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Abstract. In this study we present a marginal mixture model for
discovering probabilistic motifs in categorical sequences. The pro-
posed method is based on a general framework for developing, ex-
tending and marginalizing expressive motif models that encapsulates
spatial information. Two alternative schemes for constructing expres-
sive models are described, the extend and the marginal approach. The
EM algorithm is applied for estimating the model parameters, while
an initialization procedure is used based on the known K-means al-
gorithm. Numerical experiments on various simulated and real sets
of sequences demonstrate the advantages of the proposed approach
in comparison with the basic maximum likelihood with the EM al-
gorithm scheme and the Gibbs sampling approach.

1 Introduction
Discovering motifs in sequences is an important and attractive pat-
tern recognition problem found in several application areas, such as
bioinformatics, web mining, etc. Given a set of discrete sequences,
a probabilistic motif (or pattern) can be seen as a common substring
that is noisily repeated in different locations in sequences. The mo-
tifs are highly conserved residues present in active sites of sequences
and thus they have powerful discriminative abilities in the sense of
creating features in classification tasks [4, 5].

In the literature there are various methods that have been intro-
duced for solving this problem, classified according to the type of
motifs they produce. The Gibbs sampling [9, 10], the MEME [1],
the SAM [8], the BioProspector [11], the Greedy EM [3] and the
LOGOS [13], constitute representative statistical approaches for dis-
covering shared motifs in a set of sequences. Most of them use prob-
abilistic generative models to model motifs as stochastic string pat-
terns randomly embedded in a simple background. In such a setting,
the motif discovery problem can be seen as a standard missing-value
inference and being converted into a parameter estimation problem.
In particular, all methods formulate the problem using either mixture
of multinomial models or hidden Markov models, and apply stan-
dard methods such as the Expectation-Maximization (EM) algorithm
[6, 12] or Gibbs sampling[9, 10] schemes to estimate the motif model
parameters.

The most common way for stochastically representing a motif is
through the position weight matrix (PWM) that gives the distribu-
tion of alphabet characters at every position assuming that the posi-
tions within a motif are independent. Nevertheless, the simple PWM
model description is sensitive to noise and random or trivial recur-
rent patterns (repetitions of short substrings), and is unable to capture
potential site dependencies inside the motif [13]. Various methods
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have been developed to incorporate spatial information in motifs but,
mostly, they are motif specific and handle only special shape motifs
[13]. Our aim in this study is to develop more compact expressive
motif models that encloses more naturally the important spatial in-
formation of motif positions. This is done by introducing a marginal
mixture model under two schemes that encompass the motif neigh-
borhood. In the first approach (the extended model), the PWM is
expanded for capturing the entire neighborhood of a motif and not
a single K-mer. Alternatively (the marginal model), the PWM not
only can fit the motif occurrences, but also can partially fit the sub-
strings that overlap with them and belong to the same motif neighbor-
hood. These new model capabilities strengthen the expression level
of a motif model by indirectly introducing useful spatial operators.
Finally, another advantage is that the proposed approach is less sen-
sitive to the initialization that makes the EM algorithm applied for
estimating model parameters to be less affected on parameter initial-
ization.

We have made experiments with simulated sets of sequences as
well as known biological benchmarks. Comparisons have been also
made with rival methods: the basic maximum likelihood approach
with the EM algorithm [1] and the Gibbs sampling [9, 10], where we
set up three evaluation criteria.

In section 2 we present the basic methodology for discovering
probabilistic motifs with mixture models and the EM algorithm for
estimating model parameters, and then the proposed marginal mix-
ture model and its expressive motif models. Special care is also given
to the initialization where we present a scheme based on the k-
means clustering algorithm over the model parametric space. Section
3 presents experimental results obtained by our method and compar-
ative approaches in various datasets. Finally, we summarize and give
some concluded remarks in section 4.

2 Applying mixture models for motifs discovering

Consider a finite set Σ = {c1, . . . , cM} consisting of M individual
characters. An arbitrary string over the set Σ is any sequence Sj =

{sjk}Lj

k=1 of length Lj , where sjk ∈ Σ denotes the character at the
k-th position of the j-th sequence. Now, let S = {S1, . . . , SN} be
a set of N strings of length L1, . . . , LN , respectively. A common
subsequence of length K that is repeated at different sites among
the input sequences of set S is called motif. In our study we will
considered that the motif length K is known.

The application of mixture models needs a necessary pre-
processing step to be made first, where we collect all the possible
substrings over S of length equal to K. This can be done by slid-
ing a window of size K to every sequence Sj , obtaining a set of
Lj −K +1 substrings. Each substring indicates the starting position



of a possible motif copy over sequences. In such way, we obtain a
set of n substrings X = {xi}n

i=1, n =
∑N

j=1
(Lj − K + 1), that

constitutes the set of observations in our problem.

2.1 The basic approach
In the basic approach, we fit a two-component mixture of multi-
nomials model to the set of input substrings X . Here, we assume
that each substring xi has been generated from either a motif model
(yi = 1) or a background model (yi = 0), as given by the hid-
den (binary) variable yi. The motif model component has a prior
probability P (yi = 1) = π, while the second component, the back-
ground, captures all the non-motif information with a prior probabil-
ity P (yi = 0) = 1 − π. The density function of the mixture model
for an observation xi is given by

f(xi|Θ) = πpm(xi|θ) + (1− π)pb(xi|b) , (1)

where Θ = {π, θ, b} is the set of the (unknown) model parameters:
the prior probability (0 ≤ π ≤ 1) and the two component density
parameters.

A flexible and most commonly used way for describing a motif
model is through a position weight matrix (PWM) θ = [θkl] of size
K×M . Each element θkl denotes the probability of character cl ∈ Σ
to be found in the k-th position of the motif, where for each position k
it holds

∑
l
θkl = 1. On the other hand, the background distribution

is represented with an M -vector of probabilities b = [b1, . . . , bM ]
that is common for any substring position (

∑
l
bl = 1). Following

the multinomial distribution and assuming independence among mo-
tif positions, the probability density functions of the motif pm(xi|θ)
and the background model pb(xi|b) are

pm(xi|θ) = p(xi|yi = 1, θ) =

K∏
k=1

M∏
l=1

θ
δikl
kl , (2)

pb(xi|b) = p(xi|yi = 0, b) =

M∏
l=1

b

∑K

k=1
δikl

l , (3)

where δikl is the Kronecker delta, i.e. 1 if character cl is found at the
k-th position of substring xi, 0 otherwise.

Based on the above formulation, the motif discovery problem can
now be converted into a maximum likelihood (ML) estimation prob-
lem, where the log-likelihood function is given by

L(Θ) = log p(X|Θ) =

n∑
i=1

log f(xi|Θ) . (4)

The EM algorithm [6] constitutes an efficient framework for estimat-
ing the model parameters Θ = { π, {θkl} and {bl} }. It iteratively
performs two main steps. At first the E-step where the conditional
expectation zi = p(yi = 1|xi, Θ

(t)) of the hidden variables yi is
computed

z
(t)
i = p(yi = 1|xi, Θ

(t)) =

=
π(t)pm(xi|θ(t))

π(t)pm(xi|θ(t)) + (1− π(t))pb(xi|b(t))
, (5)

and also the expectation of the complete data log-likelihood is estab-
lished:

Q(Θ, Θ(t)) =

n∑
i=1

z
(t)
i {log π + log pm(xi|θ)}+

+(1− z
(t)
i ){log(1− π) + log pb(xi|b)} . (6)

The above Q-function is maximized next during the M -step over
the mixture model parameters. This gives the following update equa-
tions:

π(t+1) =

n∑
i=1

z
(t)
i

n
, (7)

θ
(t+1)
kl =

n∑
i=1

z
(t)
i δikl

n∑
i=1

z
(t)
i

M∑
l=1

δikl

, (8)

b
(t+1)
l =

n∑
i=1

(1− z
(t)
i )

K∑
k=1

δikl

K

n∑
i=1

(1− z
(t)
i )

. (9)

The EM algorithm guarantees the convergence of the likelihood
function to a local maximum where simultaneously satisfies all the
constraints of the parameters. At the end of the process, the occur-
rences of the estimated motif can be found by selecting the substrings
xi whose posterior probability value zi is above a threshold (e.g.
0.8).

2.2 The proposed approach
Nevertheless, a significant drawback from the above basic approach
appears due to the convenient i.i.d. assumption of the observations
xi. This prevents into taking into account the valuable spatial infor-
mation of data. As a result substrings that are found in the neighbor-
hood of a motif occurrence may be considered as motif copies i.e.
to have high posterior probability values zi to be a motif. This phe-
nomenon, which is mostly common in recurrent type of motifs where
a short part of the motif is repeated, may be substantially modify the
expressive motif multinomial model to a non-informative uniform
model.

Suppose, for example, that the motif we want to discover is the
∗ ∗ ∗ ∗ TATATATATA ∗ ∗ ∗ ∗, where the 2-gram TA is re-
peated 5 times (K = 10). Suppose also a copy of this motif
xi = TATATATATA. Then, as shown in Table 1, there are 5
substrings in its neighborhood (which overlap with the xi) that will
contain a significant part of the motif. This will make their poste-
rior probability values (Eq. 5) to be significant large, and thus their
contribution to the update rule of motif model parameters θkl of Eq.
8 will be high. This will cause into a step by step dramatic reduc-
tion of the higher probabilities values in every motif position (that
correspond to the characters of the motif) during the EM procedure.
Under this circumstance, the EM algorithm will end up to a uniform
distribution of M characters in K motif positions and thus the motif
discovery will be failed.

In the literature there are various methods that try to overcome
this occurrence by indirectly or directly adopting spatial information
to the model. In [1] for example, a normalization of the posterior
value zi of the adjacent sequences is performed so that guarantees
in any window of length K the sum of zi values remains less than
or equal to 1. Another approach was presented in [2] by introducing
spatial constraints to the model through the use of a Markov Ran-
dom Field (MRF) prior over the motif labels. In this study we work
more systematically over spatiality by incorporating this useful kind
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Table 1. Substrings in the neighborhood of a motif occurrence xi. Since
they all have a significant overlap with the real motif and thus high posterior

values zi, they will contribute considerably to the EM updated rule of the
motif parameters.

xi−4 ****TATATA
xi−2 **TATATATA
xi TATATATATA

xi+2 TATATATA**
xi+4 TATATA****

of information from observations more naturally and directly to the
expressive motif model.

2.2.1 The extended model

In the first scheme, the original position weight matrix θ is extended
by K − 1 more lines to both sides, so as to include the entire neigh-
borhood of a motif. The motif model is now described with a new
matrix of dimension (3K − 2) × M and the fitting procedure can
now be seen as searching over the new matrix model θ to find the
best suited block matrix of K size (number of lines). Therefore, this
matrix expansion suggests 2K − 1 (overlapping) multinomial distri-
butions equal to the number of all possible starting positions within
motif neighborhood (first 2K−1 lines of matrix θ), with the follow-
ing density function (∀ j = 1, . . . , 2K − 1)

φj(xi|θ) = p(xi|yi = j, θ) =

K∏
k=1

M∏
l=1

θ
δikl
j+k−1,l . (10)

The hidden variable yi now defines the starting position of the sub-
string xi within the neighborhood of the motif. Note that when there
is not any such position (yi = 2K), the substring is generated by the
simplest background model as previous. The mixture model density
function now becomes

f(xi|Θ) =

2K−1∑
j=1

πjφj(xi|θ) + (1−
2K−1∑
j=1

πj)pb(xi|b) . (11)

In the example of Table 1 the introduction of the new matrix θ allow
the neighboring substrings (xi−4, xi−2, xi+2, xi+4) that are overlap-
ping with the real motif copy (xi) to be fitted with one of these multi-
nomial distribution and not destroy the distribution of the original
motif. We will refer to this scheme as the extended model.

Likewise, the EM algorithm can now be applied for estimating the
model parameters. It requires the calculation of the posterior proba-
bilities of hidden variables during the E-step

z
(t)
ij = P (yi = j|xi, Θ

(t)) =
π

(t)
j φj(xi|θ(t))

f(xi|Θ(t))
, (12)

and the maximization of the corresponding Q-function during the
M -step

Q(Θ, Θ(t)) =

n∑
i=1

{
2K−1∑
j=1

z
(t)
ij {log πj + log φj(xi|θ)}+

+(1−
2K−1∑
j=1

z
(t)
ij ){log(1−

2K−1∑
j=1

πj) + log pb(xi|b)}} . (13)

This gives the following update rules

πj =

∑n

i=1
z
(t)
ij

n
, (14)

θ
(t+1)
kl =





n∑
i=1

k∑
j=1

z
(t)
ij δi,k−j+1,l

n∑
i=1

k∑
j=1

z
(t)
ij

, if 1 ≤ k < K

n∑
i=1

k∑
j=k−K+1

z
(t)
ij δi,k−j+1,l

n∑
i=1

k∑
j=k−K+1

z
(t)
ij

, if K ≤ k < 2K

n∑
i=1

2K−1∑
j=k−K+1

z
(t)
ij δi,k−j+1,l

n∑
i=1

2K−1∑
j=k−K+1

z
(t)
ij

, if 2K ≤ k < 3K − 1

,

(15)

b
(t+1)
l =

∑n

i=1
(1−∑2K−1

j=1
z
(t)
ij )

∑K

k=1
δikl

K
∑n

i=1
(1−∑2K−1

j=1
z
(t)
ij )

. (16)

As it is clear in the update equation for the motif extended matrix
values θkl (Eq. 15), every line contributes more than one time (ex-
cept for the borders) to the computation of the posterior probabilities
zij), since they belong to the 2K − 1 multinomials several times.
Moreover, it must be noted that in practice it does not always happen
the real motif to be found in the central block matrix (between the
K and 2K − 1 lines) of the extended matrix θ. After convergence of
the EM algorithm, the final motif will be found by searching for the
K continuous lines of the matrix that have the greater sum of their
maximum probability values θkl.

Finally, there are two other important advantages of the above
scheme that must be discussed. At first it is less sensitivity to the
initialization of the motif parameters. Even if we have not perfectly
initialized the motif and a part of it is missing, the matrix extension
will finally manage to fix it and incorporate the missing part to its
neighboring lines. Also, the extended model is not very sensitive to
the length of motif K, since the new expressive matrix has a suffi-
cient space for motifs of overestimated or underestimated length.

2.2.2 The marginal model

In the second approach, the position weight matrix θ remains the
same as the basic approach (size K ×M ), but now it has a different
behavior. Here, we consider that in this model only a part of it is used
for fitting input substrings xi, while the remaining part is treated as
background. This can be seen as applying a shifting operator to the
examined substring xi across the matrix θ so as to find the optimal
alignment between them in terms of fitting. There are two cases. Ei-
ther the first j positions of xi are modeled by the background and
the rest K − j positions are modeled from the first j lines of the
matrix θ, or the opposite, i.e. the last j lines of θ are responsible for
modeling the first j motif positions while the rest are considered as
background. In the negative case, the substring is considered entirely
as background information (Eq. 3). Therefore, we have again 2K−1
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multinomial distributions, equal to the number of all possible com-
binations of fitting the observation with the marginal model. Every
density function is now given by

φj(xi|θ) =





M∏
l=1

b

K−j∑
k=1

δikl

l

j∏
k=1

M∏
l=1

θ
δi,k+K−j,l

kl ,1 ≤ j ≤ K

2K−j∏
k=1

M∏
l=1

θ
δikl
j−K+k,l

M∏
l=1

b

K∑
k=2K−j+1

δikl

l ,K + 1 ≤ j ≤ 2K − 1

(17)
In this case the hidden variable yi defines the part (number of last or
first positions) of any observation xi that belongs to the motif model.
This scheme will be referred next as marginal model.

The application of the EM algorithm for estimating the parameters
of the marginal model leads to different update equations at the M-
step, in comparison with the extended model. These are:

θ
(t+1)
kl =

n∑
i=1

K+k−1∑
j=k

z
(t)
ij δi,K−j+k,l

n∑
i=1

K+k−1∑
j=k

z
(t)
ij

(18)

b
(t+1)
l =

n∑
i=1

{
K∑

j=1

z
(t)
ij

K−j∑
k=1

δikl +

2K∑
j=K+1

z
(t)
ij

K∑
k=2K−j+1

δikl}

n∑
i=1

{
K∑

j=1

(K − j)z
(t)
ij +

2K∑
j=K+1

(j −K)z
(t)
ij }

(19)

At the end of the EM algorithm, the motif can be found by searching
for the first (k1) and the last (k2) position (line of the matrix θ) among
the totally K positions, where their maximum probability value are
above a threshold (e.g. 0.8). This segment [k1−k2] corresponds only
to a part of the true motif. Its rest part can be substantially obtained by
first finding the substrings xi with high posterior probability values
(zi k2 > 0.8) that capture the segment [k1 − k2], and then by the
sufficient statistics of their neighboring substrings in either direction.

2.3 Initialization of motif models
The major drawback of the EM algorithm is its great dependence on
the initial values of the model parameters that may cause into getting
stuck in local maxima of the likelihood function [12]. In our study,
this problem is mainly concentrated on the initialization of the motif
model parameters θ, since the background density b is always ini-
tialized by the relative frequencies of characters in sequences. Vari-
ous approaches have been proposed in the literature to overcome this
problem. In [1] for example, a dynamic programming approach is
used which estimates the goodness of many possible starting points
based on the likelihood of the model after one EM iteration. Another
method presented in [3] applies a divisive hierarchical clustering ap-
proach that generates a motif models parametric search space. In this
study we have applied an initialization strategy that is based on a
clustering scheme using the classical k-means algorithm.

In the general case the k-means algorithm aims at finding a parti-
tion of M disjoint clusters to a set of n observations, so as to min-
imize the overall sum of their distances with the cluster centers µj .

Depending on the type of observations, one must determine an ap-
propriate distance function and also a method for calculating cluster
centers. In our study, we initially map every input substring xi into
a position weight matrix ϑi, where its values were taken from the
Kronecker delta values ϑikl = δikl. In this model parametric search
space we perform then a clustering procedure by using the Manhattan
distance function between two subsequences xi, xj :

d(i, j) =

K∑
k=1

M∑
l=1

|ϑikl − µjkl| = ‖ϑi − µj‖1 .

Finally, the cluster centers µj = {µjkl} are estimated by the suffi-
cient statistics of the substrings that currently belong to jth cluster
(relative frequencies of characters cl in every position k). The num-
ber of clusters for searching was set to k = n/N . When finishing,
we initialize the motif model with the center µj∗ from the cluster j∗

that has the minimum intracluster distance, i.e. average distance be-
tween all cluster members and its center. The experimental study has
shown that this clustering scheme provides satisfactory initial values
of model parameters θ very fast.

3 Experimental results

Several experiments were performed using both artificial and real
datasets in an attempt to study the effectiveness of the proposed ap-
proach. During all experiments the clustering scheme of k-means
was first executed twenty (20) times and the optimum solution was
kept to initialize the motif model. The prior probabilities πj were all
initially set to πi = 1/(2K). We have tested both versions of the
proposed marginal mixture model, the extend (Ext) and the marginal
(Marg). Comparative results have been also obtained using the basic
ML approach (basic), as well as the Gibbs sampling (GS) [9, 10].
The GS method iteratively performs two steps until likelihood con-
vergence: It randomly selects first a sequence Si and re-estimates the
motif model θ(t+1) using the current motif positions of all sequences
but Si. Then a new starting position of the motif model is selected
in Si (among the Li −K + 1 possible) by sampling from the poste-
rior distribution. Obviously, this version of the GS assumes that each
sequence has a unique occurrence of the pattern, while our approach
suggests an arbitrary number of motif copies in each sequence. Al-
though this is not fair, in our study we have selected datasets having
a single motif copy in every sequence. Finally, it must be mentioned
that all methods were initialized with the same way, except from the
GS method which is better to randomly initialized. The last was ex-
ecuted 20 successive times with different seed value and the best
solution found was kept.

The generation mechanism of the artificial sets used in our experi-
ments was the following: Using a discrete alphabet Σ with M charac-
ters, we uniformly produce a number N = 20 sequences of variable
length (with a mean length L = 100). Then, in each sequence we
randomly select a position for placing a noisy copy of a preselected
seed motif of length K, according to a mutation probability value
pm (common to every motif position). Eight different values for the
noise parameter pm were used, and for each value we generated 50
different sets of artificial sequences and kept statistics (mean values
and stds) of the performance of all the comparative methods.

We have used the following three performance criteria for evalu-
ating each method:

• ∆θ: Manhattan distance between the estimated and the true motif
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model (distance distributions)

∆θ = ||θ − θtrue||1 =

K∑
k=1

M∑
l=1

|θkl − θtrue
kl | ,

where true pattern density θtrue was estimated from the relative
frequencies of characters of the noisy motif copies.

• Sn: percentage of the predicted positions of all true motif copies
in the set of input sequences X .

• Sp: percentage of the real copies of a motif found having detected
at least 33% of their positions.

In must be noted that for the calculation of Sn and Sp quantities,
when a method found overlapping substrings in a motif copy neigh-
borhood, only their mean value of the predicted number of positions
would have been kept for that copy.

We have made experiments in a variety of simulated sets of se-
quences (various seed motifs, length K, alphabet size M and noise
parameter pm). Figure 1 illustrates the depicted results we obtained
with four seed motifs and an alphabet of size M = 8. Each dia-
gram represents the mean value and the standard deviation of the
evaluation measurements (∆θ, Sn, Sp) as calculated by each one of
the four comparative approaches using different noisy levels (pm).
Both methods, extend and marginal, showed a better performance
in comparison with the other two approaches. In almost all cases
both schemes of our method had managed to estimate better the true
model according to the ∆θ criterion. And this is of great interest.
Also, as it was expected, in the case of recurrent motifs (Fig. 1 (c),
(d)) the basic approach completely fails to discover them. On the
other hand, our approach yielded satisfactory results and comparable
to these of the GS method. The results were the same with several
other experiments with simulated data created from alphabet of dif-
ferent size.

We have also evaluated our method in a real dataset generated
by the motif information of Escherichia coli RegulonDB [7]. This
database consists of various sets of DNA sequences 2 having a single
motif copy per sequence with symmetric margins (background) on
both site of it. The study of these benchmarks is very interesting and
attractive, since the ground truth (locations of motif occurrences) is
known a priori and also the degree of similarity of motif occurrences
is very low (extremely noisy motifs). More details about these data
can be found in [7]. In our experiments we have used a part of eight
(8) such data sets presented in Table 2, where we have considered
two margin sizes: 20 and 50.

Table 2. The description of the real data used in our experimental study.

Filename Motif length (K) Number of sequences (N )
DnaA 9 7
FruR 14 10
Fur 19 20

LexA 20 10
CytR 40 10
PurR 76 15
SoxS 78 17
TyrR 82 17

Figure 2 summarizes the results obtained by the four comparing
methods. In particular, it illustrates the mean values of both measure-
ments Sn and Sp, as calculated after 20 different runs in any of the

2 Data can be downloaded from http://dragon.bio.purdue.edu/pmotif/
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(a) seed motif:P AMEP ARAKAT W , with no repetitions, K = 12, M = 8
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(b) seed motif:P AMEP ARAKAT W P AMET W RA with no repetitions, K = 20, M = 8
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(c) seed motif:T AT AT AT AT AT A, with repetitions, K = 12, M = 8
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Figure 1. Comparative results with simulated data. For each problem we
present three diagrams with the calculated mean values and stds of the three

performance measurements.
5



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

DnaA     FruR     Fur     LexA     CytR      PurR     SoxS    TyrR

S
n

Basic
Ext
Marg
GS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DnaA     FruR     Fur     LexA     CytR      PurR     SoxS    TyrR

S
p

Basic
Ext
Marg
GS

(a) 20 margin size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

DnaA     FruR     Fur     LexA     CytR      PurR     SoxS    TyrR

S
n

Basic
Ext
Marg
GS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

DnaA     FruR     Fur     LexA     CytR      PurR     SoxS    TyrR

S
p

Basic
Ext
Marg
GS

(b) 50 margin size

Figure 2. Comparative results on the real datasets of Table 2 in the case of
20 (a) and 50 (b) margin size. The vertical bars represent the mean values of

the two calculated measurements Sn, Sp after 50 executions of each
method.

selected data sets. Although these kind of motifs are not recurrent,
on average, we obtained better results with our approach in compari-
son with the basic ML method. This reinforce the proposed marginal
mixture model since it manages to detect qualitatively better motifs
in extremely noise parameter. Finally, although the comparison with
the version of the GS method in unfair, our method yielded compa-
rable results especially in motifs of small length K. An explanation
of this is that when searching for motifs of large length, for example
K = 76, the selected margin size of 20 or 50 is not enough for cap-
turing the neighborhood of motifs within the expressive model and
thus the proposed approaches cannot be normally applied.

4 Conclusions
We have presented a marginal mixture model for discovering proba-
bilistic motifs in categorical sequences that incorporates an advanced
and more informative expressive motif model. Two similar versions
of that model were proposed, one with an expansion and another one
with a delimitation of bounds within position weight matrix. This al-
lows to fit the neighborhood of a motif that leads to an efficient and
consistent inference of motif locations. Another significant advan-
tage of our method is that the EM algorithm that is used to estimate
the model parameters, is less depended on the model parameters ini-
tialization than with the classical approach. Experiments on a vari-
ety of artificial and real data sets have shown improved performance
of the proposed scheme and its ability to identify qualitatively bet-
ter motifs, in comparison with the basic ML approach and the GS
method. We are planning to further investigate the performance of
the proposed method to other experimental data sets and also to de-
sign more complex expressive motif models that can simultaneously
handle gaps among motif positions.
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