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ABSTRACT 
 
Image processing for analysis of microarray images is an 
important and challenging problem because 
imperfections and fabrication artifacts often impair our 
ability to measure accurately the quantities of interest in 
these images. In this paper we propose a microarray 
image analysis framework that provides a new method 
that automatically addresses each spot area in the image. 
Then, a new unsupervised clustering method is used 
which is based on a Gaussian mixture model (GMM) and 
the minimum description length (MDL) criterion, that 
allows the automatic spot area segmentation and the 
image artifacts isolation and correction to obtain more 
accurate spot quantitative values. Experimental results 
demonstrates the advantages of the proposed scheme in 
efficiently analysing microarrays.  
 

1. INTRODUCTION 
 
The DNA microarrays [1, 2] are used to measure the 
expression levels of thousands of genes simultaneously 
over different time points, and different experiments. In 
microarray experiments, the two mRNA samples to be 
compared are reverse transcripted into cDNA, labeled 
using two different fluorophores (red (R) and green(G)) 
and then hybridized simultaneously to a glass slide. The 
fluorescence intensities of the R and G correspond to the 
level of hybridization of the two samples to the DNA 
sequences spotted on the slide. The microarray images are 
structured with intensity spots located on a grid. An 
example of such grid is shown in Figure 1. Gene 
expression data derived from arrays measure spots 
quantitatively and can be used further for analytical 
purposes [3].  

  It has been shown [1] that background correction is 
an important task in the analysis of microarrays. This is 
necessary in order to remove the contribution in intensity 
which is not due to the hybridization of the cDNA 
samples to the spotted DNA. The R and G intensities of a 
perfect microarray image depend only on the dye of 
interest. However, due to system imperfections the 
resulting images in addition to background fluorescence 
contain other types of undesired signals which are termed 
in the rest of this paper as artifacts. The correction of 
such artifacts is crucial to making accurate expression 

measurements, because unlike background fluorescence 
their spatial location is unknown and can lead to errors 
that propagate to all subsequent stages of analysis.  

 
Figure 1. A 24x24 spots size grid of a microarray image. 

 
Several spatial and histogram-based techniques have 

been introduced for the analysis of the microarray images 
[1, 2]. These methods correct only for background 
fluorescence and ignore the presence of artifacts [1, 2]. 
This paper presents a novel methodology for the 
microarray image analysis that addresses this problem. It 
includes three main steps. First, the borders of each spot 
of the microarray are determined by proposing a new 
algorithm which initially uses the global properties of the 
microarray image. Then, they are refined sequentially 
based on the local image properties. This task, that will be 
referred to in the rest of this paper as addressing, is 
automatic without human intervention. This is deemed 
necessary for the analysis of large microarray images with 
many spots. Following this first step, the pixels in the 
area of each spot are clustered either into two foreground 
(F) and background (B), or three, F, B and artifact (A) 
clusters. The clustering and the determination of the 
number of clusters to be used is based on a Gaussian 
mixture model (GMM) [4, 5], and the minimum 
description length (MDL) criterion [6]. This is the 
segmentation task of our method. Finally, based on this 
clustering results the means of the R and G components 
of the F and B clusters only are used to estimate the spot 
quantitative measurements (normalized R/G ratio). This 
last task represents the reduction step of our approach. To 
our knowledge it is the first time in microarray analysis 
that artifact isolation and correction is attempted. In what 
follows section 2 describes the proposed approach, while 
in section 3 experimental results are presented where our 



 

method is tested. Finally in section 4 we present our 
conclusions.  

 
2. PROPOSED APPROACH 

 
2.1. Automatic identification of spot areas 
(addressing)  
The addressing procedure of our framework uses a 
scheme which combines a global and a local 
segmentation mechanism for assigning borders to each of 
the microarray spot areas ( , )S i j , where ( , )i j  indicates 
the index of the spot. The proposed approach initially 
creates global borders, which are common to all spots in 
the same grid area. Following this step, the global borders 
are refined sequentially using the local characteristics of 
the microarray image.  

 
Figure 2. This signal is obtained by summing up the rows 

of both R and G channels of the microarray image. 
 

During the global phase, we sum the combined R 
and G intensities along the rows and columns of the 
microarray image. The peaks of the resulting signals give 
the vertical and horizontal coordinates of the spot centers, 
respectively. We use the mid point of two successive 
peaks of the raw and column sums to define the global 
horizontal and vertical, respectively, borders between 
spots. In Figure 2 the row sum of the grid in Figure 1 is 
shown. The dots indicate the horizontal global borders.  

After determing the global borders of the spots the 
next phase is the refinement step. Starting from the top 
left spot we redefine the border between the spots ( , )S i j  
and ( 1, )S i j+  ( ( , 1)S i j + ). This is achieved by finding the 
local minimum of the signal obtained as the sum of row 
(column) intensities of the R and G planes in the segment 
between these two spot areas. The region where we 
search for the local minimum is the neighborhood around 
the global border. Figure 3 illustrates an example of the 
global border refinement process. This procedure is 
repeated in a row-by-row or column-by-column fashion, 
scanning the entire microarray image. After addressing 
the spot areas the segmentation and reduction steps 
follow.  

 
Figure 3. The global borders (dotted lines) are refined 

(solid lines) based on the local sums. The signals on the 
left and above the microarray image are the local row and 

column sums, respectively 
 

2.2. Clustering based on GMM and MDL 
The pixels in a spot are denoted 2

ix R∈  with 1i N= …  
where [ , ]i i ix R G= , for the R and G intensities respectively. 
In order to classify the pixel location i  as F, B or A we 
formulate this task as a clustering problem of the two-
dimensional input dataset

1 2[ , , , ]NX x x x= … . To solve this 
problem we use a Gaussian mixture model (GMM) [4]. 
For our approach each mixture component k models the 
F, the B or the A region of the spot area that follows the 
Normal density function ( ; , )i k kN x µ Σ , where kµ  and kΣ  
are the 2x1 mean vector and the 2x2 covariance matrix, 
respectively. 

Assuming that a mixture contains K components, a 
mixture model KM  of Gaussian can be written as  

1

( | ) ( ; , )
K

i K k i k k
k

f x M N xπ µ
=

= Σ∑ ,               (1) 

defined by the mixture coefficients kπ  and the means kµ  
and the covariances kΣ . The log-likelihood of the 
observed dataset X corresponding to the above model is 

1
( | ) log ( | )

N

K i K
i

L X M f x M
=

= ∑ .               (2) 

When the model order K is known the expectation 
maximization (EM) algorithm [7] is a classical approach 
that can be applied for log-likelihood maximization with 
respect to the parameters kπ , kµ  and kΣ . However, it is 
well known that the results of the EM algorithm for  this 
application are very sensitive to the initialization used [5].  
In order to ameliorate this problem we use a new 
incremental scheme for Gaussian mixture modeling that 
has been recently introduced and is termed as greedy EM 



 

1. For K={2, 3} 
a. Estimate the model parameters (

kπ ,
kµ ,

kΣ ) of the GMM(K)

by applying the greedy EM algorithm and compute the log-
likelihood ( | )KL X M . 

b. Calculate the value of MDL(K) according to Equation (3). 
2. If ( ) ( )2 / 3MDL MDL T≤  then use GMM(2) 

3. else if ( ) ( )2 / 3MDL MDL T>  then use the GMM(3).  

[5]. Starting with one component, this algorithm 
sequentially adds a new one by performing a global 
search over the input dataset. This is followed by a local 
search based on partial EM steps to fine tune the 
parameters of the new component. It was shown in [5] 
that the results of this algorithm for the GMM clustering 
problem are independent on the initial model parameter 
values.  

Based on this formulation, the decision of whether 
or not artifacts are present in a spot area is equivalent to 
selecting the order K of the GMM. If a GMM with K=2 
(GMM(2)) is selected then the two clusters corresponds to 
F and B. In contrast a GMM with K=3 (GMM(3)) implies 
the presence of the A cluster also. Thus, the crux of the 
proposed approach becomes a model order selection 
problem, i.e. to find the number of components in the 
mixture that best fit the input dataset X. One of the most 
popular model selection criteria is the Minimum 
Description Length (MDL) [6] defined as 

 
2

1( ) ( | ) log ( )
2KMDL K L X M C N= − + .        (3) 

The first term in Equation (3) gives a measure of how 
well the model fits the data. Obviously a complex model 
with more terms would provide a better fit. The second 
term of Equation (3) is a term that penalizes the 
complexity of the model and corresponds to the number 
of bits needed to encode the model parameters. C gives 
the number of free parameters and is given for a d-
dimensional GMM(K) by ( )3 / 2 ( 1)C Kd d K= + + − , 

assuming full covariances matrices.  
Therefore, the number of components and thus the 

presence of an artifact within a spot area can be 
determined by applying the following procedure:  

We determined that a good value was 1.01T = . The last 
two steps can be seen as an artifact correction 
methodology that eliminates the effect of an artifact into 
quantitatively measuring any noisy spot area.  

The last task of the proposed scheme is to define the 
criterion used to select the artifact component from a 
GMM(3). Since we assume as artifacts erroneous random 
samples that are neither foreground nor background, we 
propose a criterion based on the total variance of the 
class. Thus, we consider as artifact the component k 
( )1,2,3k = that has the greatest degree of scattering 

among all three classes, i.e ( )2 2
, ,arg max R k G kk

k σ σ= + . Once 

the A cluster is determined the remaining 2 clusters are 
labeled as F and B based on the relation 

F Bµ µ> . 

The feature that captures the properties of a spot 
area is the ratio of the difference of the fluorescence 
intensities (R and G) between two clusters (F and B), i.e. 

( ) /( )R R G G
F B F BRatio µ µ µ µ= − − , where R

Fµ  for example 
gives the mean of red component of the F cluster. This 
spot quality measurement is the most usually used [1, 2] 
since it reflects the transcript abundance for the red and 
green labeled mRNA samples. A ratio value 1Ratio >  
( 1Ratio < ) declares over-expression (under-expression) 
in the R labeled mRNA sample compared to the G.  

 
3. EXPERIMENTAL RESULTS  

 
The experiments described in this section were made 
using real datasets and have two objectives. First they test 
the effectiveness of the proposed method to automatically 
address spot areas of real microarray images. Second, to 
study the capabilities of the proposed artifact correction 
strategy in terms of segmenting properly spot areas and 
thus to extract more accurate gene expression quantitative 
values. In this spirit, we have selected real data used in 
[3]. In particular, we have used one such sample (a grid 
of which contains 24x24 spots as illustrated in Figure 1), 
where we have applied our addressing procedure for 
automatically partitioning it into 576 distinct spot areas. 
Table 1 represents six examples of spot areas ( , )S i j  that 
have been addressed automatically. These results 
demonstrate that in all cases tested the proposed method 
created spot areas that contained the gene spot and the 
adjacent background, even in difficult cases of noisy 
spots with artifacts, see for example spots 3-6. 

After addressing the spot areas in this microarray 
example, we used our clustering approach to estimate the 
corresponding fluorescence ratios. For comparison 
purposes, we have also applied two other known 
clustering approaches, the k-means and the partitioning 
around medoids (PAM) that have been proposed in [2]. 
Since these methods, as described in [2], do not provide a 
cluster selection criterion, in our study only two clusters 
(F and B) were assumed. 

Table 1 summarizes the comparative results that 
have been provided for six spots. In each case, we 
illustrate the spot image segmentation, after classifying 
pixels according to the class label depicted when applying 
the greedy EM algorithm [5] to the mixture model with 
either two or three components. The segmentation map of 
the spot area is illustrated using light, dark and median 
gray values, which correspond to the F, B, and A pixels 
respectively. The MDL ratio (ratio ( ) ( )2 / 3MDL MDL ) is 

also shown and is used to decide the existence of an 
artifact cluster within the spot area, together with the 



 

calculated fluorescence ratios R/G for each of the four 
clustering approaches (GMM(2), GMM(3), 2-means and 
PAM) respectively. Finally, the same feature is given as 
extracted by applying the ScanAlyze microarray image 
tool [8]. This is a spatial method that uses fixed circle 
segmentation. It must be noted that these values are 
published at the www at http://llmpp.nih.gov/lymphoma/. 
 

Spot examples Methods Ratio 
GMM(3) - 
GMM(2) 2.1254 
2-means 2.1005 
PAM 2.0431 

1 
S(1,3) 

 
MDL ratio 

1.0025  ScanAlyze 2.7570 
GMM(3) - 
GMM(2) 0.3501 
2-means 0.3319 
PAM 0.3411 

2 
 S(10,7) 

 
MDL ratio 

1.0002  ScanAlyze 0.2233 
GMM(3) 1.1190 
GMM(2) 1.2266 
2-means 1.1565 
PAM 1.1650 

3 
S(1,15) 

 
MDL ratio 

1.1081  ScanAlyze 0.9125 
GMM(3) 1.4822 
GMM(2) 1.0816 
2-means 1.0173 
PAM 0.9637 

4 
S(2,2) 

 
MDL ratio 

1.0412  ScanAlyze 1.2360 
GMM(3) 1.3350 
GMM(2) 2.4737 
2-means 2.6800 
PAM 7.4848 

5 
S(11,15) 

 
MDL ratio 

1.1059  ScanAlyze 0.9363 
GMM(3) 1.6248 
GMM(2) 1.4737 
2-means 1.4878 
PAM 1.1061 

6 
S(18,4) 

 
MDL ratio 

1.0226  ScanAlyze 0.9189 
 

Table1. Comparative results for six microarray spots. The 
left and right columns show the spot area and the 

segmentation, respectively. Light, dark and medium gray 
indicate the F, B and A pixel location, respectively. 

 

In the case of spots 1, 2 in Table 1 where no artifacts 
were found, the estimated fluorescence ratios are almost 
the same for GMM(2) or the two simple nearest-
neighborhood techniques, 2-means and PAM. The four 
spots 3-6 represent cases where artifacts within the spot 
area are detected. Based on the MDL criterion in our 
methodology, the model with the three components is 
selected and the artifact component that holds the greater 
variability is removed. As observed in Table 1, the results 
are, in some cases, significantly different in terms of the 
calculated fluorescent ratios, when only two components 
are used for the clustering problem. For example, during 
the analysis of the spot 4, the GMM(3) model gives a 
greater by almost 50% gene expression value as 
compared to the one calculated for the other 2-cluster 
approaches. In this case a large artifact misleads the 

clustering algorithms when only two components are used 
since the artifact appears to be the foreground. This 
artifact explains the fluorescent ratio values (≈1.0) 
calculated by the GMM(2), 2-means and PAM method. 
The artifact region has almost equal R and G intensities 
as can be seen by its yellow color. Analogous 
observations can be made for spots 5, 6. 
 

4. DISCUSSION AND CONCLUSIONS 
 
In this paper we have proposed a new fully automated 
approach for the analysis of microarray images. Two are 
the main novelties of the proposed approach. First, the 
automatic method for finding the spot area based on the 
column and raw sums of the image intensities. Second, 
the GMM-based method for segmentation to F, B and A 
of the pixels in the spot area.  This allows, for the first 
time to our knowledge, to identify and adjust the 
computation of the spots features to the artifacts which 
are present. The experiments demonstrated the ability of 
our approach to quantitatively measure the features of 
difficult spot areas, containing a large amount of artifacts. 
In addition, the proposed GMM clustering framework 
provides a very rich description of the spots properties 
and allow us to derive easily additional metrics which 
capture the morphology of the spot area. For example, the 
uniformity of the fluorescent intensities in the F or B 
areas is captured by the variances of the GMM. The 
overall color of the spot F or B areas are captured by the 
means and the covariances of the GMM. The evaluation 
of all these new metrics constitutes directions of our 
future research.  
 

5. REFERENCES 
[1] Y.H. Yang, M.J. Buckley, S. Duboit and T.P. Speed. 
“Comparison of Methods for Image Analysis on cDNA 
Microarray Data”. Technical Report #584. Department of 
Statistics, University of California, Berkeley, 2000. 
[2] D. Bozinov and J. Rahnenfuhrer, “Unsupervised Technique 
for Robust Target Separation and Analysis of DNA Microarray 
Spots Through Adaptive Pixel Clustering,” Bioinformatics, 
vol.18 (5) pp.747-756, 2002. 
[3] A.A. Alizadeh, M.B. Eisen, et. al. “Distinct types of diffuse 
large B-cell lymphoma identified by gene expression profiling”. 
Nature, vol.403, pp.503-511, 2000. 
[4] C.M. Bishop. Neural Networks for Pattern Recognition, 
Oxford Univ. Press Inc., New York, 1995. 
[5] N. Vlassis and A. Likas, “A Greedy EM algorithm for 
Gaussian Mixture Learning”. Neural Processing Letters, vol. 
15, pp.77-87, 2002. 
[6] J. Risannen. “Modelling by shortest data description”. 
Automatica, vol.14, pp.465-471, 1978. 
[7] N. Dempster, A.P. Laird and D. Rubin, “Maximum 
Likelihood from incomplete data via the EM algorithm”. J. R. 
Statist. Soc. B, vol. 39, pp.1-38, 1977. 
[8] M.B. Eisen. ScanAlyze. http://rana.Stanford.EDU/software, 
1999. 


