of the same generation mechanism (polynomial regression
model). To this direction, the regression mixture model is a useful generative
model that can be used to capture heterogeneous sources of time-series. This
can be described by the following probability density function:

f(yi|Θ) =
K∑

j=1

πjp(yi|θj) , (2)

which has a generic and powerful meaning in model-based clustering. Following
this scheme, each sequence is generated by first selecting a source j (cluster)
according to probabilities πj and then by performing sampling based on the cor-
responding regression relationship with parameters θj = {βj , Σj} as described by
the normal density function p(yi|θj) = N (yi|Xβj , Σj). Moreover, the unknown
mixture probabilities satisfy the constraints: πj ≥ 0 and

∑K
j=1 πj = 1.

Based on the above formulation, the clustering problem becomes a maximum
likelihood (ML) estimation problem for the mixture parameters Θ = {πj , θj}K

j=1,
where the log-likelihood function is given by

L(Y |Θ) =
N∑

i=1

log{
K∑

j=1

πjN (yi|Xβj , Σj)} . (3)

The Expectation-Maximization (EM) algorithm [12] is an efficient framework for
solving likelihood estimation problems for mixture models. It performs iteratively
two steps: The E-step, where the current posterior probabilities of samples to
belong to each cluster are calculated:

z
(t)
ij = P (j|yi, Θ

(t)) =
π

(t)
j N (yi|Xβ

(t)
j , Σ

(t)
j )

f(yi|Θ(t))
, (4)



and the M -step, where the maximization of the expected value of the complete
log-likelihood is performed. This leads to the following updated rules for the
mixture parameters [4], [3]:

π
(t+1)
j =

N∑

i=1

z
(t)
ij

N
, (5)

β
(t+1)
j =

[
N∑

i=1

z
(t)
ij XT Σ−1

j

(t)
X

]−1

XT Σ−1
j

(t)
N∑

i=1

z
(t)
ij yi , (6)

σ2
jl

(t+1)
=

N∑

i=1

z
(t)
ij (yil − [Xβ

(t+1)
j ]l)2

N∑

i=1

z
(t)
ij

, (7)

where [.]l indicates the l-th component of the T -dimensional vector that cor-
responds to location tl. After convergence of the EM, the association of the N
observable sequences yi with the K clusters is based on the maximum value of
the posterior probabilities. The generative polynomial regression function is also
obtained per each cluster, as expressed by the (p+1)-dimensional vectors of the
regression coefficients βj = (βj0, βj1, . . . , βjp)T .

3 Sparse Regression Mixture Models

An important issue, when using the regression mixture model is to define the
order p of the polynomials. The appropriate value of p depends on the shape of
the curve to be fitted. Polynomials of smaller order lead to underfitting, while
large values of p may lead to curve overfitting. Both cases may lead to seri-
ous deterioration of the clustering performance as also verified by experimental
results.

The problem can be tackled using some regularization method that penalizes
large order polynomials. An elegant statistical method for regularization is the
Bayesian approach. This technique assumes a large value of the order p and
imposes a prior distribution p(βj) on the parameter vectors (βj0, βj1, . . . , βjp)T

of each polynomial.
More specifically, the prior is defined in a hierarchical way as follows:

p(βj |αj) = N (βj |0, A−1
j ) =

p∏

k=0

N (βk|0, α−1
jk ) (8)

where N (µ|0, Σ) is the normal distribution and Aj is a diagonal matrix contain-
ing the p + 1 elements of the hyperparameter vector αj = [αj0 . . . αjp].



In addition a Γ prior is also imposed on the hyperparameters αjk:

p(αj) =
p∏

k=0

Gamma(αjk|a, b) ∝
p∏

k=0

αa−1
jk e−bαjk , (9)

where where a and b denote parameters that are a priori set to near zero values.
The above two-stage hierarchical prior on αj is actually a Student-t distri-

bution and is called sparse ([8]), since it enforces most of the values αjk to be
large, thus the corresponding βjk are set zero and eliminated from the model. In
this way the complexity of the regression polynomials is controlled in an auto-
matic and elegant way and overfitting is avoided. This prior has been successfully
employed in the Relevance Vector Machine (RVM) model [8].

In order to exploit this sparse prior we resort to the MAP approach where
the log-likelihood of the model (Eq. 3) is augmented with a penalty term that
corresponds to the logarithm of the prior p(βj).

L(Y |Θ) =
N∑

i=1

log{
K∑

j=1

πjN (yi|Xβj , Σj)}+
K∑

j=1

log p(βj |αj) +
K∑

j=1

log p(αj) (10)

where the parameter vector Θ is augmented to include the parameter vectors
aj : Θ = {πj , βj , Σj , αj}K

j=1.
Maximization of the MAP log-likelihood with respect to the parameters Θ is

again achieved using the EM algorithm. At each EM iteration t, the computation
of the posteriors zij in the E-step is again performed using Eq. (4). The same
happens in the M-step for the update of the parameters πj and Σj which is
performed using Eq. (4) and Eq. (6). The introduction of the sparse prior affects
the update of the parameter vectors βj which is now written as:

β
(t+1)
j =

[
N∑

i=1

z
(t)
ij XT Σ−1

j

(t)
X + A

(t)
j

]−1

XT Σ−1
j

(t)
N∑

i=1

z
(t)
ij yi , (11)

while the update of the hyperparameters αjk is given by:

α
(t+1)
jk =

2a− 1

β
(t+1)
jk + 2b

(12)

In the last equation the values of a and b have been set to 10−4.
It must be noted that at each M-step, in order to accelerate convergence,

it possible to iteratively apply the update equations for βj and αjk more than
once. In our experiments two update iterations were carried out.

4 Experimental Results

We have made experiments on a variety of known benchmarks in order to study
the performance of the proposed sparse regression mixture model, referred as



Sparse RM. Comparative results were obtained with the typical regression mix-
ture model, that will be referred next as Simple RM. Both methods were initial-
ized with the same strategy. In particular, at first K time-series are randomly
selected form the dataset for initializing the polynomial coefficients βj of the K
components of the mixture model, following the simple least-square fit solution.
Then, the log-likelihood function value is calculated after performing one step
of the EM algorithm. One hundred (100) such different one-EM-step executions
are made and the parameters of the model that capture the maximum likelihood
value are finally used for initializing the EM algorithm.

Table 1. The description of the five datasets used in our experimental study.

Dataset Number of classes (K) Size of dataset (N) Time series length (T )

CBF 3 930 128
ECG 2 200 96

Gun problem 2 200 150
Synthetic control 6 600 60

Trace 4 200 275

In Table 1 we present some characteristics (the size and the number of classes)
of the five (5) real datasets we have used in our experimental study. In particular,
we have selected five (5) datasets for evaluating our method [13]:

– The Cylinder-Bell-Funnel (CBF) dataset contains time series from three
different classes generated by three particular equations, see [14].

– The ECG dataset characterized by underlying patterns of periodicity.
– The Gun problem comes from a video surveillance domain that gives the

motion streams from the right hand of two actors.
– The Synthetic control dataset which comes from monitoring and control of

process environments.
– The Trace dataset which is a synthetic dataset designed to simulate instru-

mentation failures in nuclear plant.

More details on these benchmarks can be found at [13].
The obtained results from the comparative study on these benchmarks are

summarized in Figure 1. For each one of the five problems we present a diagram
with the accuracy of both methods for various values of polynomial order p. Note
that we present here the mean values of the correct classification percentage as
obtained from twenty (20) runs per order value. Furthermore, these diagrams
illustrate (grey straight lines) the performance of the K − means algorithm,
where the time series are treated as feature vectors. It must be noted that these
results are published in [13] and correspond to the best solution found after 10
different runs of the K-means.

As it is obvious from the diagrams of Figure 1 the typical regression model
(Simple RM) deteriorate the clustering performance, especially in cases of large



2 4 6 8 10 12 14 16 18 20
30

35

40

45

50

55

60

65

70

75

80

order p

a
c

c
u

ra
c

y
 (

%
)

CBF dataset

Sparse RM
Simple RM
K−means

0 2 4 6 8 10 12 14 16 18 20
40

45

50

55

60

65

70

75

order p

a
c

c
u

ra
c

y
 (

%
)

ECG dataset

Sparse RM
Simple RM
K−means

2 4 6 8 10 12 14 16 18 20
48

50

52

54

56

58

60

62

64

66

68

order p

a
c

c
u

ra
c

y
 (

%
)

Gun dataset

Sparse RM
Simple RM
K−means

2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

70

80

order p

a
c

c
u

ra
c

y
 (

%
)

Synthetic control dataset

Sparse RM
Simple RM
K−means

2 4 6 8 10 12 14 16 18 20
42

44

46

48

50

52

54

56

58

60
Trace dataset

order p

a
c
c
u

ra
c
y
 (

%
)

Sparse RM
Simple RM
K−means

Fig. 1. Comparative results from the experiments on five benchmarks. The mean value
of the correct classification for each one of the three methods is illustrated for different
values of the polynomial order p.



polynomial order p values, leading in strong overfitting in all experimental datasets.
On the other hand, the proposed sparse regression mixture model has the abil-
ity to overcome this disadvantage with the use of the sparsity potential, and to
maintain better performance throughout the range of the polynomial order p.
Therefore, it seems that the availability of sparsity makes the clustering approach
independent on the polynomial order. Furthermore, that is more interesting is
that in most cases, such as in the CBF, the ECG and the Trace datasets (Figure
1), the best clustering solution was obtained for large values of order p, where
the typical RM completely fails. This is of great advantage, since it may lead to
improve the model generalization ability. Thus, we recommend the use of sparse
regression mixture model with a large polynomial order value (e.g. p = 15) and
allow the model to select the most useful among the regression coefficients and
sets to zero the rest of them.

5 Conclusions and Future Work

In this paper we presented an efficient methodology for clustering time-series,
where the key aspect of the proposed technique is the sparsity of the regression
polynomials. The main scheme applied here is the polynomial regression mixture
model. Adding sparsity to the polynomial coefficients introduces a regularization
principle that allows to start from an overparameterized model and force regres-
sion coefficients close to zero if they are not useful. Learning in the proposed
sparse regression mixture model is treated in a maximum a posteriori (MAP)
framework that allows the EM algorithm to be effectively used for estimating
the model parameters. This has the advantage of establishing update rules in
closed form during the M -step and thus data fitting can be done very efficiently.
Experiments on difficult datasets have demonstrated the ability of the proposed
sparse models to improve the performance and the robustness of the typical
regression mixture model.

Our further research on this subject is mainly focused on three directions.
In particular, we can alternatively use another design matrix X for regression
(Eq. 1), apart from the simplest Vandermonde matrix in the case of polynomial.
Following the Relevance Vector Machine (RVM) approach [8], different types
of Kernel matrices can be examined, such as Gaussian Kernel. On the other
hand, we are planning to examine also the possibility of using another type of
more advantageous sparse priors, such as those presented at [10], [11] that have
recently applied to general linear sparse models. The third target of our future
work is to eliminate the dependence of the proposed regression mixture model on
the initialization. Experiments have shown that in some cases there is a signif-
icant dependence on initializing model parameters especially on the regression
parameters βjk. A possible solution is to design an incremental procedure for
learning a regression mixture model by adopting successful schemes that have
already been presented in the case of classical mixture models [15]. Finally, we
are planning to study the performance of the proposed methodology and its ex-



tensions in computer vision applications, such as visual tracking problems and
object detection in a video surveillance domain [16], [17].
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