
APPLICATION OF THE FUZZY MIN-MAXNEURAL NETWORK CLASSIFIERTO PROBLEMS WITHCONTINUOUS AND DISCRETE ATTRIBUTESA. Likas, K. Blekas and A. StafylopatisNational Technical University of AthensDepartment of Electrical and Computer EngineeringComputer Science Division157 73 Zographou, Athens, GreeceAbstract. The fuzzy min-max classi�cation network constitutesa promisimg pattern recognition approach that is based on hy-berbox fuzzy sets and can be incrementally trained requiringonly one pass through the training set. The de�nition andoperation of the model considers only attributes assuming con-tinuous values. Therefore, the application of the fuzzy min-maxnetwork to a problem with continous and discrete attributes,requires the modi�cation of its de�nition and operation in orderto deal with the discrete dimensions. Experimental results us-ing the modi�ed model on a di�cult pattern recognition prob-lem establishes the strengths and weaknesses of the proposedapproach.INTRODUCTIONFuzzy min-max neural networks [2, 3] consitute one of the many mod-els of computational intelligence that have been recently developed fromresearch e�orts aiming at synthesizing neural networks and fuzzy logic[1]. The fuzzy min-max classi�cation neural network [2] is an on-linesupervised learning classi�er that is based on hyperbox fuzzy sets. A hy-perbox constitutes a region in the pattern space that can be completelyde�ned once the minimum and the maximum points along each dimen-sion are given. Each hyperbox is associated with exactly one from thepattern classes and all patterns that are contained within a given hyper-box are considered to have full class membership. In the case where apattern is not completely contained in any of the hyperboxes, a properly1



computed fuzzy membership function (taking values in [0; 1]) indicatesthe degree to which the pattern falls outside of each of the hyperboxes.During operation, the hyperbox with the maximum membership valueis selected and the class associated with the winning hyperbox is con-sidered as the desicion of the network. Learning in the fuzzy min-maxclassi�cation network is an expansion-contraction process that consists ofcreating and adjusting hyperboxes (the minimum and maximum pointsalong each dimension) and also associating a class label to each of them.In this work, we study the performance of the fuzzy min-max clas-si�cation neural network on a pattern recognition problem that involvesboth discrete and continuous attributes. In order to handle the discreteattributes, the de�nition of a hyperbox must be modi�ed to incorporatecrisp (not fuzzy) sets in the discrete dimensions. Moreover, a modi�ca-tion is needed of the way the membership values are computed, alongwith changes in the criterion under which the hyperboxes are expanded.Besides extending the de�nition and operation of the fuzzy min-max net-work, the purpose of this work is also to gain insight into the factors thata�ect operation and training and test its classi�cation capabilities on adi�cult problem.In the following section a brief description of the operation and train-ing of the fuzzy min-max classi�cation network is provided, while inSection 3 the modi�ed approach is presented. Section 4 provides ex-perimental results from the application of the approach to a di�cultclassi�cation problem. It also presents results from the comparison ofthe method with the backpropagation algorithm and summarizes themajor advantages and drawbacks of the fuzzy min-max neural networkwhen used as a pattern classi�er.LEARNING IN THE FUZZY MIN-MAX CLASSIFICATIONNETWORKConsider a classi�cation problem with n continuous attributes that havebeen rescaled in the interval [0; 1], hence the pattern space is In ([0; 1]n).Moreover, consider that there exist p classes and K hyperboxes withcorresponding minimum and maximum values vji and wji respectively(j = 1; . . . ; K, i = 1; . . . ; n). Let also ck denote the class label associatedwith hyperbox Bk .When the hth input pattern Ah = (ah1; . . . ; ahn) is presented to the2



network, the corresponding membership function for hyperbox Bj is ([3])bj(Ah) = 1n nXi=1[1� f(ahi � wji; )� f(vji � ahi; )] (1)where f(x; ) = x, if 0 � x � 1, f(x; ) = 1 if x > 1 and f(x; ) = 0if x < 0. If the input pattern Ah falls inside the hyperbox Bj thenbj(Ah) = 1, otherwise the membership decreases and the parameter � 1 regulates the decrease rate. As already noted, the class of thehyperbox with the maximum membership is considered as the output ofthe network.In a neural network formulation, each hyperbox Bj can be consideredas a hidden unit of a feedforward neural network that receives the inputpattern and computes the corresponding membership value. The valuesvji and wji can be considered as the weights from the input to the hiddenlayer. The output layer contains as many output nodes as the numberof classes. The weights ujk (j = 1; . . . ; K, k = 1; . . . ; p) from the hiddento the output layer express the class corresponding to each hyperbox:ujk = 1 if Bj is a hyperbox for class ck , otherwise it is zero.During learning, each training pattern Ah is presented once to thenetwork and the following process takes place: First we �nd the hyperboxBj with the maximum membership value among those that correspondto the same class as pattern Ah and meet the expansion criterion:n� � nXi=1(max(wji; ahi)�min(vji; ahi)) (2)The parameter � (0 � � � 1) is a user-de�ned value that imposes abound on the size of a hyperbox and its value signi�cantly a�ects thee�ectiveness of the training algorithm. In the case where an expandablehyperbox (of the same class) cannot be found, then a new hyperboxBk is spawned and we set wki = vki = ahi for each i. Otherwise, thehyperbox Bj with the maximum membership value is expanded in orderto incorporate the new pattern Ah, i.e., for each i = 1; . . . ; n:vnewji = min(voldji ; ahi) (3)wnewji = max(woldji ; ahi) (4)Following the expansion of a hyperbox, an overlap test takes place todetermine if any overlap exists between hyperboxes from di�erent classes.In case such an overlap exists, it is eliminated by a contraction processduring which the size of each of the overlapping hyperboxes is minimally3



adjusted. Details concering the overlap test and the contraction processcan be found in [2].From the above description it is clear that the e�ectiveness of thetraining algorithm mainly depends on two factors: the value of the pa-rameter � and the order with which the training patterns are presentedto the network.TREATING DISCRETE ATTRIBUTESA basic assumption concerning the application of the fuzzy min-max clas-si�cation network to a pattern recognition problem is that all attributestake continuous values. Hence, it is possible to de�ne the pattern space(union of hyperboxes) corresponding to each class by providing the min-imum and maximum attribute values along each dimension. In the caseof pattern recognition problems that are based on both analog and dis-crete attributes, it is nessecary for the discrete features to be treated ina di�erent way. This is mainly due to the fact that it is not possible tode�ne a meaningful ordering of the values of discrete attributes. Thus,it is not possible to apply the minimum and maximum operations onwhich the original fuzzy min-max neural network is based.Consider a pattern recognition problem with n attributes (both con-tinous and discrete). Let D denote the set of the indices of the discreteattributes and C denote the set of indices of the continuous attributes.Let also nC = jCj and nD = jDj denote the number of continuous and dis-crete attributes respectively and Di denote the domain of each discretefeature i 2 D. A pattern Ah = (ah1; . . . ; ahn) of this problem has thecharacteristic that ahi 2 [0; 1] for i 2 C and ahi 2 Di for i 2 D. In orderto deal with problems characterized by such mixture of attributes, weconsider that each hyperbox Bj is described by providing the minimumvji and maximum wji attribute values for the case of continuous features(i 2 C) and by explicitly providing a set of attribute values Dji � Di forthe case of discrete features i 2 D. Since it is not possible to de�ne anydistance measure between the possible values of discrete attributes, wecannot assign any fuzzy membership values to the elements of sets Dji.Therefore, the sets Dji are crisp sets, i.e., an element either belongs toa set or not. Taking this argument into account, equation (1) provid-ing the membership degree of a pattern Ah to a hyperbox Bj , takes the4



following form:bj(Ah) = 1nfXi2C[1�f(ahi�wji; )�f(vji�ahi; )]+Xi2DmDji(ahi)g (5)wheremS(x) denotes the membership function corresponding to the crispset S, which is equal to 1 if x 2 S, otherwise it is equal to 0.In a neural network implementation, the continuous input units areconnected to the hidden units via the two kinds of weights vji and wjias mentioned in the previous section. In what concerns the discreteattributes, we can assign one input unit to each atribute value, that isset to 1 in case this value exists in the input pattern, while the otherunits corresponding to the same attribute are set equal to 0. If a speci�cvalue dik 2 Di belongs to the set Dji, then the weight between thecorresponding input unit and the hidden unit j is set equal to 1, otherwiseit is 0.During training, when a pattern Ah is presented to the network theexpansion criterion has to be modi�ed in order to take into account boththe discrete and the continuous dimensions. More speci�cally, we haveconsidered two distinct expansion criteria: The �rst one concerns thecontinuous dimensions and remains the same as in the original networkgiven by equation (2) with n being replaced by nC which denotes thenumber of continuous attributes. The second expansion criterion con-cerns the discrete features and has the following form:� �Xi2DmDji(ahi) (6)where the parameter � (0 � � � nD) expresses the minimum numberof discrete attributes in which the hyperbox Bj and the pattern Ahmust agree in order for the hyperbox to be expanded to incorporate thepattern.During the test for expansion process, we test whether there existexpandable hyperboxes (according to the two criteria) from the sameclass asAh and we expand the hyperbox with the maximummembership.If no expandable hyperbox is found a new one Bk is spawned and we setvki = wki = ahi for i 2 C and Dki = fahig for i 2 D.When a hyperbox is expanded, its parameters are adjusted as follows:If i 2 C vnewji = min(voldji ; ahi) (7)wnewji = max(woldji ; ahi) (8)5



If i 2 D Dnewji = Doldji [ fahig (9)During overlap test and contraction the discrete dimensions are notconsidered and ovelap is eliminated by adjusting ony the continuous di-mensions of the hyperboxes following the minimum disturbance principleas in the original network. Although it is possible to separate two hy-perboxes Bj and Bk by removing common elements from some of thesets Dji and Dki, we have not followed this approach. The main reasonis that the disturbance in the already allocated patterns would be moresigni�cant, since these sets do not contain many elements in general.EXPERIMENTS AND CONCLUSIONSWe have studied the modi�ed fuzzy min-max neural network classi�eron a di�cult classi�cation problem concerning the assignment of creditto consumer applications. The data set (obtained from the UCI repos-itory [5]) contains 690 examples and was originally studied by Quinlan[4] using decision trees. Each example in the data set concerns an appli-cation for credit card facilities described by 9 discrete and 6 continuousattributes, with two decision classes (either accept of reject the applica-tion). Some of the discrete attributes have large collections of possiblevalues (one of them has 14) and there exist examples in which some at-tribute values are missing. As noted in [4] these data are both scantyand noisy making accurate prediction on unseen cases a di�cult task.Two series of experiments were performed. In the �rst series, thedata set was divided into a training set of 460 examples (containingequal number of positive and negative cases) that were used to adjustthe network hyperboxes, while the remaining 230 examples were used asa test set to estimate the performance of the resulting classi�er. Eachexperiment in a series consisted of training the network (in a single pass)for certain values of � and � and then computing the percentage of correctclassi�cations over the test set. Moreover, the order of presentation ofthe training patterns to the network was held �xed in all experiments.Best results were found for � = 0:237 and � = 8. For these parametervalues the resulting network contained 136 hyperboxes and the successrate was 87%. It must be noted that the success rate was very sensitiveboth on the choice of the parameter � and on the order with which thetraining examples are presented. This of course constitutes a weaknessof the fuzzy min-max classi�er, but on the other hand, each training6



experiment is very fast and the process of adjusting � can be performedin reasonable time. We have also tested the classi�cation performance incase the training data are presented to the network more than once andwe have found that only marginal performance improvement is obtained.We have also used the same data set to train a multilayer percep-tron using the backpropagation algorithm (the on-line version). A net-work with one hidden layer was considered. Several experiments wereconducted for di�erent values of the number of hidden units. The bestclassi�cation rate we were able to obtain was 83% for a network of 10 hid-den units and with learning rate 0.1. It must be noted that the requiredtraining time was excessively long compared to the one-shot training ofthe fuzzy min-max network.During experiments, we have observed that some of the exampleswere `bad', in the sense that they were very di�cult predict, and, inaddition, when used as part of the training set, the resulting networkexhibited poorer classi�cation performance, than in the case in whichthese examples were not used for training. For this reason, a second seriesof experiments were conducted on a subset of the data set (400 examples)that resulted from the removal of the bad examples. We considereda training set and a test set of size 200, each of them containing 100positive and 100 negative examples. Best performance was obtained for� = 0:115 and � = 8 (112 hyperboxes) with classi�cation rate 97.5%.Moreover, the performance was very robust with respect to the value of� with the classi�cation rate being more than 90% for all tested values.The best classi�cation rate we have obtained for this data set using thebackpropagation algorithm was 89.5%.As the experiments indicate, the fuzzy min-max classi�cation neuralnetwork constitutes a promising method for pattern recognition problemsthat has the advantage of fast one-shot training with its only drawbackcoming from its sensitivity in the parameter values used in the test forexpansion criteria. Therefore, further research should be focused on de-veloping algorithms for automatically adjusting these parameters duringtraining.REFERENCES[1] IEEE Trans. on Neural Networks, Special Issue on Fuzzy Logic andNeural networks, vol. 3, No. 5, September 1992.7
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