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Abstract

In this paper we present a new approach for curve clus-
tering designed for analysis of spatiotemporal data. Such
kind of data contains both spatial and temporal patterns
that we desire to capture. The proposed methodology is
based on regression and Gaussian mixture modeling and
the novelty of the herein work is the incorporation of spa-
tial smoothness constraints in the form of a prior for the
data labels. This enables the proposed model to take into
account the underlying property of spatiotemporal data that
spatially adjacent data points most likely should belong to
the same cluster. A maximum a posteriori Expectation Max-
imization (MAP-EM) algorithm is used for learning this
model. We present numerical experiments with simulated
data where the ground truth is known in order to assess
the value of the introduced smoothness constraint, and also
with real cardiac perfusion MRI data. The results are very
promising and demonstrate the value of the proposed con-
straint for analysis of such data .

1 Introduction

Clustering, apart from being on its own a challenging
field of research, is useful to a wide spectrum of applica-
tion areas, such as pattern recognition, machine learning,
computer vision, bioinformatics, web mining, etc. Gaussian
mixture modeling (GMM) is a well established model-
based approach for clustering that offers many advantages.
One such advantage is that it provides a natural platform to
evaluate the quality of the clustering solution [3], [13], and
[7]. Curve clustering is a special case of clustering in which
the available data have one or both of the following two
features: first they are very long and so conventional clus-
tering methods are computationally prohibitive, and second

they are not of equal length and thus conventional clustering
methods cannot straightforwardly be applied. In such cases
it is natural initially to fit the available data by a parametric
model and then to cluster the predictions by the model. Dif-
ferent types of parametric models have been used to capture
the trends in such data. Polynomial and spline regression
models are among the most commonly used ones [10] that
have been successfully used for curve clustering in a num-
ber of diverse applications, ranging from gene clustering in
bioinformatics to clustering of cyclone trajectories, see for
example [8] [6] and [9].

Another important application of curve clustering is in
the analysis of spatiotemporal data where it is desired to
capture both the spatial and temporal patterns of the data.
For example, in medical imaging modalities, such as dy-
namic PET and functional MRI, an important problem is
how to group image pixels into spatial regions in which the
pixels exhibit similar temporal behavior. This is very use-
ful, for example, in kinetic-modeling and functional imag-
ing applications, see for example [5], [1], and the references
within. In such studies it is important to measure both the
temporal characteristics of the grouped pixels and simulta-
neously to accurately classify the pixels in groups of similar
temporal behavior.

Thus, for this type of data in determining class member-
ship, apart from the distance between the coefficients of the
model, it is also beneficial to use spatial constraints. Such
constraints capture the prior knowledge that adjacent pixels
most likely belong to the same class. The idea of combin-
ing GMM with spatial smoothness prior has been used pre-
viously with success for segmentation of natural images [4]
and [14].

In this paper we extend this idea to the problem of
time-sequence analysis via regression based curve cluster-
ing. In other words, we model the curves with a regression
model and use a spatially variant Gaussian mixture model



with a Gaussian Markov random field (MRF) smoothness
prior which is imposed on the labels of the data. Then, a
maximum a posteriori expectation maximization algorithm
(MAP-EM) [7], [13] is used to learn this model and cluster
the data.

More specifically, in section 2 we present the simple re-
gression model, the proposed method based on the smooth-
ness prior and the EM methodology used for estimating
model’s parameters. To assess the performance of the pro-
posed methodology we present in section 3 numerical ex-
periments with both artificial data where the ground truth is
known and real cardiac perfusion MRI data. Finally, in sec-
tion 4 we give our conclusions and suggestions for future
research.

2 Model and prior specification

2.1 Regression mixture models

Suppose the spatiotemporal dataY = {yil}l=1,...,T
i=1,...,N ,

wherei denotes the spatial index andl the temporal index
that corresponds to time locationstl. This kind of data con-
sists ofT images each withN pixels. Thus, at each pixel
locationi we have the temporal sequenceyi of lengthT . It
must be noted that although during the present description
of the regression model it is assumed that allyi sequences
are of equal length, this can be easily changed. In such
case, eachyi for i = 1, . . . , N is of variable lengthTi. This
corresponds to the general case of the model that will be
demonstrated later in our numerical experiments section.

To model curvesyi we usep-order polynomial regres-
sion on the time ranget = (t1, . . . , tT ) with an additive
noise term given by

yi = Xβ + ei , (1)

whereX is the Vandermonde matrix, i.e.

X =




1 t1 . . . tp1
...

... . . .
...

1 tT . . . tpT




andβ is thep-vector of regression coefficients. Finally, the
error termei is a T -dimensional vector that is assumed to
be Gaussian and independent over time, i.e.ei ∼ N (0, Σ),
whereΣ = diag(σ2

1 , . . . , σ2
T ). Thus, by assumingXβ de-

terministic we can model the joint probability density of the
curvey with the normal distributionN (Xβ, Σ).

In this study we consider the problem of curve cluster-
ing, i.e. to divide the set of curvesyi with i = 1, . . . N into
K clusters where each cluster will contain curves obtained
from the same polynomial regression model. To this di-
rection, the regression mixture model is a useful generative

model that can be used to capture heterogeneous sources of
curves. This can be described by the following probability
density function:

f(yi|Θ) =
K∑

j=1

πjp(yi|θj) , (2)

which has a generic and powerful meaning in model-based
clustering. Following this scheme, each curve is gener-
ated by first selecting a sourcej (cluster) according to
probabilitiesπj and then by performing sampling based on
the corresponding regression relationship with parameters
θj = {βj , Σj} as described by the normal density func-
tion p(yi|θj) = N (Xβj |Σj). Moreover, the unknown
mixture probabilities satisfy the constraints:πj ≥ 0 and∑K

j=1 πj = 1.
Based on the above formulation, the clustering problem

becomes a maximum likelihood (ML) estimation problem
for the mixture parametersΘ = {πj , θj}K

j=1, where the log-
likelihood function is given by

L(Y |Θ) =
N∑

i=1

log{
K∑

j=1

πjp(yi|θj)} . (3)

The Expectation-Maximization (EM) algorithm [7] is an ef-
ficient framework for solving likelihood estimation prob-
lems for GMMs. It performs iteratively two steps: TheE-
step, where the current posterior probabilities of samples to
belong to each cluster are calculated:

z
(t)
ij = P (j|yi, Θ(t)) =

π
(t)
j p(yi|θ(t)

j )
f(yi|Θ(t))

, (4)

and theM -step, where the maximization of the expected
value of the complete log-likelihood is performed. This
leads to the following updated rules for the mixture para-
meters [8, 10]:

π
(t+1)
j =

N∑

i=1

z
(t)
ij

N
,(5)

β
(t+1)
j =

[
N∑

i=1

z
(t)
ij XT Σ−1

j

(t)
X

]−1

XT Σ−1
j

(t)
N∑

i=1

z
(t)
ij yi ,(6)

σ2
jl

(t+1)
=

N∑

i=1

z
(t)
ij (yil − [Xβ

(t+1)
j ]l)2

N∑

i=1

z
(t)
ij

,(7)

where [.]l indicates the l-th component of theT -
dimensional vector that corresponds to locationtl. After



convergence of the EM, the association of theN observ-
able curvesyi with theK clusters is based on the maximum
value of the posterior probabilities. The generative polyno-
mial regression function is also obtained per each cluster, as
expressed by the(p + 1)-dimensional vectors of the regres-
sion coefficientsβj .

2.2 The spatially variant regression mixture with
smoothness prior

In order to enforce spatial smoothness to the basic
scheme of the regression mixture model we use a spatially
varying approach, see for example [4]. This model, unlike
the classical, assumes that the probabilities of the data la-
belsπij are random variables, wherei defines the spatial
location andj the class. To handle this information we use
a Markov random field (MRF) prior [11, 2, 15] that pro-
vides a convenient way of modeling the constraint in many
computer vision and image processing problems, i.e. that
the probability of a node in the image field depends only on
its neighboring nodes.

In particular, we assume that the mixture density func-
tion is given by the following equation

f(yi|Θ) =
K∑

j=1

πijp(yi|θj) , (8)

where the mixture parameters areΘ = {{πij}N
i=1, θj}K

j=1.
The probabilities of the pixel labelsπ = {πij} satisfy the
constraints:πij ≥ 0 ,

∑
j πij = 1 and they follow the Gibbs

distribution with a density function given by

p(π) =
1
Z

exp(−

N∑

i=1

VNi(π)

ξ
) , (9)

whereZ is a normalizing constant, whileξ is the regular-
ization parameter. The functionVNi(π) denotes the clique
potential function of the pixel label vectors{πm} within
the neighborhoodNi of the ith-pixel and can be computed
as follows

VNi(π) =
∑

m∈Ni

K∑

j=1

(πij − πmj)2 . (10)

The neighborhoodNi is the set of adjacent pixelsm around
pixel i (|Ni| = 8 in the general case).

As explained in [14], it is advantageous in the above for-
mulation to use a Gaussian-MRF with a different variance
ξj at each cluster. Then, this prior is given by

p(π) ∝
K∏

j=1

ξ−N
j exp(−

N∑

i=1

∑

m∈Ni

(πij − πmj)2

2ξ2
j

) . (11)

The advantages from this type of prior are twofold. First,
the parameterξj that capture spatial attributes enforce
smoothness of different degree at each cluster and better
adapt to the data. Also, as will be showed later, this prior
allows the estimation of the values of the parametersξj di-
rectly from data.

Using this prior the log likelihood of the MAP function
is

LMAP (Θ|Y ) = log p(Y |Θ) + log p(Θ) ∝

∝
N∑

i=1

log{
K∑

j=1

πijp(yi|θj)}+ log p(π) . (12)

Direct maximization of this function is difficult thus we re-
sort to the EM methodology which maximizes the expected
value of the MAP log likelihood of the complete data

Q(Θ|Θ(t)) =
N∑

i=1

K∑

j=1

z
(t)
ij {log πij + log p(yi|θj)} −

− log ξj −

∑

m∈Ni

(πij − πmj)2

2ξ2
j

. (13)

Based on the EM methodology theE-step (Eq. 4) and the
update rules during theM -step for the regression parame-
tersβj andΣj (Eqs. 6 and 7, respectively) are exactly the
same as in the case of ML configuration. However, in-
ference of the probabilities of the pixel labelsπij is not
as straightforward. Setting the derivative of (13) with re-
spect to parametersπij equal to zero we take the following
quadratic equation:

π2
ij − π̃ijπij −

ξ2
j

|Ni|z
(t)
ij = 0 , (14)

where π̃ij = 1
|Ni|

∑

m∈Ni

πmj is the mean value of thej-

th cluster’s probability of the spatial neighbors of thei-th
pixel. The above quadratic expression has two roots, where
we select only the root with the positive sign since it yields
the constraintπij ≥ 0:

π
(t+1)
ij =

π̃ij +

√
π̃2

ij + 4
ξ2

j

|Ni|z
(t)
ij

2
. (15)

It must be noted that in the above equation the neighbor-
hoodNi may include pixels with probabilities either up-
dated (π(t+1)

mj ) or not (π(t)
mj). However, these values ofπij as

computed by Eq. 15 are not the final solution since they do
not satisfy the constraints0 ≤ πij ≤ 1 and

∑K
j=1 πij = 1.

These constraint equations define a convex hull. Thus, after
calculation ofπ(t+1)

ij (Eq. 15) we project them on the con-
straint convex hull. For this projection an efficient convex
quadratic programming algorithm presented in [4] is used.



Figure 1. The 3-class test image used in the
experiments.

Finally, by taking the derivative ofQ-function (Eq. 13)
with respect to the smoothness parametersξj we obtain the
following update rule:

ξ2
j
(t+1)

=
1
N

N∑

i=1

∑

m∈Ni

(π(t+1)
ij − π

(t+1)
mj )2 . (16)

As discussed earlier, the fact that MRF variancesξ2
j can be

found in closed form is another advantage of the proposed
prior inference framework.

3 Experimental results

The performance of the proposed regression mixture
model with smoothness constraints, referred to asspatial
RM in the experiment section of this paper, is evaluated us-
ing a number of numerical experiments. We have consid-
ered both simulated spatiotemporal data with known ground
truth, as well as real cardiac perfusion MRI sequences
where visual inspection by an expert confirmed the validity
of the segmentation results. Comparison has made with the
simple regression mixture, referred to this section assimple
RM. Both methods were initialized using the same strategy.
In particular, for each curveyi we estimate first thep + 1
regression parameters as given by the simple least-square
solution, and then we applied theK-means algorithm to
this parameter space (we perform10 different runs of the
K-means and keep the best solution). Initial values for the
regression parametersβj are found directly from the opti-
mum centers of theK-means solution, while the diagonal
covariance matricesΣj are initialized indirectly from the
samples that belong to each discovered cluster.

3.1 Simulated spatiotemporal data

At first, we test the performance of our method with sim-
ulated spatiotemporal data with known ground truth. In par-
ticular, we have used the piece-wise constant image in Fig.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Frame

In
te

n
s

it
y

10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frame

In
te

n
s

it
y

Set A Set B

Figure 2. Two sets of the three signal patterns
used for generating the image sequences of
the piece-wise constant image in Fig. 1

Figure 3. Sample frames from the simulated
sequence Set Bwith SNR = 0dB.

1 that contains three distinct regions (K = 3) [15]. Simu-
lated image sequences withT = 50 time frames were gen-
erated by varying the intensity of each region of the image
according to a predefined time pattern. Two sets of such pat-
terns were used in our study, namelySet AandSet B, shown
in Fig. 2: The first one consists of a Gaussian, a Rayleigh
and a logarithmic curve, while the second set contains more
complex curves obtained by polynomials of degreep = 6.
The generated sequences of frames were also corrupted by
additive white Gaussian noise with properly defined vari-
ance in order to obtain signal to noise ratios (SNR) varying
between16dB and−18dB. Some characteristic examples
of the obtained frames are shown in Fig.3.

To quantify the performance of the proposed method two
evaluation criteria were used: a) The percentage of correctly
classified pixels that quantifies the ability of our methodol-
ogy to capture the spatial patterns of the data. b) The curve
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Figure 4. Percentage of correct classification
and curve square error as a function of the
SNR for the two sets of signal patterns.

square errorCSE, that is the sum of squared errors between
real curves ({rjl}) and the estimated curves ({[Xβ̂j ]l}), i.e.

CSE =
K∑

j=1

CSEj , whereCSEj =
T∑

l=1

(rjl − [Xβ̂j ]l)2.

This quantifies the performance of the proposed methodol-
ogy to capture the temporal patterns of the data. In order
to obtain a meaningful comparison, for each problem (SNR
value) we performed20 different executions of both meth-
ods with different seeds and kept records of the mean value
and the standard deviation of the two evaluation criteria.

Figure 4 presents the evolution of these quantities as a
function of theSNR for the two sets of sequences based on
the temporal patterns (Set AandSet B). As can be observed,
the proposed methodology improves significantly classifi-
cation accuracy as compared to simple RM for the entire
range of examinedSNR, especially in lower values. On the
other hand, this study on both sets showed that the introduc-
tion of the spatial information to the regression model does
not seem to improve the capability of estimating the tem-
poral patterns, since the calculated curve square error was
always larger with the constraints. However, this difference
was insignificant.
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Figure 5. Comparative results in terms of two
evaluation criteria in various levels of missing
data.

3.2 Results with missing data

This methodology is also beneficial in the missing data
case where, for certain time instances, there may be miss-
ing measurements at certain pixel locations. An example of
such a situation is in functional MRI where isolated spiking
on the radio frequency coils can cause variable temporal and
spatial missing data. This is an interesting application of re-
gression mixtures, since any other conventional clustering
methodology cannot be used in a straightforward manner.
More specifically, this scenario refers to the case when each
temporal pattern is of variable length, i.e.yi = {yil}Ti

l=1. In
other words, there are values for some time instances that
are missing. Then, the polynomial regression model ofyi is
given by

yi = Xiβ + ei , (17)



where the time regressorXi is a Vandermonde matrix with
a variable number rows which is equal to existing time mea-
surements at that spatial location. The use of the EM algo-
rithm for estimating the regression parameters differs in the
M -step in Eq. (6) and is given by:

β
(t+1)
j =

[
N∑

i=1

z
(t)
ij XT

i Σ−1
j

(t)
Xi

]−1 N∑

i=1

z
(t)
ij XT

i Σ−1
j

(t)
yi .

(18)
Additional experiments have been conducted in an attempt
to study the behavior of our methodology in situations with
missing data. In particular, we have introduced a parameter
that provides the percentage of the time samples that will be
removed from the observations. Since these removed sam-
ples are chosen at randomly, no spatial location is privileged
with respect to any other. Therefore, the percentage of the
missing data expresses the probability that a time sample
may not be present at a spatial location. Experiments were
conducted on the signal patternSet Bby varying the per-
centage of missing data between0% and80% and (again)
for variousSNR levels. Figure 5 illustrates the mean val-
ues and standard deviations of the two evaluation criteria for
three suchSNR values. As expected, the classification ac-
curacy is superior in comparison with the simple RM model
for all levels of missing data. However, the study showed
a significant improvement of the curve square error (CSE)
criterion since the spatial RM method provides lower CSE
values, especially in noisy environments with a lot of miss-
ing data. This observation suggests that the proposed prior
offers a more robust regression approach in the absence of
data.

3.3 Cardiac perfusion MRI sequence segmenta-
tion

We also applied our method to a real set of spatiotem-
poral data from an in vivo dynamic cardiac magnetic reso-
nance imaging (MRI) study. Our goal was to segment the
anatomies of the heart based on their hemodynamic coher-
ence, as well as to measure the time behavior of each seg-
ment. The MRI study was performed on an instrumented
pig with an intracoronary catheter inserted into the left main
coronary artery. Dynamic imaging was performed by ac-
quiring a series of 100 2D MR images aligned along an
oblique long axis view to image with a magnetization pre-
pared pulse sequence (TR/TE/a = 2.2/1.2/20; FOV = 200 X
200 mm2; slice = 5 mm; matrix = 96x96) [12]. After 15 pre-
contrast images, 4 mL of 0.125 mM Gd-DTPA (Omniscan;
Amersham Health, Princeton, NJ, USA) were administered
at 2 mL/second.

Figure 6 illustrates representative MR images from this
sequence, illustrating the differential enhancement of the
left circumflex (LCx) and left anterior descending (LAD)

Figure 6. Sample frames from the cardiac
perfusion MRI sequence used in the experi-
ments.
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Figure 7. Segmentation result of the cardiac
perfusion MRI sequence into K = 7 segments
using simple RM (a) and the proposed spatial
RM (b). The estimated p = 4-order curves are
also shown.



coronary arteries (that are directly supplied contrast en-
hanced blood from the left main), the perfused myocardium
and finally the right and left ventricles. Figure 7 shows the
results of segmentation with the two methods performed
with a predefined number of clusters K = 7. An expert in
cardiac MRI inspected and evaluated the two methods us-
ing the original MR images as reference. Comparison of
the two methods demonstrated that (a) both provide effi-
cient segmentations of the heart ventricles, myocardium and
arteries, and (b) the spatial RM results offer a far better spa-
tial coherence of the cardiac segments (e.g., note in Fig. 7a
the artifactual segments in the antero-basal area of the my-
ocardium that are absent in Fig. 7 b). The segmentation ef-
ficiency of the spatial RM method offers excellent capabil-
ities for segmenting out tissue based on its spatiotemporal
features. This has many potential applications especially in
the emerging field of interventional and functional MRI, for
optimizing the assessment and quantification of myocardial
perfusion, including the generation of perfusion maps, and
the generation of masks for 3D reconstruction of multislice
perfusion or vascular MRI.

4 Conclusions and Future Work

In this paper we presented a methodology based on re-
gression mixture modeling for analysis of spatiotemporal
data. The main feature of this approach is the incorporation
of a spatial smoothness prior for capturing spatial informa-
tion. This approach was demonstrated using numerical ex-
periments to be effective in discovering both the spatial and
the temporal patterns of spatiotemporal data. Furthermore,
it was demonstrated to be robust to both noise and missing
data.

In the future we plan to extend this stochastic model
in two directions. First, to automatically detect the order
of the regressor that is necessary to model the underlying
temporal pattern. Second, to automatically find the num-
ber of components of the mixture model that is necessary
to capture the spatial component of the data. Moreover,
other interesting medical image applications for studying
include the extraction of brain activation functional maps
from functional MRI and monitoring the physiologic mo-
tion of tissue for monitoring and guiding image guided in-
terventions and surgeries. Finally, we also plan to explore
our approach in surveillance and tracking applications from
video sequences [1].
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