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Abstract. In this paper a new maximum a posteriori (MAP) approach
based on mixtures of multinomials is proposed for discovering proba-
bilistic patterns in sequences. The main advantage of the method is the
ability to bypass the problem of overlapping patterns in neighboring po-
sitions of sequences by using a Markov random field (MRF) prior. This
model consists of two components, the first models the pattern and the
second the background. The Expectation-Maximization (EM) algorithm
is used to estimate the model parameters and provides closed form up-
dates. Special care is also taken to overcome the known dependence of
the EM algorithm to initialization. This is done by applying an adaptive
clustering scheme based on the k-means algorithm in order to produce
good initial values for the pattern multinomial model. Experiments with
artificial sets of sequences show that the proposed approach discovers
qualitatively better patterns, in comparison with maximum likelihood
(ML) and Gibbs sampling (GS) approaches.

Keywords: Pattern discovering, Markov random field, mixture of multi-
nomials model, Expectation-Maximization (EM) algorithm.

1 Introduction

Discovering patterns in sequences is an important problem in many application
areas, such as bioinformatics, web mining, etc. Given a set of sequences a pattern
(or motif) can be represented as a common substring that is repeated in the set.
Sequence patterns are focused on highly conserved residues present in active
sites of sequences and can be further used for generating rules for classification
purposes [1, 2].

Various methods have been introduced for solving this problem that are classi-
fied based on the model of the pattern. Under the Bayesian framework, a pattern
can be modeled using independent multinomial distributions for its positions.
The Gibbs sampling [3, 4], the MEME [5], the SAM [6], the BioProspector [7],
the Greedy EM [8] and the LOGOS [9] represent statistical methods for dis-
covering shared patterns in a set of sequences. They all formulate the problem
using either mixture models or hidden Markov models, and use the Expectation-
Maximization (EM) algorithm [10, 11] or variational EM schemes to estimate the
model parameters.
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The application of statistical methods to discovering sequence patterns usu-
ally forces the assumption that all the possible starting positions in sequences
are independent. Nevertheless, the problem has the particular characteristic that
spatial information should be taken into account. That is, apart from the con-
tent of a subsequence, its location must be also used in order to determine its
posterior probability for matching it as pattern. In other words, it is not desired
to identify overlapping patterns. In most of these methods, the common frame-
work used is the maximum likelihood (ML) where the pattern model parameters
are estimated by maximizing the likelihood of the observations, while the spatial
constraints are indirectly enforced to the model. Therefore, in a sense, there is
an inconsistency between the computed pattern distribution and the one defined
by the model [9].

In this paper we present a maximum a posteriori (MAP) approach that pro-
vides a direct method to implement these ideas. The basic scheme is a two-
component mixture of multinomials model, where one component models the
pattern and the other the remaining non-pattern regions (background). Follow-
ing this framework, a likelihood term is used to capture the content information
of the data, while a bias term is also used to capture the spatial information
of the neighborhood locations. This is accomplished by considering the pattern
labels of each starting position of sequences through a Markov random field
(MRF) model [12, 13]. This constrains the local characteristics of the sequences
and thus provides useful information to the pattern estimation process. The EM
algorithm is used to estimate the model parameters which provides closed form
update equations for all parameters. Since the EM algorithm is very sensitive to
the initial parameter values, we also present a clustering scheme based on the
well-known k-means algorithm for initializing properly the pattern model. Fi-
nally, multiple patterns are discovered by iteratively applying the two-component
mixture model after erasing old pattern occurrences. As will be demonstrated in
the experimental study, in contrast to the classical unconstrained mixture model
and the Gibbs sampling approach, the proposed one overcomes the problem of
overlapping subsequences and also estimates qualitatively better pattern models.

Section 2 presents the two-components mixture of multinomials model that
is used for discovering a single pattern in two methods: the classical ML and
the proposed MAP approach. Experimental results are given in section 3 using
artificial sets of sequences, while section 4 presents conclusions and discussion.

2 Mixture Models for Discovering Patterns

Consider a finite set Σ = {c1, . . . , cΩ} consisting of Ω individual characters. An
arbitrary string over the set Σ is any sequence Sj = {sjk}Lj

k=1 of length Lj, where
sjk ∈ Σ denotes the character at the k-th position of the j-th sequence. Now,
let S = {S1, . . . , SN} be a set of N strings of length L1, . . . , LN , respectively.
The pattern discovery problem deals with finding a common subsequence of
length K that is repeated at different sites among the sequences of set S. In
order to deal with this, we collect all the possible substrings of set S having
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length equal to K. This can be done by sliding a window of size K in every
sequence Sj , obtaining a set of Lj − K + 1 substrings. Each substring indicates
the starting position of a possible pattern occurrence in sequences. Therefore,
we construct a set of n substrings X = {xi}n

i=1, n =
∑N

j=1(Lj − K + 1), that
constitute the observation data. In the next subsections two mixture model based
approaches will be presented: the classical maximum likelihood without any
constraint, as well as, a new proposed maximum a posteriori approach that uses
spatial information.

2.1 The ML Approach

Lets assume that the set X has been generated from a two-component mixture
of multinomials, i.e. we assume that each substring xi belongs to either a pattern
class (yi = 1) or a background class (yi = 0) which is indexed by the hidden
(binary) variable yi. The first component models the pattern with a common
prior probability of π = p(yi = 1), while the second one models the background
and represents all the subsequences which do not contribute to the pattern, with
a prior probability equal to 1 − π = p(yi = 0). The density function f(xi|π, Θ)
of the model for an observation xi is given by

f(xi|π, Θ) = πp(xi|θ) + (1 − π)p(xi|b) , (1)

where Θ = {θ, b} is the set of parameters for the two multinomial densities.
To parameterize the pattern we use a position weight matrix θ = [θkl] of size
Ω × K, where each element θkl denotes the probability that character cl ∈ Σ
is at the k-th position of the pattern. For each position k it holds

∑
l θkl = 1.

The background distribution is represented with an Ω-vector of probabilities
b = [b1, . . . , bΩ] common for each substring position (

∑
l bl = 1). Following

the multinomial distribution and assuming independence among positions, the
probability densities function of the pattern and the background model are

p(xi|yi = 1, θ) =
K∏

k=1

Ω∏

l=1

θδikl

kl , p(xi|yi = 0, b) =
Ω∏

l=1

b
�K

k=1 δikl

l , (2)

where δikl is the Kronecker delta (1 if character cl is at the k-th position of
substring xi, 0 otherwise).

Based on the above formulation, the model parameters can be estimated
through maximum likelihood (ML). The log-likelihood function is then given by

L(X |π, Θ) =
n∑

i=1

log f(xi|π, Θ) . (3)

The EM algorithm [10, 11] is an efficient framework to estimate the model param-
eters π, {θkl} and {bl}. It requires the computation of conditional expectation
zi of the hidden variables yi at the E-step, which are given by

z
(t)
i =p(yi =1|xi, π

(t), Θ(t))=
π(t)p(xi|yi = 1, θ(t))

π(t)p(xi|yi = 1, θ(t)) + (1 − π(t))p(xi|yi = 0, b(t))
,

(4)
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while at the M-step the complete log-likelihood is maximized over the model
parameters. This gives the following update equations

π(t+1) =
∑n

i=1 z
(t)
i

n
,

b
(t+1)
l =

∑n
i=1(1 − z

(t)
i )

∑K
k=1 δikl

K
∑n

i=1(1 − z
(t)
i )

, θ
(t+1)
kl =

∑n
i=1 z

(t)
i δikl

∑n
i=1 z

(t)
i

∑Ω
l=1 δikl

. (5)

EM algorithm guarantees the convergence of the likelihood fuction to a local
maximum and also satisfies all the constraints of the parameters.

Nevertheless, a significant drawback of the ML approach, arising from the
assumption that the observations xi are i.i.d., is the fact that the spatial in-
formation of the subsequences is not taken into account. This results in the
estimation of overlapping subsequences as pattern occurrences of the set X , es-
pecially in cases where a pattern consists of one or more repeated characters.
However, by enforcing spatial constraints one can avoid this problem and esti-
mates better patterns. In [5] for example, a normalization of the posterior value
zi of the adjacent sequences is performed so that guarantees in any window of
length K the sum of zi values remains less than or equal to 1. In this study,
we introduce a new approach that deals with this problem in a more systematic
way by modeling the spatial arrangements of a pattern.

2.2 The Proposed Spatially-Constrained Mixture Model

In the proposed model, the pattern label priors Π = {πi = p(yi = 1)}n
i=1 are

considered as random variables that satisfy the constraint 0 ≤ πi ≤ 1. Since
they are spatially dependent, we assume that they form a Markov random field
(MRF) being sampled by a Gibbs distribution function [12, 13]

p(Π |β) =
1
Z

exp(−U(Π |β)) . (6)

The normalization constant Z is called the partition function, while the β is
a regularization parameter. The energy function U(Π |β) is decomposed into a
sum of clique potentials VNi

U(Π |β) = β
n∑

i=1

VNi(Π) , (7)

that involves neighboring sites Ni in the proposed sequential field. A similar in
principle spatially-constrained model has been also used for the image segmen-
tation problem [14]. In this study, we consider as neighborhood Ni all the m
positions around the position i whose corresponding subsequences xm overlaps
with the subsequence xi. In the general case, there are 2(K −1) such sites which
are mutually dependent. When a pattern is found at position i (πi ≈ 1), it is
desired that none substring xm ∈ Ni to be also labeled as pattern (πm ≈ 0). An
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appropriated potential function that meets this behavior is the following simple
inner product of pattern labels

VNi(Π) =
∑

m∈Ni

πiπm = πiπNi . (8)

Since Dirichlet densities are conjugate to multinomial densities, it is conve-
nient to use them in order to introduce priors for the pattern parameters θ.
Thus, for every pattern position k we consider a Dirichlet prior of the form

p(θk|αk) =
Γ (

∑Ω
l=1 αkl)

∏Ω
l=1 Γ (αkl)

Ω∏

l=1

θαkl−1
kl , (9)

where the parameter αk is a Ω-vector with components αkl > 0 and Γ (α) is
the Gamma function. Adding Dirichlet priors in effect introduces pseudo-counts
at each pattern position. During the experimental study, the Dirichlet prior
parameters were the same for every position and set equal to 1+ εl, where εl was
some low percentage (e.g. 10%) of the total predefined frequency of character cl.

Given the above prior densities (Eqs. (6)-(9)) for the model parameters Π and
θ, we can formulate the problem as a maximum a posteriori (MAP) problem,
i.e. maximize the following posteriori log-density function

p(Π, Θ|X) ∝
n∑

i=1

log f(xi|Π, Θ) + log p(Π |β) +
K∑

k=1

log p(θk|αk) . (10)

The use of EM algorithm for MAP estimation requires at each step the computa-
tion of the conditional expectation values z

(t)
i of the hidden parameters yi at the

E-step, which is the same as ML approach (Eq. 4) by substituting the common
prior π with the label parameter πi. During the M-step the maximization of the
following complete-data log-likelihood function is performed

Q(Π, Θ | Π(t), Θ(t)) =
n∑

i=1

z
(t)
i {log(πi) + log(p(xi|θ))} + (1 − z

(t)
i ){log(1 − πi) +

+ log(p(xi|b))} − β

n∑

i=1

πiπNi +
K∑

k=1

Ω∑

l=1

(αkl − 1) log(θkl) , (11)

independently for each parameter. This gives the following update equation for
the pattern multinomial parameters:

θ
(t+1)
kl =

∑n
i=1 z

(t)
i δikl + (αkl − 1)

∑n
i=1 z

(t)
i

∑Ω
l=1 δikl +

∑Ω
l=1(αkl − 1)

, (12)

while for the background model the update rules are the same as in the case of
the ML approach (Eq. 5).
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The maximization of the function Q with respect to the label parameters πi

reduces to the next quadratic expression

βπNi (π
(t+1)
i )2 − (1 + βπNi)(π

(t+1)
i ) + z

(t)
i = 0 , (13)

where the summation term πNi can include both updated labels (π(t+1)
m ) and

not yet updated (π(t)
m ). The above equation has two roots

π
(t+1)
i =

(1 + βπNi) ±
√

(1 + βπNi )2 − 4βπNiz
(t)
i

2βπNi

. (14)

It can be easily shown that only the root with the negative sign is valid, since
the other one is discarded due to the constraint 0 ≤ πi ≤ 1. Therefore, the above
equation provides a simple update rule for the label parameters πi which ensures
the uniqueness of the solution and satisfies the constraint. Looking carefully at
Eq. 14 we can make some useful observations. In the case where a substring xi

has high posterior probability value (z(t)
i ≈ 1), one of the following two scenarios

will occur in the neighborhood Ni:

– None of sites m ∈ Ni is labeled as a pattern, i.e. πNi � 1, and thus, following
Eq. 14, this site will be labeled as pattern (π(t+1)

i ≈ 1).
– There is at least one site labeled as pattern in Ni, i.e. πNi � 1. Then,

according to Eq. 14, the new label value will be approximately π
(t+1)
i ≈ 1

βπNi
.

The larger the value of πNi , the smaller the update label values of πi. In this
“overlapping” neighborhood only one pattern occurrence will be the most
probable to survive, the one having the higher posterior value zi.

On the other hand, when a substring xi has small posterior value of being a
pattern (z(t)

i ≈ 0) it will continue to be labeled as background (π(t+1)
i ≈ 0),

independently of its neighborhood Ni.
From the above analysis it is clear that the regularization parameter β of

the Gibbs distribution function plays a significant role. Only large values of this
parameter (β � 1) are acceptable in order to discourage overlapping substrings
being labeled as pattern. However, in our experiments, a large range of values
of β seems to yield a satisfactory behavior, which implies that the proposed
method is not sensitive to this parameter. A typical value that has been used
successfully during experiments is β = 100.

Discovering multiple patterns. This can be accomplished by iteratively ap-
ply the two-component mixture of multinomials model, after erasing from the
set of sequences S the patterns that have been already found. In particular, af-
ter convergence of the EM algorithm all substrings xi whose label parameters
πi surpass a threshold value T (e.g. T = 0.9) are deleted from the S. A new set
S′ is then created, and the initial model is sequentially applied to it to discover
another pattern.
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2.3 Initializing Pattern Multinomial Models

The major drawback of the EM algorithm is the dependence on the initial values
of the model parameters that may cause it to get stuck in local maxima of the
likelihood function [11]. In our study, this problem is mainly concentrated on
initializing the pattern multinomial θ, since for the background density b we
can use the total relative frequencies of characters in sequences. To overcome
this weakness we present here a clustering scheme that is based on the classical
k-means algorithm and its recent extensions to categorical data [15].

In the general case the k-means algorithm aims at finding a partition of M
disjoint clusters to a set of n objects, so as the overall sum of distances between
cluster centers µj and objects is minimized. Depending on the type of objects,
one must determine an appropriate distance function and also a method for
estimating cluster centers. Since we are dealing with discrete data, we define
the simple Hamming distance d(xi, µj) =

∑K
k=1(1 − δ(xik, µjk)) to measure

similarities among the samples and the cluster centers. Moreover, the cluster
center µj j = 1, . . . , M is determined as the median substring of the cluster
members, i.e. µj = xi∗ , where i∗ = argmini

∑
xk

d(xi, xk). When finishing, we
initialize the pattern model with the relative frequencies of characters from the
cluster j∗ that has the minimum average distance (intracluster distance) between
all cluster members and its center µj∗ . It must be also noted that, in order to
avoid selection of outliers, we isolate our search over clusters whose size (number
of members) is above a threshold value, e.g. N/2. The experimental study has
shown that this clustering scheme provides excellent initial values of parameter
θ in a very fast way.

3 Experimental Results

Several experiments were performed in an attempt to study the effectiveness of
the proposed MAP approach. During all experiments the proposed clustering
scheme of k-means was first applied to generate an initial pattern multinomial
model, and then the EM algorithm was used for MAP estimation of the model
parameters. The pattern labels πi were all initialized to πi = 0.5. Comparative re-
sults have been also obtained using the ML approach without spatial constraints
(initialized identically to the MAP approach), as well as the Gibbs sampling (GS)
method [3, 4]. Starting by an initial (random) estimation of the positions of the
patterns (θ(0)), the GS method performs iteratively two steps until likelihood
convergence: first, it randomly selects a sequence Si and re-estimates the pat-
tern model θ(t+1) using the current pattern positions of all sequences but Si, and
then, a new pattern position is selected in Si by sampling from the posterior dis-
tribution over positions. Obviously, this version of the GS assumes that each
sequence has a unique occurrence of the pattern. However, this is not true for
our model that permits an arbitrary number of pattern copies in each sequence.
Thus, in order to provide fair comparisons, we created sets with a single copy of
any pattern to every sequence. Moreover, we execute the GS method 10 times
and keep the best solution found.
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(a) seed pattern: TATATATATATATTTT (b) seed pattern:HIERHIERVIEWVIEW

Fig. 1. Mean values and stds of KL and l1 as calculated by the three methods in two
single-pattern discovery problems (a), (b) using six values of noise parameter pm.

The artificial sets used in the experiments were generated as follows: Using a
number of seed patterns (one or two in our cases), every sequence contained a
noisy copy of any of these seeds, according to a probability pm common to every
pattern position. The rest (non-pattern) positions were filled arbitrarily with
characters following a uniform distribution over the alphabet Σ. Six different
values for the noise parameter were used pm = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3], and
for each value we generated 40 different sets of N = 20 sequences with a mean
length of 100 characters (totally 6 × 40 sets for each problem). From the above
it is clear that we are aware of each true pattern density ϑ (estimated from the
relative frequencies of characters of each noisy pattern copies). Following this
scheme, four such pattern discovery problems were constructed using the DNA
alphabet (Ω = 4) and the protein alphabet (Ω = 20), while the pattern length
was always K = 16. To evaluate the discovered patterns by each method two
information content criteria were used: the Kullback-Libler (KL) distance and
the sum of the absolute differences (l1 distance) between the estimated θ̂ and
the true density ϑ = [ϑkl], given by

KL(θ̂||ϑ) =
K∑

k=1

Ω∑

l=1

θ̂kl log
θ̂kl

ϑkl
, l1(θ̂||ϑ) =

K∑

k=1

Ω∑

l=1

|θ̂kl − ϑkl| . (15)

At first we examined the capability of the proposed MAP approach to clearly
identify a single pattern without estimating overlapping copies of it. The results
of the three comparative methods are shown in Fig. 1, for two such problems
(a), (b). These diagrams illustrate the average values and standard deviations of
the two evaluation measurements (KL and l1) obtained by each method to the
created 6 × 40 different set of sequences. As it is obvious, the proposed MAP
approach achieves properly the identification of the patterns in all noisy envi-
ronments, while the GS method maintains satisfactory performance only to low
levels of noise rate. On the other hand, as expected, the weakness of ML approach
to distinguish overlapping copies of patterns leads to lower discrimation ability.

We have also tested our method to problems with two sequence patterns. In
an attempt to increase the difficulty of their discovery, half of the sites in both
seed patterns presented identical characters. The results (mean values and stds of
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(a) seed pattern1: {TATATATATATATTTT} seed pattern2: {CGCGTATATATACGCG}
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(b) seed pattern1: {HIERHIERVIEWVIEW} seed pattern2: {HIERARCHICALVIEW}

Fig. 2. Comparative results taken by applying the three methods in two discovery
problems with two seed patterns. Again, calculated mean values and stds of KL and
l1 are illustrated in those diagrams.

KL and l1) for two such problems (one from each alphabet) are demonstrated in
Fig. 2 as obtained by each method. The weakness of the GS method to separate
them is apparent, especially in sets with low homology patterns (large values of
pm). On the other hand, the MAP method exhibits almost perfect distinguishing
capability by estimating properly the true model of both patterns. Finally, the
ML approach presents the tendency to discover only one complex pattern ob-
tained from the synthesis of both, and has shown good performance only in the
case of the 2nd pattern of problem (b), where there are not repeated characters.

4 Conclusions

This paper presents a new spatially-constrained approach for discovering proba-
bilistic patterns in sequences. The method uses a mixture of multinomials model
with two components for modeling the pattern and the background of sequences.
The spatial information is embodied in the model by treating the pattern labels
as random variables that form a MRF to modeling their dependencies. The EM
algorithm is then used to the reduced MAP problem for estimating the model pa-
rameters, after initializing with a clustering scheme that hires properties from the
popular k-means algorithm. Experiments, conducted on a variety of categorical
time-series, have shown the ability of the MAP method to identify qualitatively
better patterns with repeated characters in comparison with the ML approach
without constraints and the GS method. Further research can be focused on
designing more complex pattern models that can also take into account gaps
among sites, as well as on considering patterns of variable length.
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