
IMAGE SEGMENTATION WITH A CLASS-ADAPTIVE SPATIALLY CONSTRAINED
MIXTURE MODEL

Christophoros Nikou, Nikolaos Galatsanos, Aristidis Likas and Konstantinos Blekas

University of Ioannina, Department of Computer Science,
P.O. Box 1186, 45110 Ioannina, Greece,

phone: + (30) 26510 98802
{cnikou,galatsanos,arly,kblekas}@cs.uoi.gr

ABSTRACT

We propose a hierarchical and spatially variant mixture
model for image segmentation where the pixel labels are ran-
dom variables. Distinct smoothness priors are imposed on
the label probabilities and the model parameters are com-
puted in closed form through maximum a posteriori (MAP)
estimation. More specifically, we propose a new prior for the
label probabilities that enforces spatial smoothness of differ-
ent degree for each cluster. By taking into account spatial
information, adjacent pixels are more probable to belong to
the same cluster (which is intuitively desirable). Also, all
of the model parameters are estimated in closed form from
the data. The proposed conducted experiments indicate that
our approach compares favorably to both standard and previ-
ous spatially constrained mixture model-based segmentation
techniques.

1. INTRODUCTION

Image segmentation is the process of grouping image pixels
based on the coherence of some attributes such as intensity,
color or texture. Given a known number of classes, each class
can be associated with a label, so that image segmentation
(pixel labeling or clustering) consists of assigning a numeric
label to each pixel. Many approaches have been proposed
to solve the image segmentation problem [8, 15]. Methods
based on grey level thresholding [10, 14] and statistical mod-
eling of the image [4] were investigated. While the former
assume absence of statistical noise and partial volume effects
the latter are computationally expensive.

The relatively recent application of finite mixture models
(FMM) [1, 13, 16] to image segmentation is based on the as-
sumption that the intensity of each pixel is a sample from a fi-
nite mixture of distributions. Finite mixtures of distributions
have provided a mathematical-based approach to the statis-
tical modeling of random phenomena [11]. The parameters
of the model can be estimated through likelihood maximiza-
tion (ML) using the Expectation-Maximization (EM) [5] al-
gorithm. Since pixel observations are considered to be inde-
pendent samples, a significant drawback of the ML approach
is that spatial information is not taken into account.

To overcome this difficulty, the spatially variant finite
mixture model (SVFMM) considers a maximuna poste-
riori (MAP) approach by introducing a prior distribution
for the parameters following the Gibbs function [6, 7, 17].
However, the SVFMM considers a global statistical model
for the whole image. It does not take into account intra-
cluster statistics which, in general may differ significantly.
The smoothness constraint in image segments implied by the

SVFMM may be violated not only in cases of noise and miss-
ing data but also by the nature of the data (e.g. textured im-
ages). In this study, we improve the SVFMM by introducing
a new class-adaptive regularization to control the strength of
the prior which is now different for each image cluster. Fur-
thermore, all of the model parameters are computed in closed
form through the MAP estimation and the EM algorithm.

In the following, the standard spatially variant finite mix-
ture model is described in section 2 and our adaptive spatially
variant mixture model (A-SVFMM) is presented in section 3.
Experimental results are presented in section 4 and conclu-
sions are drawn in section 5.

2. THE STANDARD SPATIALLY VARIANT FINITE
MIXTURE MODEL

Let xi denote the intensity of theith pixel of an image (i =
1...,N) modeled as independently distributed random vari-
ables. The SVFMM [6] provides a modification of the clas-
sical FMM approach [1, 11, 16] for pixel labeling. It assumes
a mixture model withK components each one having its own
vector of density parametersθ j .

Pixel i is characterized by its probability vector−→π i =[
π i

1π i
2 . . .π i

K

]T
whereK is the number of clusters that a pixel

may belong.Π = {(−→π 1)T ,(−→π 2)T , . . .(−→π N)T} is the set of
probability vectors andΘ = {θ 1,θ 2, . . . ,θ K} the set of com-
ponent parameters. The set of probabilitiesπ i

j = P( j|xi) of

the ith pixel to belong to thej th cluster (or class label) must

satisfy the constraints0≤ π i
j ≤ 1 and

K

∑
j=1

π i
j = 1.

The FMM assumes that the density function at an obser-
vationxi is expressed by:

f (xi |Π,Θ) =
K

∑
j=1

π i
jφ(xi |θ j), (1)

whereφ(xi |θ j) is a Gaussian distribution with parameters its
mean and standard deviationθ j = {µ j ,σ j}. The SVFMM
proposes a prior density based on the Gibbs distribution for
the parameter setΠ:

p(Π) =
1
Z

e−U(Π) (2)

with

U (Π) = β
N

∑
i=1

VNi (Π) , (3)



whereZ is a normalizing constant,β is the Gibbs regulariza-
tion parameter and the functionVNi (Π) denotes the clique
potential function of the pixel label vectors{−→π i} within the
neighborhoodNi . In the general case, this function has the
form:

VNi (Π) = ∑
m∈Ni

g(di,m)

whereui,m specifies the distance between two label vectors
{−→π i} and{−→π m}:

di,m = ||{−→π i}−{−→π m}||2 =
K

∑
j=1

(π i
j −πm

j )2

and the neighborhoodNi is generally the set of horizontally
and vertically adjacent pixels to pixeli. A choice for the
monotonically increasing and non negative penalty function
is

g(di,m) =
1

1+ 1
di,m

which is a robust to outliers function [9].
Therefore, denotingX the set of pixels{xi}, i = 1, ...,N,

considering them to be statistically independent and follow-
ing Bayes rules, we obtain the following probability density
function:

q(Π,Θ|X) =
N

∏
i=1

p(Π) f (xi |Π,Θ) (4)

with the log-density:

L(Π,Θ|X) =
N

∑
i=1

log f (xi |Π,Θ)+ logp(Π) (5)

The EM algorithm [5], for MAP estimation, requires the
computation of the conditional expectation values, or the
posterior probabilities, of the missing variables at the E-step,
at iteration stept:

zi(t)
j =

π i(t)
j φ(xi |θ (t)

j )
K

∑
p=1

π i(t)
j φ(xi |θ (t)

p )

(6)

In the M-step, considering that the complete data log-
likelihood is linear in the missing variables [5], the maxi-
mization of

QMAP(Π,Θ|Π(t),Θ(t)) =
N

∑
i=1

K

∑
j=1

zi(t)
j {log(π i

j)+ log
(
φ(xi |θ j)

)}−β
N

∑
i=1

∑
m∈Ni

g(ui,m)

(7)

corresponding to the complete data log-likelihood, yields the
model parameters. The functionQMAP(·) in (7) can be max-
imized independently for each parameter with the following
update equations of the mixture model parameters at step

t +1:

µ(t+1)
j =

N

∑
i=1

zi(t)
j xi(t)

N

∑
i=1

zi(t)
j

, σ (t+1)
j =

√√√√√√√√√

N

∑
i=1

zi(t)
j

[
xi(t)−µ(t+1)

j

]2

N

∑
i=1

zi(t)
j

(8)
Several methods have been proposed to to compute the mix-
ing proportionsπ j

i of each normal density. A generalized EM
scheme, based on the gradient projection method was used in
[6] and a linear constrained convex quadratic programming
approach was proposed in [2].

3. A FINITE MIXTURE MODEL WITH ADAPTIVE
PRIOR DISTRIBUTION

The main drawback of the SVFMM is that the scalar para-
meterβ must be fixed in Eq. (7). This parameter controls
the strength of the priorp(Π) with respect to the standard
mixture model. Large values ofβ produce strongly smooth
image segments while small values of the parameter result in
a soft smoothness constraint.

To overcome this drawback, we propose a prior distribu-
tion incorporating information on the strength of the smooth-
ness constraint. Each clusterj has a distinct parameterβ j
which is computed in close form through the EM algorithm.
More precisely, we consider a prior probability for each of
the parametersΠ in (5):

p
(−→π i

)
n

K

∏
j=1

(β 2
j )
− 1

2 exp


−

1
2

∑
m∈Ni

(π i
j −πm

j )2

β 2
j


 . (9)

This prior probability is based on the assumption that the lo-
cal differences of the label probabilities are Gaussian distrib-
uted with zero mean and different variance for each cluster.
Similar in spirit priors have been used to enforce smoothness
in other image processing problems (e.g. image restoration
[3, 12]). Hence, the parameterβ 2

j enforces spatial smooth-
ness of different degree for each clusterj and can be seen
as the variance of clusterj. Notice that different configura-
tions of the neighborhoodNi for the ith pixel lead to differ-
ent forms of probability distribution for vector−→π i. The prior
density in eq. (9) yields the following MAP function to be
maximized:

QMAP(Π,Θ|Π(t),Θ(t)) =
N

∑
i=1

K

∑
j=1

zi(t)
j {log(π i

j)+ log
(
φ(xi |θ j)

)}

− 1
2

N

∑
i=1

K

∑
j=1

log(β 2
j )−

1
2

∑
m∈Ni

(π i
j −πm

j )2

β 2
j

(10)

To compute the model parametersπ i(t+1)
j andβ 2(t+1)

j at time
step (t + 1) we have to maximize (10) with respect toπ i

j
we have to compute its partial derivative and set the result
to zero. Notice that we have to take into consideration that
everyπ i

j in the summation term∑
m∈Ni

(π i
j −πm

j )2 occurs once



as the probability of the central pixel and 8 times as a neigh-

bor πm
j of different pixels. Thus,

∂QMAP

∂π i
j

= 0 gives a second

degree equation with respect toπ i(t+1)
j :

16
(

π i(t+1)
j

)2
−2π i(t+1)

j ∑
m∈Ni

πm
j −zi(t)

j β 2(t)
j = 0 (11)

or

π i(t+1)
j =

∑
m∈Ni

πm
j ±

√√√√
(

∑
m∈Ni

πm
j

)2

+16zi(t)
j β 2(t)

j

16
, (12)

for i = 1, ...,N and j = 1, ...,K, expressing the probability of
the ith pixel to belong to thej th class at time(t +1).

Also, the solution for the class variances are obtained by

setting
∂QMAP

∂β 2
j

= 0 and solving forβ 2
j at time step(t +1):

β 2(t+1)
j =

1
N

N

∑
i=1

∑
m∈Ni

(
π i(t+1)

j −πm
j

)2
, j = 1, ...,K (13)

It must be noticed that the neighborhoodNi in expressions
(12) and (13) may include pixels with updated label parame-
ter vectors (step at timet +1), as well as pixels whose label
vectors have not yet been updated and their value comes from
step at timet of the EM algorithm.

The formulation described above can be integrated
through the EM algorithm with equation (6) being the E-step
and equations (8), (12) and (13) being the M-step of the al-
gorithm. All of the unknown parameters are computed in
closed form from the data.

Moreover, the parameterβ 2
j can be extended to express

not only the class variance for clusterj but also the variance
within cluster j at a certain spatial direction (e.g. horizontal,
vertical and diagonal pixel variances). In that case, the prior
probability becomes

p(Π)n
D

∏
d=1

K

∏
j=1

(β 2
j,d)

−N
2 exp

[
−1

2
ΠTQT

dQdΠ
β 2

j,d

]
(14)

whereD is the total number of the considered pixel adjacen-
cies (generally 4),β 2

j,d is the variance of classj only consid-
ered for pixels having adjacency typed andQd is a first order
difference operator in directiond. In that case, derivation of
the expression of the log-likelihood with respect toπ i

j leads
also to a second degree equation whose coefficients depend
on the parametersβ 2

j,d andzi
j .

4. EXPERIMENTAL RESULTS

The performance of our approach is illustrated with a number
of examples. To ensure that the computed values forπ i

j in
(12) satisfy the constraints

0≤ π i
j ≤ 1,

K

∑
j=1

π i
j = 1

we have applied the vector projection algorithm proposed in
[2] in all of the techniques. Also, as the EM algorithm is
sensitive to initialization, we have executed a number of iter-
ations of the EM algorithm with a set of randomly generated
initial conditions and kept the one giving the maximum value
for the log-likelihood. Finally, we have not imposed any
maximum number of iterations to the EM algorithm. This
strategy was adopted for all of the techniques compared here.

We present a comparison between the standard finite
mixture model (FMM) [1], the spatially variant finite mixture
model (SVFMM) [2, 17] and our adaptive spatially variant fi-
nite mixture model (A-SVFMM) for segmenting piecewise-
constant images with a small number of classes. Figure 1
shows a simulated three-class image with intensities for the
three classes 70, 90 and 110. The mixing proportions are
0.37, 0.30 and 0.33 respectively. Figure 2 shows the same
image corrupted by zero mean Gaussian noise. The noise
standard deviation was computed in order to achieve a signal
to noise ratio of 4.0 dB , 2.0 dB and 1.0 dB repsectively.

Figure 1: The 3-class test image used in the experiments de-
scribed in the text. Intensity means are 70, 90 and 110. The
mixing proportions are 0.37, 0.30 and 0.33 respectively.

The top row of figure 3 shows the segmentation obtained
by FMM, the middle row shows the segmentation achieved
by the SVFMM and the bottom row shows the segmentation
by our method (A-SVFMM). The results for the A-SVFMM
are more accurate than the other methods.

This is also confirmed by the percentage of correctly clas-
sified pixels which is illustrated in table 1.

4 dB 2 dB 1 dB
FMM 90.4 81.2 76.8
SVFMM 92.6 86.7 79.4
A-SVFMM 99.2 96.4 91.3

Table 1:Percentage of correctly classified pixels for the de-
graded images of figure 2. See text for technique abbrevia-
tions.

We have to notice, that in the case of the SVFMM algo-
rithm we have fixed the normalization parameter of the Gibbs
distribution (7,3) to the same value for the three noise cases
since there is no trivial method to estimate the parameterβ
from the data. In contrast, in the proposed approach the pa-
rameters of the prior are easily estimated and this is one of
the main strengths of the proposed method. Moreover, the
FMM and SVFMM techniques converge more slowly than
the A-SVFMM method, especially in presence of significant
amount of noise. The former methods need 10-30 iterations



(a) (b) (c)

Figure 2: Noisy versions of the 3-class image of figure 1 with (a) SNR=4.0 dB, (b) 2.0 dB and (c) 1.0 dB .

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Three class segmentation of the images presented in figure 2 using (a)-(c) FMM, (d)-(f) SVFMM and (g)-(i) A-
SVFMM. See text for techniques abbreviations.

for the 1 dB noisy image while the latter needs only 4-8 iter-
ations of the EM algorithm for the same amount of noise.

Finally, we have applied our directional, class-adaptive
finite mixture model segmentation algorithm with the prior
probability density (14) to the same data (fig. 4). The re-
sults clearly illustrate that the introduced directional adaptiv-
ity further improves the segmentation results both visually
and in terms of correct pixel classification.

5. CONCLUSION

We have presented a hierarchical and spatially constrained
mixture model for image segmentation. The model takes into
account spatial information by imposing distinct smoothness
priors on the probabilities of each cluster. Experimental re-
sults have shown that our approach improves significantly
not only the standard mixture model-based segmentation but



(a) (b) (c)

Figure 4: Three class segmentation of the images presented in figure 2 using the directional version of the A-SVFMM de-
scribed by the prior density in eq. (14). The percentages of correctly classified pixels are99.6%, 98.%5 and95.8% respec-
tively.

also its spatially variant version. Future work consists in ap-
plying the methods to real world segmentation problems in
medical imaging and bioinformatics. Also, we plan to con-
sider color and texture image segmentation.
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