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Abstract. This paper presents an incremental approach for training a
Markov mixture model to a set of sequences of discrete states. Starting
from a single Markov model that captures the background information,
at each step a new component is added to the mixture in order to improve
the data fit. This is done by making at first an exploration of a relevant
parametric space to initialize the new component, based on an extension
of the k-means algorithm. Then, by performing a two-stage scheme of
the EM algorithm, the new component is optimally incorporated to the
body of the current mixture. To assess the effectiveness of the proposed
method, we have conducted experiments with several data sets and we
make a performance comparison with the classical mixture model.

1 Introduction

Sequential data analysis is an important research area with a wide range of ap-
plications, such as web log mining, bioinformatics, speech recognition, robotics,
natural language processing and many others. Since clustering can be seen as a
fundamental tool in understanding and exploring a data set, several attempts
have been made on the task of clustering sequential data of discrete states [1–
4]. In model-based clustering approaches a flexible and powerful scheme used is
through mixture models [5]. It is assumed that each cluster is described by a
generative model and the aim of clustering is to find an optimal set of such mod-
els in order to best fit the data. Markov models [6] provide an efficient method
for modeling sequential data. In most of the these approaches, the EM algorithm
[7] is used for estimating the parameters of the Markov mixture models. Since
the EM algorithm has the drawback to be dependent on the initial values of
the mixture parameters, several methods have been introduced to reduce this
effect. In [3] for example, a noisy-marginal scheme is proposed by perturbing the
parameters of a single model to obtain K copies of it. An alternative approach is
presented in [1], where an agglomerative clustering technique is applied together
with a suitable distance function for sequences, in order to initialize the K para-
metric models of the mixture. Many efforts have been made recently to address
visualization capabilities of clustering approaches using Markov models [3, 8–10].
In this spirit, the behavior of the sequences within clusters can be displayed and
an explanatory analysis for the dynamics of data can be provided.

In this paper we propose an incremental approach for training Markov mix-
ture models. Borrowing strength from recent advances on mixture models [11,



12], our method performs a systematic exploration of the parameter space and
simultaneously tries to eliminate the dependence of the EM algorithm on the
initialization. The method starts with a single Markov model that fits all se-
quences, and sequentially adds new components to the mixture following three
major steps. At first we initialize the new inserted Markov model by searching
over a parametric likelihood space. The latter is specified by a set of candidate
models that have been constructed through the use of an adaptation of the clas-
sical k-means algorithm for treating sequential data. This is the initialization
step. Then, we perform a partial EM scheme allowing the adjustment of only
the new model parameters. Finally, the new component is optimally incorpo-
rated to the current mixture by normally applying the EM algorithm and thus
best fitting the new mixture model with the data. The procedure stops when
reaching a number of K components. We have tested our training method on
a suite of artificial and real benchmarks taking into account a variety of cases
with excellent results. During the experiments we have evaluated the proposed
scheme in terms of its capability to fit the data and measure its robustness.
Comparative results have been also obtained with the classical Markov mixture
model under two schemes for initialization.

In section 2 we give the basic scheme of the Markov mixture models, while
section 3 describes the proposed approach for incremental training. In section 4
we present experimental results and finally, in section 5 we give some concluded
remarks.

2 Markov mixture models

Consider a dataset X = {X1, . . . , XN}, where each data point Xi = (Xil)
Li

l=1

is a sequence of length Li observed states. We further assume that each state
takes values from a discrete alphabet of M symbols, i.e. Xil ∈ {1, . . . , M}. The
clustering problem is to find K disjoint subsets of X, called clusters, containing
sequences with common properties. In this study we consider that every cluster
corresponds to a generative model that fits well the observed data that supports.

Mixture models represent an efficient architecture that is particularly suitable
for clustering. It assumes that data have been generated from a mixture model
with K components according to the following density function

f(Xi|ΘK) =

K
∑

j=1

πjp(Xi|θ
j) , (1)

where ΘK = {πj , θ
j} denotes the set of the mixture parameters. In particular,

the parameters πj = P (j) determine the prior probabilities of the K components

satisfying that
∑K

j=1 πj = 1. Moreover, every component has a probability dis-

tribution function p(Xi|θ
j), whose parameters θj are unknown. A natural way

for modeling sequential data is through the first-order Markov model, defined
by the initial states probabilities θj

0m = P (Xi1 = m), as well as the transition
probabilities θj

nm = P (Xi,l+1 = m|Xil = n) from a state n to another state m,



n, m = 1, . . . , M . Thus, each model parameter θj is a stochastic matrix with
a set of M + 1 rows (multinomial distributions), holding that

∑M
m=1 θj

nm = 1,
∀n = 0, . . . , M . The density function for the jth component is then written as

p(Xi|θ
j) = θj

0,Xi1

Li−1
∏

l=1

θj
Xil,Xi,l+1

=

M
∏

m=1

(θj
0m)γi(m)

M
∏

n=1

M
∏

m=1

(θj
nm)δi(n,m), (2)

where γi(m) =

{

1 if Xi1 = m
0 otherwise

and δi(n, m) defines the number of transitions

from state n to state m in the sequence Xi. Following the Bayes rule, we can
then associate every sequence Xi to the cluster j that has the maximum posterior

probability value P (j|Xi) =
πjp(Xi|θ

j)
f(Xi|ΘK) . The clustering problem is then equiva-

lent to estimating the mixture model parameters ΘK , by maximizing the log-
likelihood function arisen from the model. Furthermore, we can introduce non-

informative Dirichlet priors of the form p(θj
n|a

j
n) =

Γ (
∑M

m=1(a
j
nm+1))

∏
M
m=1 Γ (aj

nm+1)

∏M
m=1(θ

j
nm)aj

nm ,

where the parameter aj
n is a M -vector with components aj

nm > 0. The derived
maximum a-posteriori (MAP) log-likelihood function is then given by

L(X|ΘK) =

N
∑

i=1

log f(Xi|ΘK) +

K
∑

j=1

M
∑

n=0

log p(θj
n|a

j
n) . (3)

It must be noted that the Dirichlet parameters aj
n were common to every com-

ponent j and set equal to a small proportion (e.g. 10%) of the corresponding
maximum likelihood (ML) estimated multinomial parameter values of the single
Markov model that fits the data set X (using relative frequencies of states). The
latter from now on it will be referred to as “single ML-estimated Markov model”.

The EM algorithm [7] is an efficient framework for estimating the mixture
model parameters. It requires the computation of the conditional expectation
values zij (posterior probabilities) of the hidden variables during the E-step

z
(t)
ij =

π
(t)
j

p(Xi|θ
j(t)

)
∑

K
j′=1

π
(t)

j′
p(Xi|θj′ (t)

)
, while at the M-step the maximization of the log-

likelihood function of the complete dataset is performed. This leads to the fol-
lowing updated equations for the mixture model parameters:

π
(t+1)
j =

N
∑

i=1

z
(t)
ij

N
, θj

nm

(t+1)
=


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N
∑

i=1

z
(t)
ij γi(m) + aj

0m

N
∑

i=1

z
(t)
ij +

M
∑

m′=0

aj
0m′

, if n = 0

N
∑

i=1

z
(t)
ij δi(n, m) + aj

nm

N
∑

i=1

z
(t)
ij

M
∑

m′=1

δi(n, m′) +

M
∑

m′=1

aj
nm′

, if n > 0

(4)



The EM algorithm guarantees the convergence of the log-likelihood function to
a local maximum satisfying all the constraints of the parameters. However, the
great dependence on the initial parameter values may drastically effect its per-
formance [5]. In the next section we present an incremental approach for building
a Markov mixture models that eliminates this problem of poor initialization.

3 Incremental mixture training

The proposed method starts with a simple model with one component that comes
from the single ML-estimated Markov model of the whole dataset X. At each
step a new component is added to the mixture by performing a combined scheme
of searching for good initial estimators and for fine local tuning its parameters.
It must be noted that a same in nature strategy have been also presented in [11]
and [12] for Gaussian mixture models and for discovering patterns in biological
sequences, correspondingly.

Lets assume that we have already constructed a k-length mixture model with
Θk parameters. By inserting a new component, the resulting mixture can take
the following form

f(Xi|Θk, π∗, θ∗) = (1 − π∗)f(Xi|Θk) + π∗p(Xi|θ
∗) . (5)

where π∗ ∈ (0, 1) is the prior probability of the new component. The above
scheme can be viewed as a two-component mixture model, where the first one
captures the current mixture with density function f(Xi|Θk) and the second one
the new Markov model that has a density function p(Xi|θ

∗) with an unknown
stochastic matrix θ∗.

If we fix the parameters of the old mixture model Θk, we can then maximize
the resulting log-likelihood function Lk of the above two-components mixture
with respect only to the new model parameters {π∗, θ∗}:

Lk =
N

∑

i=1

log{(1 − π∗)f(Xi|Θk) + π∗p(Xi|θ
∗)} +

M
∑

n=0

log p(θ∗n|an) . (6)

In this light, we can apply the EM algorithm for estimating only the parameters
of the new model, namely as partial EM. This results into obtaining the following
update equations: a) at the E-step

ζ
(t)
i =

π∗(t)p(Xi|θ
∗(t))

(1 − π∗(t))f(Xi|Θk) + π∗(t)p(Xi|θ∗
(t))

, (7)



and b) at the M-step

π∗(t+1) =

N
∑

i=1

ζ
(t)
i

N
, θ∗nm
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(8)

The above partial EM steps offer more flexibility to the general scheme and
simplifies the estimation problem during the insertion of a new Markov model
to the mixture.

At a second stage, the new component can be incorporated to the body of the
current mixture and construct a new mixture f(Xi|Θk+1) with k+1 components.
Again, the EM algorithm can be used to maximize the log-likelihood function
L(X|Θk+1) in the new parameter space Θk+1, following Eqs. 4. The mixture

parameters are initialized from the solution of the partial EM, i.e. π
(0)
k+1 = π∗,

π
(0)
j = (1 − π∗)πj , ∀j = 1, . . . , k, and θ

(0)
k+1 = θ∗. This iterative procedure is

repeated until the desired order K of the Markov mixture model is reached.

3.1 Initializing new model parameters

From the above analysis, a problem that arises is how to initialize properly
the new component parameters during the partial EM scheme. This can be
accomplished by establishing a parametric search space through a set of Km

candidate Markov models {φj}
Km

j=1. In particular, we perform one step of the
partial EM, after initializing the multinomial parameters of the new model with
a candidate Markov model (θ∗(0) = φj) and the prior probability π∗ with the

typical value π∗(0) = 1
k+1 . Finally, we select the solution that corresponds to

the maximum value of the log-likelihood function Lk (Eq. 6) for initializing the
parameters {π∗, θ∗}.

In our study we have used an extension of the known k-means algorithm to
create such a set of candidate models. In the general case, the k-means algorithm
aims at finding a partition of Km disjoint clusters Cj to a set of N objects, so as
the overall sum of distances between cluster centers µj and objects Xi is mini-
mized. In order to adopt this framework in the case of sequential data we need to
make some modifications. At first, a distance function between two sequences Xi

and Xk must be provided so as to encapsulate an appropriate measure of dissim-
ilarity between data. For this purpose we have used a symmetrized log-likelihood



distance defined as [1]

D(i, k) =
1

2
{log p(Xi|ϑk) + log p(Xk|ϑi)} , (9)

where the parameters ϑi denote the single ML-estimated Markov model spec-
ified by each sequence Xi. Furthermore, at each step t of the k-means algo-

rithm we re-estimate the new center µ
(t+1)
j of every cluster Cj by finding the

medoid sequence among the sequences that currently supports, i.e. µ
(t+1)
j =

arg min
Xi∈C

(t)
j

∑

Xk∈C
(t)
j

D(i, k) . At the end of the algorithm, we correspond

a Markov model φj to every cluster Cj , by finding the single (ML-estimated)
Markov model that best fits all sequences associated with this cluster. The above
scheme creates a pool of Km candidate models capable for initializing the pa-
rameter θ∗ during the partial EM steps. As experimental study has shown, the
proposed method is not sensitive to the value of Km. A small proportion of the
population size of sequences N (e.g. 5%) is enough for constructing a rich search
space with good initial estimators. Another advantage of the proposed k-means
algorithm is that is computationally faster than other distance-based clustering
schemes (e.g. hierarchical clustering) that can be alternatively applied using the
same distance function (Eq. 9).

3.2 The proposed algorithm

The proposed incremental approach for training a mixture of K Markov models
can be summarized in the following algorithmic form.

– Set Θ1 = {θ1, π1 = 1} using the single ML-estimated Markov model from
the data set X. Use k-means to provide Km candidate Markov models φj .

– for k = 1 : K − 1
1. ∀j = 1, . . . , Km perform one partial EM step (Eqs.7-8) by setting π∗(0) =

1
k+1 and θ∗(0) = φj . Select the solution that has the maximum log-
likelihood value Lk (Eq. 6).

2. Perform partial EM (Eqs.7-8) until convergence and estimate new model
parameters {π∗, θ∗}.

3. Set Θk+1 = Θk ∪ {πk+1, θk+1}, where πk+1
(0) = π∗, πj

(0) = (1 − π∗)πj

∀j ≤ k, θk+1(0)
= θ∗.

4. Perform general EM (Eqs.4) to maximize L(X|Θk+1).

4 Experimental results

Several experiments have been made in an attempt to evaluate the performance
of the proposed incremental training approach, namely as IMM. Comparative re-
sults have been also obtained using two methods for initializing classical Markov
mixture models: a) the RMM, that follows the initialization scheme presented in
[3] which creates K noisy copies from the single ML-estimated Markov model,



and b) the KMM, that first applies the k-means algorithm as described previ-
ously for discovering K clusters (Km = K), and then initializes every component
with the single ML-estimated Markov model of every cluster found. In any case,
the prior parameters are initially set as πj = 1/K. Since both last methods de-
pends on the initialization, twenty (20) runs of the EM algorithm were performed
for each data set. We kept records of the mean value and the standard deviation
of the log-likelihood. Also, the proposed IMM model was executed only once for
fitting a K-order Markov mixture model to each data set.

Table 1. Percentage of times the correct model was detected by the three methods
IMM, KMM and RMM.

# symbols mixture # components (K)
(M) model 5 8 10 15

IMM 100 % 100 % 100 % 100 %
5 RMM 80.5 % 67.5 % 50 % 25.5 %

KMM 56 % 49.5 % 31.5 % 7 %

IMM 100 % 100 % 100 % 100 %
8 RMM 67 % 47.5 % 35.5 % 11.5 %

KMM 50 % 32 % 19 % 7 %

IMM 100 % 100 % 100 % 100 %
10 RMM 74.5 % 45.5 % 28.5 % 10 %

KMM 47 % 28.5 % 15.5 % 2.5 %

IMM 100 % 100 % 100 % 100 %
12 RMM 70 % 42 % 26.5 % 9.5 %

KMM 35 % 25 % 11 % 2.5 %

IMM 100 % 100 % 100 % 100 %
15 RMM 75 % 35.5 % 21 % 6 %

KMM 52 % 20.5 % 9.5 % 1 %

The first series of experiments was carried out using artificial data to eval-
uate the robustness of our method. We created sets of artificial sequences by
sampling from several K-order Markov mixture models using various values for
the alphabet size M . In particular, using five and four different values for the
parameters K and M , correspondingly, we created ten (10) different datasets for
each pair (M, K). In each dataset N = 1000 number of sequences were generated
of length between 50 and 100 states (Li ∈ [50, 100]). Since we were aware of the
true model that best fit the experimental datasets, we evaluated each method
by calculating the percentage of times that the global maximum log-likelihood
value was found. Table 1 summarizes the depicted results. The weakness of both
the RMM and KMM approaches in obtaining the global maximum value, is ob-
vious, especially in higher values of K. On the other hand, the proposed IMM
approach was able to estimate correctly the true model in all cases.

Another series of experiments with artificial sequences has been made using
sets of K randomly selected patterns of equal length 50 from an alphabet of
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Fig. 1. The log-likelihood values found by the three comparative methods as a function
of noise parameter pn.

M symbols. The data generation mechanism was the following: A pattern is
randomly selected at first, and then a noisy copy of it is located at a random
position in the sequence. Pattern noise is governed by using a probability pn for
mutation, common to every pattern site. The rest non-pattern sites are filled
uniformly from the same alphabet. Using this scheme, two sets of N = 1000
sequences of length Li ∈ [50, 100] were created; one used for training and another
one for testing. As it is clear, this clustering problem is more difficult since the
Markov property exists only locally in the sequences and under different levels of
noise. Likewise, for each randomly selected pattern family we generated ten (10)
different datasets and we evaluated each method in terms of the log-likelihood
value found in both training and test sets. Figure 1 illustrates the results obtained
with four values of K = {5, 8, 10, 15} and five different levels of noise pn =
{0.1, 0.2, 0.3, 0.4, 0.5} in the case of M = 10 alphabet size. In each diagram, the
error bars indicate the standard deviation of the log-likelihood difference between
the true model that is known and the model under consideration. Our method
was able to achieve a high degree of noise tolerance, since always managed to
discover the correct model, even for extremely noisy datasets.

Additional experiments have been performed using the msnbc.com web navi-
gation dataset [3], which is a collection of sequences that corresponds to M = 17
page-category views (symbols) of users during twenty-four hour period. Here we
have considered only a subset of the total collection containing 4600 sequences
of length Li ∈ [40, 100]. We randomly divided it into two subsets (training /
test) of approximately equal size. Figure 2 shows the calculated log-likelihood
value per sequence (L(X|ΘK)/N) as a function of the mixture order K on both



sets. Our method was executed only once until reaching K = 16 components.
In the case of the RMM and KMM methods we plot the mean value and the
standard deviations (error bars) of the log-likelihood over 20 different runs (ini-
tializations) of the EM algorithm per each value of K. The proposed method
showed an improvement performance with better generalization capabilities on
the test set in comparison with the other two approaches. Note that we have
repeated this study with different divisions into training and test subsets of this
dataset and the results were similar. Finally, in Figure 3 we give an example
of the visualization capabilities of clustering sequential data that can be used
for identifying user behavior patterns in applications such as web log mining [3,
8]. Each one of the ten images corresponds to a cluster found when applying
our method for training a mixture model with K = 10 Markov components. By
associating every symbol with a unique color, sequences that belong to the same
cluster are represented as raws of colored squares.
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Fig. 2. Application of the three methods to the msnbc.com dataset. The log-likelihood
values are calculated for several values of K in the training and the test set.

5 Conclusions

In this paper we have presented an incremental strategy for training Markov
mixture models by maximum likelihood on a set of sequences of discrete states.
The approach sequentially adds components to a mixture model by performing
a combined scheme of the EM algorithm. In order to initialize properly each new
component, an efficient parameter search space of Markov models has been con-
structed. Experiments on a variety of benchmarks have shown the ability of our
method to improve the data fit and also demonstrated its generalization capabil-
ity. The determination of the proper value of K for terminating the incremental
procedure can be seen as one of our future studies on this area. Finally, we plan
to focus our attention on mixtures of hidden Markov models, since they can be
seen as more general probabilistic models for sequential data.
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Fig. 3. Visualization of the clustering results (K = 10) on the msnbc.com data. Each
image represents a cluster of user sessions in a colored raw form.

References

1. P Smyth. Clustering sequences with hidden Markov models. In M. C. Mozer,
M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing
Systems, volume 9, pages 648–654. The MIT Press, 1997.

2. G. Ridgeway. Finite discrete markov process clustering. Technical Report MSR-
TR-97-24. Microsoft Research, Redmod, WA, 1997.

3. I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White. Model-based clustering
and visualization of navigation patterns on a web site. Data Mining and Knowledge
Discovery, 7(4):399–424, 2003.

4. M. Bicego, V. Murino, and M. Figueiredo. Similarity-based classification of se-
quences using hidden Markov models. Pattern Recognition, 37:2281–2291, 2004.

5. G.M. McLachlan and D. Peel. Finite mixture models. New York: John Wiley &
Sons, Inc., 2001.

6. L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77:257–286, 1989.

7. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Statist. Soc. B, 39:1–38, 1977.

8. E. Manavoglu, D. Pavlov, and C.L. Giles. Probabilistic user behavior models. In
IEEE International Conference on Data Mining (ICDM’03), pages 203–210, 2003.

9. A. Ypma and T.M. Heskes. Automatic categorization of web pages and user clus-
tering with mixtures of hidden Markov models. In WEBKDD 2002 - Mining web
data for discovering usage patterns and profiles, pages 35–49, Berlin, 2003.

10. P. Tino, A. Kaban, and Y. Sun. A generative probabilistic approach to visualiz-
ing sets of symbolic sequences. In ACM SIGKDD - International Conference on
Knowledge Discovery and Data Mining - KDD-2004, pages 701–706, 2004.

11. N. Vlassis and A. Likas. A greedy EM algorithm for Gaussian mixture learning.
Neural Processing Letters, 15(1):77–87, 2002.

12. K. Blekas, D.I. Fotiadis, and A. Likas. Greedy mixture learning for multiple motif
discovering in biological sequences. Bioinformatics, 19(5):607–617, 2003.


