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ABSTRACT

One of the many successful applications of Gaussian Mixture
Models (GMMs) is in image segmentation, where spatially
constrained mixture models have been used in conjuction
with the Expectation-Maximization (EM) framework. In this
paper, we propose a new methodology for the M-step of the
EM algorithm that is based on a novel constrained optimiza-
tion formulation. Numerical experiments using simulated
images illustrate the superior performance of our methodol-
ogy in terms of the attained maximum value of the objective
function and segmentation accuracy compared to previous
implementations of this approach.

1. INTRODUCTION

Image segmentation is the process that groups image pix-
els together based on attributes such as their intensity and
spatial location. A variety of different methods have been
proposed for image segmentation such as edge-based seg-
mentation, region-based segmentation, pixel labeling (clus-
tering) and hybrid techniques[1, 2, 3]. Gaussian Mixture
Models (GMM) is a well-known probabilistic model that has
been used successfully for clustering[4, 5]. The Expectation-
Maximization framework constitutes an efficient method for
GMM training based on likelihood maximization.

The application of clustering methods to image segmen-
tation has the particular characteristic that spatial information
should be taken into account. That is, apart from the intensity
values, the pixel location must also be used to determine the
cluster to which each pixel is assigned. Intuitively speaking,
in most cases it is desirable to assign the same cluster labelto
spatially adjacent pixels. The Bayesian framework provides
a natural approach to implement these ideas. Following this
formulation, a likelihood term which is based exclusively on
the data captures the pixel intensity information, while a prior
biasing term that uses a Markov Random Field (MRF) cap-
tures the spatial location information. Thus, it is no surprise
that most recent image segmentation algorithms follow this
paradigm; see for example[6, 7].

Nevertheless, an inherent difficulty with this formulation
is that, due to the introduction of the prior, the M-step of the
EM algorithm cannot be implemented using closed form ex-
pressions. For this reason, in[6], a Gradient Projection (GP)
algorithm was proposed to implement the M-step.

In this paper we propose a novel method to implement the
M-step based on a closed form update equation followed by
an efficient projection method. We demonstrate with numer-
ical experiments using the synthetic image data in[7] that the
proposed M-step provides a better maximum of the objective
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function than the GP approach proposed in[6]. In addition, it
also yields better segmentation results.

The rest of this paper is organized as follows: In section 2
we describe the probabilistic model for image segmentation.
In section 3 we present our improvements to this model. In
section 4 we provide comparative experimental results and
finally in section 5 our conclusions and future work.

2. THE SPATIALLY VARIANT FINITE MIXTURE
MODEL

Let xi denote the observation at theith pixel of an image
(i = 1, . . . ,N) modeled as i.i.d. The spatially variant finite
mixture model (SVFMM)[6] provides a modification of the
classical mixture model approach for pixel labeling. The
SVFMM assumes a mixture model withK components each
one having its own vector of density parametersθ j.

According to the SVFMM approach, the probabilities
π i

j = P( j|xi) of the ith pixel belonging to thejth cluster
(class label) are considered as additional model parameters
that should satisfy the following constraints: 0≤ π i

j ≤ 1

and∑K
j=1 π i

j = 1. Let π i denotes the probability vector for

pixel i, Π = {π1, . . . ,πN} the set of probability vectors and
Θ = {θ 1, . . . ,θ K} the set of component parameters. Then the
SVFMM model assumes that the density functionf (xi|Π,Θ)
at an observationxi is given by

f (xi|Π,Θ) =
K

∑
j=1

π i
jφ (xi|θ j) , (1)

whereφ (xi|θ j) is a Gaussian distribution with parameters
θ j = {µ j,σ j}.

Based on the above formulation the parameters of the
model can be estimated through likelihood maximization
(ML) using the EM algorithm. Since the pixel observations
are considered to be independent samples, a significant draw-
back of the ML approach is that the spatial pixel informa-
tion is not taken into account[8, 7]. To overcome this diffi-
culty the SVFMM method considers amaximum a posteriori
(MAP) approach by introducing a prior distribution for the
parameter setΠ that takes into account spatial information
based on the following Gibbs function[8, 6, 7]

p(Π) =
1
Z

exp(−U(Π)) , whereU(Π) = β
N

∑
i=1

V
Ni

(Π) .

(2)

The Z is a normalizing constant, whileβ is oftenly called
regularization parameter. The functionV

Ni
(Π) denotes the



clique potential function of the pixel label vectors{πm}
within the neighborhoodNi of theith-pixel and can be com-
puted as follows

V
Ni

(Π) = ∑
m∈Ni

g(ui,m) , (3)

where theui,m specifies the distance between the two label

vectorsπ i andπm, i.e, ui,m = |π i −πm|2 = ∑K
j=1(π i

j −πm
j )2.

The neighborhoodNi is the set containing pixels that are hor-
izontally or vertically adjacent to pixeli. Finally, the function
g(u) must be nonnegative and monotonically increasing[8].
We have selectedg(u) = (1+u−1)−1 adopted from[8], while
in[6] the identity functionh(u) = u was used. The function
g(u) penalizes less large values ofu and thus is more robust
to outliers.

The use of the EM algorithm for MAP estimation of the
parameters{π i

j} and {θ j}[6] requires that the conditional
expectation valueszi

j of the hidden variables are computed at
the E-step

zi(t)
j =

π i
jφ (xi|µ (t)

j
,σ (t)

j
)

K

∑
l=1

π i
l φ (xi|µ (t)

l
,σ (t)

l
)

, (4)

while in the M-step the maximization of the following log-
likelihood corresponding to the complete data set is per-
formed

QMAP(Π,Θ|Π(t)Θ(t)) =
N

∑
i=1

K

∑
j=1

zi
j{log(π i

j)+ log(φ (xi|θ j))}

−β
N

∑
i=1

∑
m∈Ni

g(ui,m) .

(5)

The functionQMAP can be maximized independently for each
parameter. This gives the following update equations for pa-
rameters of the component densities

µ (t+1)
j

=

N

∑
i=1

zi(t)
j xi

N

∑
i=1

zi(t)
j

and[σ2
j ]

(t+1) =

N

∑
i=1

zi(t)
j [xi −µ (t+1)

j
]2

N

∑
i=1

zi(t)
j

.

(6)

However, the maximization of the functionQMAP with re-
spect to the label parameters{π i

j} does not provide closed
form update equations. In addition, the maximization proce-
dure must also take into account the constraints 0≤ π i

j ≤ 1

and ∑K
j=1 π i

j = 1. Due to this difficulty a Generalized EM
scheme for estimating the label parameters{π i

j} was adopted
in[6] following the iterative Gradient Projection method.
According to this method the gradient of the MAP function
is first projected onto the hyperplane of the constraints. Then
a line search is performed along the direction of the projected
gradient to find the label parameters{π i

j} that maximizes the
QMAP function.

3. THE PROPOSED TECHNIQUE

In this section we present the new M-step which we demon-
strate experimentally in section 4 that improves the perfor-
mance of the segmentation algorithm. In order to maximize
QMAP (Eq. (5)) with respectπ i

j we set its derivative equal to
zero and obtain the following quadratic expression

4β
[

∑
m∈Ni

ġ(ui,m)

]

(π i
j)

2−4β
[

∑
m∈Ni

ġ(ui,m)πm
j

]

(π i
j)− zi

j = 0 ,

(7)

where ˙g(u) indicates the derivative ofg. It must be noted
that in the above equation the neighborhoodNi can include
pixels with updated label parameter vectors, as well as pixels
whose label vectorsπm have not yet been updated.

The two roots of the above equation are easily found
and select only the root that yieldsπ i

j ≥ 0. This provides a
straightforward update for the values of label parametersπ i

j
of each pixeli at the M-step of every EM iteration. However,
we also have to ensure that these values satisfy the constraints
0≤ π i

j ≤ 1 and∑K
j=1 π i

j = 1. In the following we present an
efficient novel projection algorithm to achieve this goal.

For convenience, let us now denote witha j ( j = 1, . . . ,K)

the label parameter valuesπ i(t+1)

j ≥ 0 (roots of Eq. 7). The
problem we address here is the following: ”Given a vector
a ∈ RK with a j ≥ 0 and the hyperplane∑K

j=1 y j = 1, find
the pointy on the hyperplane with non-negative components
that is closest toa”. This can be formulated as alinear con-
strained convex quadratic programming (QP) problem:

min
y

K

∑
j=1

(y j −a j)
2

subject to
K

∑
j=1

y j = 1 andy j ≥ 0 ,∀ j = 1,2, . . . ,K .

(8)

In order to solve the above QP problem, several ap-
proaches may be employed[9], such asactive-set methods
that use Lagrange multiplies, as well aspenalty-barrier
methods that formulate an objective function with penalty
terms for equality and barrier terms for inequality con-
straints. We use here an active-set type of method where
we exploit the fact that the Hessian is the identity matrix
which in turn leads to the derivation of closed form ana-
lytical expressions for the Lagrange multipliers. This is of
great value for both the efficiency and the robustness of the
method, since it avoids the burden of numerical instabilities
that occur frequently in the solution of large linear systems
when the associated matrices are nearly singular.

One may proceed using the following Lagrange function:

L(y,λ0,λ ) =
1
2

K

∑
j=1

(y j −a j)
2−λ0(

K

∑
j=1

y j −1)−
K

∑
j=1

λ jy j

(9)

where λ0 is the multiplier for the equality andλ j, j =
1, · · · ,K the multipliers for the inequality constraints. First
order necessary conditions imply:

y j = a j +λ0 +λ j . (10)



Combining the above with the equality constraint yields:

λ0 =
1
K
− < a > − < λ > , (11)

where< v >≡ 1
K ∑K

j=1 v j. Hence substitutingλ0 in Eq. (10)
we have that:

y j =
1
K

+a j− < a > +λ j− < λ >, j = 1, · · · ,K . (12)

Note that the vectorb with componentsb j = 1
K +a j− < a >

is the projection ofa on the hyperplane∑K
j=1 y j = 1. The

λ ’s must be chosen so as to satisfy the inequality constraints.
Khun-Tucker conditions[9] state that at the minimizery∗:

λ j ≥ 0 , λ j > 0 if y∗j = 0 (Active constraint) ,λ jy
∗
j = 0 .

(13)

We present a very efficient iterative strategy for calculating
theλ ’s for the problem above.

Let y denote the vector at the current iteration. Initially
we sety j = b j, ∀ j = 1, · · · ,K. If the current pointy is feasible
(i.e. y j ≥ 0,∀ j) then it is the desired minimizer (y⋆

j = y j) and
the algorithm terminates. In the general case there existm
negative componentsy j. The corresponding set of indices
S = { j, with y j < 0} constitutes the active set of constraints
for the current vectory.
• For all j /∈ S we setλ j = 0.
• For all j ∈ S we sety j = y⋆

j = 0 and we compute the
correspondingλ j by solving anm×m linear system that
force the inequalities to be satisfied as equalities, namely
y j +λ j− < λ >= 0, leading to

λ j =
1

m−K ∑
k∈S

yk − y j . (14)

• We compute the updatedy j values forj /∈ S using the new
vectorλ via Eq. (12).

The above procedure is repeated until a feasible point is ob-
tained, i.e.y j ≥ 0,∀ j. This is the desired minimizer (y⋆ = y).

It must be noted Eq.(14) produces positive values forλ j,
hence no constraint is to be dropped ever from the active set,
ie. if once somey j becomes zero then it retains this value
for ever. This is a very important point as far as efficiency is
concerned and in addition guarantees the finite termination
property of the algorithm. When all constraints are satisfied
we have reached the sought solution.

4. EXPERIMENTAL RESULTS

A series of image segmentation experiments have been con-
ducted to evaluate and compare the effectiveness of the pro-
posed technique. Since the main contribution of our work
is on improving the M-step of the SVFMM model that esti-
mates the label parametersπ i

j, we compared our approach
with the Generalized EM scheme proposed in the origi-
nal SVFMM model description that employs the Gradient
Projection technique (termed as SVFMM-GP) as described
in[6].

K = 3 

low medium high 

K = 5 

low medium high 

Figure 1: Six noisy test images with 3 and 5 classes using
three levels of noise.

In this paper we present results using two simulated
test images being sampled from MRF model using a Gibbs
sampler[7], withK = 3 andK = 5 classes, where we have
added three levels of Gaussian noise with standard devia-
tion of 18, 25 and 52, respectively (Figure 1). Figure 2 il-
lustrates the comparative results from the application of the
two methods to each noisy image. Two evaluation criteria
have been used for the comparison study: a) the maximum
attained value of the functionQMAP (Eq. (5)) and b) the clas-
sification (segmentation) error defined as the percentage of
mis-classified pixels. Therefore, for each image segmenta-
tion problem we provide two diagrams that illustrate the per-
formance of the models according to the above two criteria
for several values of theβ parameter.

These results, demonstrate that our approach provides a
betterQMAP maximum. Moreover, it provides significantly
better segmentation accuracy, since the mis-classification ra-
tio is considerably lower for our approach, especially for high
levels of noise. We have also tested the proposed algorithm
with different cases of real images. However due to space
constraint we do not present these results here. In all tested
cases the proposed M-step provides a better maximum of the
QMAP function.

5. CONCLUSIONS

In this paper we present a new and fast method to maxi-
mize the label parameter values at the M-step of the EM
algorithm for MAP based on GMM with MRF priors for
image segmentation. Experimental results on simulated im-
ages demonstrate that the proposed modification improves,
in some cases significantly, the segmentation performance
of this method. Future work will focus on applying the
method to real world segmentation problems arising in
bioinformatics[10]. We also plan to design more sophisti-
cated prior functions that will take into account not only pixel
adjacency, but also image information obtained through pre-
processing, such as for example the existence of edges. Fi-
nally, another research objective is to to make the proposed
method faster on large images by employing recent tech-
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Figure 2: Plot of theQMAP function (a) and the classification
error (b) for variousβ values in the case of the three noisy
images withK = 3 andK = 5 classes.

niques for accelerated GMM training[11, 12].
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