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Abstract. This paper elaborates on an efficient approach for cluster-
ing discrete data by incrementally building multinomial mixture models
through likelihood maximization using the Expectation-Maximization
(EM) algorithm. The method adds sequentially at each step a new multi-
nomial component to a mixture model based on a combined scheme of
global and local search in order to deal with the initialization problem
of the EM algorithm. In the global search phase several initial values
are examined for the parameters of the multinomial component. These
values are selected from an appropriately defined set of initialization can-
didates. Two methods are proposed here to specify the elements of this
set based on the agglomerative and the kd-tree clustering algorithms.
We investigate the performance of the incremental learning technique on
a synthetic and a real dataset and also provide comparative results with
the standard EM-based multinomial mixture model.

1 Introduction

Clustering of discrete (or categorical) data is an important problem with many
significant applications [1–4]. Although several methods have been proposed for
clustering continuous (real) data, the clustering of discrete data seems to be more
difficult mainly due to the nature of the discrete data: discrete values cannot be
ordered, it is not straightforward to define ’distance’ measures and it is also
more difficult to specify appropriate differentiable objective functions and apply
continuous optimization methods to adjust the clustering parameters.

Nevertheless, several techniques have been proposed for clustering discrete
data [1–3]. Some of them transform the discrete features into continuous using
some type of encoding, most of them 1-of-K encoding for a feature assuming K
discrete values [2]. A disadvantage of such methods is that the dimensionality of
the input space becomes very large. Other techniques are simply based on the
definition of a distance measure (e.g. Hamming distance) which is exploited to
construct hierarchical clustering solutions (e.g. agglomerative) [1, 3].

In this work we focus on statistical model-based methods for clustering dis-
crete data [5, 3]. Such methods are based on the generative model paradigm and
assume that the data have been generated by an appropriate mixture model



whose parameters can be identified through the maximization of a likelihood
function.

More specifically we consider a mixture of multinomials model and assume
that each data point has been generated through sampling from some multino-
mial component of the mixture model [3]. It is well-known that the EM algorithm
can be employed to adjust the parameters of the model. Once the model has been
trained, a data point is assigned to the cluster (multinomial component) with
the highest posterior probability. An additional advantage of this approach is
that it allows for soft clustering solutions based on the values of the posterior
probabilities.

The main problem with EM is the dependence on the initial parameter values.
An effective incremental solution has been recently proposed for the multinomial
mixture model, which has been successfully applied in a bioinformatics context
[4]. This method starts with one component and each time attempts to opti-
mally add a new component to the current mixture through the appropriate use
of global and local search procedures. As it will be described later, the applica-
tion of the incremental approach requires the specification of set C of candidate
parameter vectors for the new component to be added at each step. In [4] the set
C was considered to contain as many elements as the training set. In this work
we propose and evaluate two other methods for constructing the set C of initial-
ization candidates, based on the methods kd-tree and agglomerative clustering.
Comparative experimental results indicate that the integration of the agglom-
erative clustering approach into the incremental multinomial mixture learning
method leads to a very powerful method for clustering discrete data.

2 An incremental scheme for multinomial mixture models

2.1 The mixture of multinomials model

Consider a dataset X = {x1 . . .xN}, where each data point x = x1, . . . , xd

contains features with discrete values. More specifically, we assume that each
feature xi (i = 1, . . . , d) can take values from a finite set Ωi of Li discrete values,
i.e. xi ∈ Ωi = {αi

1, . . . , α
i
Li
}. We also assume that each feature xi can be modeled

with a multinomial distribution

P (xi = αi
l) = pil , with |pi| =

Li∑

l=1

pil = 1 . (1)

The probabilistic vectors pi (i = 1, . . . , d) define a multinomial parameter vector
θ, i.e. θ = [p1 . . .pd]. Assuming that the features are independent, the density
function φ(xn|θ) for an arbitrary observation xn = (xn

1 . . . xn
d ) is given by

φ(xn|θ) =
d∏

i=1

Li∏

l=1

p
I(xn

i
,l)

il , (2)



where I(xn
i , l) is a binary indicator function such that I(xn

i , l) = 1 if xn
i = αi

l

and 0 otherwise.
A mixture of multinomials model f(xn|Ψk) with k components is defined as:

f(xn|Ψk) =

k∑

j=1

πjφj(x
n|θj), (3)

where Ψk is the vector of all unknown parameters, i.e. Ψk = [π1 . . . πk, θ1 . . . θk]

and the mixing proportion πj (πj ≥ 0) satisfy that
∑k

j=1 πj = 1.

The log-likelihood of the dataset X = {x1, . . . ,xN} given the above model is

L(Ψk) =

N∑

n=1

log f(xn|Ψk). (4)

The EM algorithm provides a straightforward, convenient approach for maxi-
mum likelihood (ML) estimation of the parameters of the component densities
based on the iterative application of the following update equations for each
component j = 1, . . . , k [6, 3, 4]:

zn(t+1)

j =
π

(t)
j φj(x

n|θj(t)

)
∑k

j=1 π
(t)
j φj(xn|θj(t))

, (5)

π
(t+1)
j =

1

N

N∑

n=1

zn(t+1)

j , (6)

pj(t+1)

il =

∑N

n=1 zn(t+1)

j I(xn
i , l)

∑N

n=1

∑Li

r=1 zn(t+1)

j I(xn
i , r)

. (7)

After training the multinomial mixture model, we can assign to a data point
xn a cluster label corresponding to the highest posterior probability value zn

j

(j = 1, . . . , k).
It is well-known that the quality of the solutions provided by the EM algo-

rithm depend highly on the initialization of the model parameters. To overcome
the problem of poor initialization for the multinomial mixture model, an incre-
mental learning scheme [4] has been proposed based on an appropriate adapta-
tion of the greedy-EM algorithm for Gaussian mixtures [7].

2.2 Incremental mixture learning

Assume that a new component k+1 with density φk+1(x
n|θk+1) is added to a k-

component mixture model f(xn|Ψk). This new component corresponds to a new
cluster in the discrete domain modeled by a parameter vector θk+1 containing
the multinomial parameters. The resulting mixture with k + 1 components can
be represented as

f(xn|Ψk+1) = (1 − a)f(xn|Ψk) + aφk+1(x
n|θk+1), (8)



where a ∈ (0, 1). The new parameter vector Ψk+1 consists of the parameter
vector Ψk of the k-component mixture, the weight a and the vector θk+1. Then,
the log-likelihood for Ψk+1 is given by

L(Ψk+1) =

N∑

n=1

log f(xn|Ψk+1) =

N∑

n=1

log{(1 − a)f(xn|Ψk) + aφk+1(x
n|θk+1)}. (9)

The above formulation proposes a two-component likelihood maximization
problem, where the first component is described by the old mixture f(xn|Ψk)
and the second one is the new component with density φk+1(x

n|θk+1), where
θk+1 = [pk+1

1 . . .pk+1
d ]. If we consider that the parameters Ψk of f(xn|Ψk) re-

main fixed during maximization of L(Ψk+1), the problem can be treated by
applying searching techniques to optimally specify the parameters a and θk+1

which maximize L(Ψk+1). An efficient technique for the specification of θk+1 and
a is presented in [7] that follows a combination of global and local searching.
Global Search: It has been shown that a local maximum of L(Ψk+1) with respect
to a for a given parameter vector θk+1 = ϑm, is given by [7]

L̂(Ψk+1) = L̂(ϑm) =

N∑

n=1

log
f(xn|Ψk) + φk+1(x

n|ϑm)

2
+

1

2

[
∑N

n=1 δ(xn|ϑm)]2
∑N

n=1 δ2(xn|ϑm)
, (10)

and is obtained for

â =
1

2
−

1

2

∑N

n=1 δ(xn|ϑm)
∑N

n=1 δ2(xn|ϑm)
, (11)

where

δ(xn|ϑm) =
f(xn|Ψk) − φk+1(x

n|ϑm)

f(xn|Ψk) + φk+1(xn|ϑm)
. (12)

The above formulation has the benefit of making the problem of likelihood
maximization (Equation 9) independent of a. Therefore, it restricts global search-
ing for finding good initial values ϑm for the multinomial distribution of the
newly inserted component. To this end, the problem is now to define a proper
set C = {ϑm, m = 1, . . . , M} of initialization candidates. Then, the candidate

θ̂k+1 ∈ C that maximizes Equation 10 is identified and the corresponding â
value is computed using Equation 11.

Local Search: The EM algorithm can be used to perform local search for the
maximum of the likelihood with respect to parameters a and θk+1 only, starting
from the values â and θ̂k+1 identified in the global search phase. In analogy to
Equations 5-7, the following update equations called partial EM can be derived



for maximizing L(Ψk+1):

zn(t+1)

k+1 =
a(t)φk+1(x

n|θk+1(t)

)

(1 − a(t))f(xn|Ψk) + a(t)φk+1(xn|θk+1(t))
, (13)

a(t+1) =
1

N

N∑

n=1

zn(t+1)

k+1 , (14)

pk+1(t+1)

il =

∑N

n=1 zn(t+1)

k+1 I(xn
i , l)

∑N

n=1

∑Li

r=1 zn(t+1)

k+1 I(xn
i , r)

. (15)

The performance of the above incremental algorithm highly depends on the
’quality’ of the initialization candidates included in set C. In the following sec-
tions we describe and evaluate several methods for candidate specification.

3 Methods for the specification of initialization

candidates

3.1 Exhaustive search over the training set

A reasonable and straightforward strategy to define the set C of candidates is
to consider the whole training set X = {x1, . . . ,xN}, and directly associate
each discrete data point xm with a multinomial distribution ϑm = [ρm

1 . . . ρm
d ]

constructed as follows:

ρm
il = λI(xm

i
,l)(

1 − λ

Li − 1
)1−I(xm

i
,l) , (16)

It is easy to show that
∑Li

l=1 ρm
il = 1 for each feature i (i = 1, . . . , d). The

parameter λ has a fixed value in the range (0, 1), and should satisfy λ ≥ 1/Li

(∀i). In such way a set with M = N candidates is created. We will refer to this
method as ES (Exhaustive Search).

The drawback of this method is that all the N data points of X must be ex-
amined each time a new component has to be inserted. Alternatively, we can use
data partitioning schemes that lead to the identification of much less candidates
(M << N) and more informative.

3.2 The kd-tree algorithm for partitioning discrete data

The first partitioning scheme we have used is based on the notion of kd-trees. Ini-
tially, kd-trees [8] were proposed in the case of continuous data, as an attempt to
speed-up the execution of nearest neighbor queries. A kd-tree defines a recursive
binary partitioning of a k-dimensional dataset, where the root node contains all
data. A subset of the original dataset is assigned to each tree node and the tree
construction procedure proceeds by partitioning the subset of a node into two



subsets using a hyperplane perpendicular to the direction for which the subset
data demonstrate the highest variance.

In order to deal with discrete features we have used the following entropy-
based procedure to partition the data points corresponding to a node. In par-
ticular, for a node m that contains Nm data points, we first calculate its multi-
nomial parameters ρm

il = Nm
il /Nm, based on the sufficient statistics Nm and

Nm
il =

∑Nm

n=1 I(xn
i , l). Then, the entropy Hm

i of each feature i (i = 1, . . . , d) for
the data of node m can be computed as follows

Hm
i = −

Li∑

l=1

ρm
il log ρm

il . (17)

Then, we can identify the feature i⋆ that exhibits the largest entropy value, i.e.
i⋆ = arg maxi Hm

i . The partitioning procedure is based on the values xi⋆ of the
data points belonging to node m. First the Li⋆ different values of the feature i⋆

are sorted according to the probabilities ρm
i⋆l and then each value is marked in

turn as odd or even. In this way, two new nodes m1 and m2 are created, where
the m1 (m2) node contains the node m data for which the value of feature i⋆ is
marked as odd (even).

One last observation that must be made concerns the selection of the leaf
node m that will be partitioned at each step. This is done by selecting among
the current leaf nodes of the tree the one that exhibits the minimum likelihood
value. Following the definition in Equation 2, the log-likelihood that characterizes
a node m is

Lm(ϑm) =

Nm∑

n=1

d∑

i=1

Li∑

l=1

I(xn
i , l) log ρm

il

=

d∑

i=1

Nm

Li∑

l=1

ρm
il log ρm

il = −

d∑

i=1

NmHm
i . (18)

The above top-down procedure builds a tree with several nodes and the par-
titioning of a leaf node is not allowed when the number of included data points is
lower than a fixed value T . The kd-tree construction procedure terminates either
when there exist no leaf nodes that can be splitted, or when a predetermined
number M of leaf nodes have been constructed.

In our experiments in order to specify a candidate initialization set C with
M vectors ϑm, a kd-tree was first constructed with M leafs. Then each vector
ϑm was determined from the sufficient statistics of the data points assigned to
the corresponding leaf m (m = 1, . . . , M). We will refer to this method as KD.

3.3 Agglomerative clustering

In contrast to the kd-tree method, the Agglomerative clustering (AC) is a syn-
thetic clustering scheme [3]. The method starts with a set of N clusters, each



containing one data point xn. At each step the AC method searches among the
set of current clusters to identify the two closest clusters (m1, m2) that are sub-
sequently merged into one cluster by assigning all data points of clusters m1,
m2 to the newly formed cluster < m1, m2 >. To apply the AC algorithm, an
intercluster distance measure d(m1, m2) is needed, defined as

d(m1, m2) = Lm1
(ϑm1) + Lm2

(ϑm2) − L<m1,m2>(ϑ<m1,m2>) , (19)

where the Lm(ϑm) is calculated, as in the kd-tree case, according to Equation
18. The algorithm terminates when a specified number M of clusters have been
found. An implementation of the AC algorithm for discrete data is presented in
[3] that requires nearly O(N2) runtime.

Once the AC algorithm has terminated with M clusters, we specify the el-
ements ϑm (m = 1, . . . , M) of C using exactly the same procedure with the
kd-tree approach described previously.

4 Experimental results

We have conducted a series of experiments to evaluate how the different proce-
dures for candidate specification influence the performance of the incremental
algorithm. Using each method (ES, KD, AC) three sets of candidates were spec-
ified and the incremental scheme was then applied for initializing the parame-
ters of each added component k. Moreover, two additional standard EM-based
multinomial mixture models were created, where their parameters were initial-
ized by the agglomerative and the kd-tree clustering algorithms, respectively.
More specifically, we first applied both algorithms until a number of K clusters
were created. Then, the statistics of each cluster k were used for initializing the
mixture model parameters and the EM algorithm was applied to adjust them.
We will refer to these two models as AC-EM and KD-EM, respectively. Two eval-
uation criteria have been used, the first being the likelihood of each obtained
mixture model on a test set and the second the test set classification accuracy
(although class labels were not used in training).

4.1 Experiments with a synthetic dataset

In the synthetic dataset used in our experiments each true cluster (called class)
j (j = 1, . . . , K) was associated with a unique generator string of length d
containing letters from an alphabet Ω = {A, B, . . . , I}, ie. Ωi = Ω, ∀i = 1, . . . , d.
In this way, K = 10 different data generators with d = 20 features were selected,
where some of them present high degree of similarity and thus the discrimination
among the corresponding clusters is difficult.

The data points of each class j were created as noisy copies of generator
string j by randomly deciding whether to mutate each generator feature i with
mutation probability ̺ = 0.4 (0 ≤ ̺ ≤ 1), where mutation means that the value
of a feature i changes by randomly selecting a value from the corresponding



alphabet Ωi. In this way, 10000 discrete data points were sampled (1000 for
each class) and 3000 of them (300 for each class) were selected for training,
while the rest 7000 data were used for testing.

Table 1 presents the results for the synthetic dataset. The AC and KD clus-
tering algorithms were run until M = 200 subsets were discovered, which are
subsequently used to specify the multinomial parameter vectors included in the
set C of initialization candidates. As the results indicate, the exhaustive search
(ES) method for defining the set C, although considering the whole training set,
does not provide as good results as the other two approaches AC and KD which
illustrate the best (and similar) performance for both criteria.

It is also interesting to note that the proposed incremental schemes com-
pare favorably to both AC-EM [3] and KD-EM, ie. stand-alone EM with the
K components, initialized from the statistics of K subsets obtained using ei-
ther AC or kd-tree. Since the AC-EM approach is considered one of the most
effective approaches for clustering discrete data[3], it can be concluded that the
proposed methods are very powerful. These conclusions are also supported from
the experiments on a real dataset described below.

Table 1. Performance of the incremental approach using three methods for specifying
initialization candidates as well as of the AC-EM and KD-EM models on the synthetic
dataset.

Performance Incremental mixture
criteria Initialization methods AC-EM KD-EM

AC KD AS

log-Likelihood (training) -92612 -92612 -94108 -92715 -93209

log-Likelihood (test) -220067 -220067 -223676 -220276 -221574

Classification rate (%) 98.21 98.21 72.09 97.33 90.66

4.2 Experiments with the mushrooms dataset

We have also conducted experiments with a real dataset, namely the mushrooms
dataset from the UCI Machine Learning repository. It consists of d = 22 discrete
features that describe physical attributes of mushrooms taking between 2 and 12
values. Totally there are 8124 discrete data labeled as either class 0 (poisonous
mushrooms) or class 1 (eligible mushrooms), which were equally divided into a
training and testing set (4062 cases in each dataset). In all experiments the class
labels were ignored in the training phase. We first applied the AC algorithm to
construct a set C of M = 200 initialization candidates for the incremental mix-
ture learning method. The kd-tree algorithm was also applied to create another
set C′ of M = 200 candidates. The incremental learning scheme using either C
or C′ was compared to AC-EM method.

Figure 1 displays the log-likelihood value L(ΨK) on the test set as a function
of the number of clusters (components) K. The superiority of the incremental



approach when initialized with the AC algorithm is clear for all values of K
(2 ≤ K ≤ 12). In contrast to the synthetic dataset, the kd-tree algorithm did
not offer so good values for initializing the multinomial components, and thus
the corresponding model provided worse results for this dataset. Moreover, the
superiority of the incremental AC scheme can also be seen in Table 2 providing
the class distribution in the clusters obtained for K = 10.
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Fig. 1. The test set log likelihood values for several values of the number of multinomial
components K.

5 Conclusions

In this paper we elaborated on an incremental scheme for model-based cluster-
ing of discrete data, where a multinomial model is constructed by sequentially
adding new components. An exploration mechanism based on global and local
search ensures the fine tuning of the parameter vector of the added multino-
mial component. To solve the problem of specifying the set C of initialization
candidates two clustering methods have been examined based on kd-trees and
agglomerative clustering. The experiments conducted on a synthetic and a real
dataset have shown the incremental training method, coupled with a powerful
technique for the specification of initialization candidates, constitutes a very
effective approach for clustering discrete data.

In cases of very large datasets, the application of the AC algorithm to the
whole training set is time consuming [3]. A solution to this problem is to apply



Table 2. Class distribution in each cluster obtained when running the algorithms with
K = 10 multinomial components.

Model Class Class distribution in every cluster Classification
1 2 3 4 5 6 7 8 9 10 rate (%)

Incremental 0 655 130 0 0 0 0 870 139 0 185 95.44
mixture (AC) 1 0 0 127 105 855 338 0 0 102 556

AC-EM 0 655 130 0 0 0 139 870 101 84 0 92.27
1 0 0 127 105 855 338 0 91 172 395

Incremental 0 655 130 0 0 0 0 934 240 0 20 86.32
mixture (KD) 1 0 0 127 105 855 338 508 48 102 0

the AC method to a randomly selected portion of the dataset. On the other
hand, the size of the dataset does not constitute a problem for the proposed kd-
tree algorithm, therefore, the use of kd-tree for the specification of initialization
candidates may lead to better results in the case of very large datasets. It is also
possible to develop hybrid schemes combining the AC and kd-tree methods. An
approach of this type would first divide the dataset into a number of subsets
using the kd-tree method and then would apply the AC algorithm to the data
of each subset. Finally, it must be noted that in this work we do not address the
problem of assessing the optimal number of multinomial components K. This
constitutes one of our future research directions and requires the adaptation of
several well-known methodologies and criteria for model selection [5].
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