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Abstract. The basic issue concerning the construction of neural net-
work systems for protein classification is the sequence encoding scheme
that must be used in order to feed the network. To deal with this prob-
lem we propose a method that maps a protein sequence into a numerical
feature space using the matching local scores of the sequence to groups of
conserved patterns (called motifs). We consider two alternative schemes
for discovering a group of D motifs within a set of K-class sequences.
We also evaluate the impact of the background features (2-grams) to the
performance of the neural system. Experimental results on real datasets
indicate that the proposed method is superior to other known protein
classification approaches.

1 Introduction

Consider a finite set of characters Σ = {α1, . . . , αΩ}, where Ω = |Σ|. Any
sequence S = a1a2 . . . aL, such that L ≥ 1 and ai ∈ Σ, is called a sequence
over the alphabet Σ. In the case of proteins, the alphabet Ω is the set of 20
aminoacids. Protein sequence classification constitutes an important problem in
biological sciences. It deals with the assignment of sequences to known categories
based on homology detection properties (sequence similarity). We use the term
family or class to denote any collection of sequences that are presumed to share
common characteristics.

Various approaches have been developed for solving this problem. Most of
them are based on appropriately modeling protein families, either directly or in-
directly. Direct modeling techniques use a training a set of sequences to build a
model that characterizes each family of interest. Hidden Markov models (HMMs)
are a widely used probabilistic method for protein families [1] that provides a
probabilistic measurement (score) of how well an unknown sequence fits to a
family. The classification is then made by selecting the class label of the most
likely model [1]. Indirect techniques use an encoding stage to extract useful se-
quence features. In this way, sequences of variable length are transformed into
fixed-length input vectors that are subsequently used for training discriminative
models, such as neural networks [2].

In biological sequences, motifs or patterns can be considered as islands of
aminoacids conserved in the same order of a given family [3]. Since they enclose
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significant homologous attributes, they can be seen as local features character-
izing the sequences. The background information also constitutes another source
of information for sequence data. A common way to determine background fea-
tures, also termed as global features, is to use the 2-gram encoding scheme that
counts the occurrences of two consecutive characters in sequences [2]. In the case
of protein sequences (generated from the alphabet of the 20 aminoacids), there
are 400 possible such 2-gram features.

Several neural network schemes have been applied that follow alternative
encoding schemes and training methods [4],[2]. These approaches are character-
ized by the enormous size of the extracted input vectors, the imbalance between
global and local features (more emphasis on global features) and the need for
large training sets (since the number of network inputs is very large). For ex-
ample in [4],[2] only one feature was responsible for carrying local information,
while all the others were 2-gram features. Another class of discriminative model
used for classifying sequences is the Motif Alignment and Search Tool (MAST)
[5]. The MAST algorithm estimates the significance of the match of a query
sequence to a family model as the product of the p-values of each motif match
score. This measure (E-value) can then be used to select the family of the un-
known sequence.

In this paper, we focus on building efficient neural classifiers for discrimi-
nating multiple protein families by using appropriate local features extracted
from efficient probabilistic motif models. As motifs constitute family diagnos-
tic signatures, our aim is to formulate a neural network scheme that exploits
motif-based (local) features. It can be considered as a combination of an un-
supervised and a supervised learning technique. In the first stage, we identify
probabilistic motifs in a training set of multi-class sequences. We assume two
alternative ways, depending on whether or not taking into account the class la-
bels. For this purpose we use the MEME algorithm [6] that follows iteratively
a two-component mixture model approach. The discovered motifs are then used
to convert each sequence to a numerical feature vector that subsequently can be
applied to a typical feedforward neural network. Using a Bayesian regularization
training technique [7],[8], the neural network parameters are adjusted and there-
fore a classifier is obtained suitable for predicting the family of an unlabeled
sequence. The next section describes the proposed method, while experimental
results obtained using real sets of protein sequences are presented in Section 3.
Finally, in Section 4 we present our conclusions.

2 The Proposed Method

Consider the problem of classifying a set of N protein sequences S = {Si, i =
1, . . . , N} into K classes. The set S is a union of positive example datasets Sk
from K different classes, i.e. S = { S1 ∪ . . .∪ SK }, and can be seen as a subset
of the complete set of all possible sequences over the aminoacid alphabet Σ (S ⊆
Σ∗). The proposed protein classification scheme consists of three main stages. A
supervised technique is first applied for discovering probabilistic motifs in a set of
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K protein families. This follows a feature vector generator that converts protein
sequences into feature vectors. Finally, a neural network is used for assigning a
protein family to each input vector.

2.1 Discovering Probabilistic Motifs in Sequences

A motif Mj of length Wj can be probabilistically modeled using a position weight
matrix (PWMj) that follows a multinomial character distribution. Each column
(l) of the matrix corresponds to a position l in the motif sequence (l = 1, . . . ,Wj).
The column elements provide the probability pαξ,l of each character αξ of the
alphabet Σ = {αξ, ξ = 1, . . . , Ω} to appear in the position l, where Ω = 20
for proteins. Let sp = ap,1 . . . ap,Wj denote a segment of length Wj beginning at
position p and ending at position p+Wj−1 of a sequence S of length L. Totally,
there are L −Wj + 1 such subsequences. Then, we can define the probability
that sp matches the motif Mj , or has been generated by the model PWMj

corresponding to that motif, using the following equation:

P (sp|Mj) =
Wj∏

l=1

pap,l,l . (1)

Several approaches have been proposed for discovering probabilistic motifs
in a set of unaligned biological sequences [3], such as the CONSENSUS, Gibbs
sampler and MEME methods. Among these, the MEME algorithm [6] applies
a two-component mixture model to discover one motif of length Wj . The first
component of the model describes the motif (PWMj), while the other mod-
els the background information, formulated by a probabilistic vector ρ of size
Ω. Multiple motifs can be found by sequentially fitting another two-component
model to the set of sequences that remain after removing the subsequences that
correspond to the occurrences of the already identified motifs1. MEME uses the
Expectation Maximization (EM) algorithm to maximize the log-likelihood func-
tion of the model [6], i.e. to estimate the elements of the corresponding position
weight matrix. Furthermore, MEME provides with a strategy for locating effi-
cient initial parameter values in order to prevent the EM algorithm from getting
stuck in local optima [6]. The D motif models PWMj (j = 1, . . . , D) discovered
by MEME can be of either fixed or variable length Wj . In our experimental
studies both types of motifs will be examined.

In order to discover a group of motifs from a training set containing sequences
of K classes, two alternative approaches can be followed. The first approach is to
apply the MEME algorithm K times, one for each protein family, respectively.
Then, the union of the discovered groups of motifs Dk (k = 1, . . . ,K) can form
the final group of D motifs. These will be termed as class-dependent motifs.
An alternative approach is to apply the motif discovery algorithm only once to
the total training set S, ignoring class labels. In this way, we do not allow the
1 The model assumes that there are zero or more non-overlapping motifs in each

sequence.
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algorithm to directly create K protein family profiles, but rather to discover
D class-independent motifs. During experiments both motif discovery strategies
will be considered and evaluated.

Following the probabilistic framework of PWMj for modeling motifs, we can
sequentially compute the corresponding position-specific score matrix (PSSMj)
in order to score a sequence. The PSSMj is a log-odds matrix calculating the
logarithmic ratio rαξ,l of the probabilities pαξ,l suggested by the PWMj and the
corresponding general relative frequencies ραξ of aminoacids αξ in the family.
Given a motif model Mj , the score value f(sp|Mj) of a subsequence sp can be
defined as:

f(sp|Mj) =
Wj∑

l=1

log(
pap,l,l

ρap,l
) =

Wj∑

l=1

rap,l,l . (2)

At the sequence level, the score value of a sequence S against a motif Mj can be
determined as the maximum value among all scores of the possible subsequences
of S, i.e. f(S|Mj) = max1≤p≤L−Wj+1 f(sp|Mj). Thus, if we assume that we
have discovered a group of D motifs, we can translate each sequence Si into a
D-dimensional feature vector xi by calculating the score values xij = f(Si|Mj)
(j = 1, . . . , D).

2.2 Construction of the Neural Classifier

The last stage in our methodology is to implement and train a feed-forward
neural network that will be able to map the input vectors xi into the K protein
classes of interest. To construct the neural classifier we use the training set
X = {xi, ti}, i = 1, . . . , N . The target vector ti is a binary vector of size K
indicating the class label of input xi, i.e. tik = 1 if the corresponding sequence
Si belongs to the class k, and 0 otherwise. In an manner analogous, the output of
the classifier is represented by a K-dimensional vector yi. Based on this scheme,
the predicted class h(xi) of an unlabeled feature vector xi is given by the index of
the output node with the largest value yik, i.e. h(xi) = c : yic = max1≤k≤K yik.
Setting a threshold value θ (∈ [0, 1]), we can restrict the classifiers’ decision only
to those input vectors whose maximum output value surpasses this threshold.
In this case we can write:

h(xi, θ) = c : yic = max
1≤k≤K

yik ∧ yic ≥ θ . (3)

Parameter θ can be used to specify the sensitivity of the classifier.
In order to train the neural network we use the Gauss-Newton Bayesian

Regularization (GNBR) learning algorithm [8]. The GNBR algorithm applies
an iterative procedure for Bayesian regularization of the network parameters
and implements a Gauss-Newton approximation to the Hessian matrix H of the
regularized objective function [7],[9]:

F (w) = βEX(w) + αEW (w) =
β

2

N∑

i=1

{yi − ti}2 +
α

2

NW∑

j=1

w2
j , (4)
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where w corresponds to the vector of the network weights and the NW represent
the number of network parameters. The EX and EW indicate the sum of the
squared errors and the sum of the squares of the network weights, respectively.

At each step, the objective function F (w) is minimized using the Levenberg-
Marquardt algorithm to provide a solution wMP . Then, optimal values for pa-
rameters α and β at the minimum point wMP can be computed as follows [7],[9]:

α̂ =
γ

2EW (wMP )
and β̂ =

N − γ
2EX(wMP )

, (5)

The quantity γ represents the effective number of network parameters w and
can be defined as γ = NW − 2α̂TrĤ−1. The GNBR algorithm exploits the
approximation of the Hessian provided by the minimization method [8]. In cases
where the number of effective parameters is equal to the actual ones (γ ≈ NW ),
more hidden units must be added to the network. It must be noted that in our
experiments, the best results for the GNBR algorithm were obtained by scaling
the network inputs in the range [−1, 1].

3 Experimental Results

Several experiments have been conducted to evaluate the proposed method. In
all K-class classification problems, each protein family Sk (k = 1, . . . ,K) was
randomly partitioned into training and test sequences, with the training set
being only a small percentage (5 - 10%) of the family dataset. Experiments have
been carried out using the MEME algorithm to discover either groups of Dk = 5
class-dependent motifs for each family, or a group of D = 5×K class-independent
motifs using the total training dataset (ignoring the class labels). In this way two
datasets are created containing D-dimensional feature vectors, denoted by Xs for
the class-dependent case and Xg for the class-independent case, respectively. To
evaluate classification performance, ROC (Receiver Operating Characteristic)
analysis was used. More specifically, we used the ROC50 curve which is a plot
of the sensitivity as a function of false positives for various decision threshold
values θ until 50 false positives are found.

We have selected the two real (public) datasets in our experimental study.
The first dataset (nearly 2000 sequences) consists of K = 6 families depicted
from the PROSITE database, which is a large collection of protein families.
The second one (nearly 1800 sequences) contais K = 7 subfamilies from the
G-protein coupled receptors (GPCR) superfamily. The difficulty of recognizing
GPCR subfamilies arises from the fact that their classification has been made
based on chemical properties rather than sequence homology.

In the first series of experiments we assessed the impact of using 2-grams
(background features). To do this, we constructed a new feature space consisting
of only global features. In particular, we defined the feature giq as the relative
frequency of each 2-gram q (q = 1, . . . , Ω2) in a sequence Si. Furthermore,
we ignore redundant 2-grams and consider only the ng features giq that occur
frequently (at least half of the N training sequences). Therefore, the new created
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dataset, called G, would contain ng global features of the input sequences. In
summary, we have created five different sets of features: Xs, Xg, Xs ∪G, Xg ∪G
and G for each problem and we measured their discriminative ability. The neural
network architecture had one hidden layer of either 10 for the cases Xs and Xg,
or 20 nodes for the other three datasets.

Fig. 1. ROC50 curves illustrating the performance of the neural classifier on the two
datasets using the five different feature vectors.

Figure 1 displays the ROC50 curves obtained after training the five neural
classifiers. For each problem two different graphs are presented concerning motifs
of fixed length (W = 20) and of variable length (W ∈ [10, 30]). As it is obvious,
motif-based features itself constitute an excellent source of information that lead
to the construction of efficient classifiers. In all cases, the neural networks trained
by mixed (local and global) features (e.g. NN(Xs∪G)) exhibit lower classification
accuracy compared to the corresponding classifier trained with only motif-based
features (e.g. NN(Xs)). Furthermore, the 2-gram features alone (case NN(G)) do
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not seem to contain significant discriminant information. The best classification
results were obtained with the network NN(Xs). This indicates that the class-
dependent motifs achieve better allocation among the K families and thus more
efficient modeling, in comparison with the class-independent case.

Fig. 2. ROC25 curves for the three methods (neural (NN), MAST and SAM) on the
two datasets.

During the second series of experiments we have compared the best neural
classifier (NN(Xs)) with two other protein classification methods, namely the
MAST homology detection algorithm [5] and the SAM method based on HMMs
[1]. As it has already been discussed, both methods create (indirectly or directly)
a probabilistic model-profile for each family and they classify each test sequence
into the class with the best score value (minimum E-value). Figure 2 provides
comparative results for the two datasets. Five ROC curves are presented until 25
false positives were found (ROC25). The performance of the neural classifier and
MAST was given by two curves concerning motifs of fixed (W = 20) and variable
length (W = [10, 30]), respectively. In the case of MAST and SAM methods,
ROC curves were obtained by setting several E-value thresholds. When the
lowest estimated E-value was greater than the threshold then the test sequence
was considered unclassified.

The superior classification of the proposed neural approach is obvious from
the plotted curves in all problems, offering greater sensitivity rates with perfect
specificity (zero false positives). The classification improvement is more clear in
the GPCR dataset. A sensitivity rate of 99.30% was measured with only 11 false
positives, while the corresponding results for MAST and SAM are (95.76%, 25)
and (95.38%, 25), respectively. A last observation is that, although the MAST
approach uses the same groups of motifs, our method seems to offer a more
efficient scheme for combining the motif match scores, in comparison with their
p-values as suggested by MAST.
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4 Conclusions

In this paper we have presented a neural network approach for the classification
of protein sequences. The proposed methodology is motivated by the principle
that in biological sequence analysis motifs can provide major diagnostic features.
Based on the MEME algorithm, we discover probabilistic motifs in a set of K-
class sequences. Two alternative ways have been suggested depending on whether
or not the class labels are taken into account. Then, numerical feature vectors
are generated by computing the matching score of the sequences to each motif.
At the second stage, the extracted feature vectors are used as inputs to a feed-
forward neural network trained using a Bayesian Regularization algorithm that
provides the class label of a sequence. Experimental results clearly illustrate
the superiority of our neural approach in comparison with other probabilistic
methods. In addition, we have shown that background features do not provide
a useful source of information for the classification task, since they do not lead
to performance improvement. Future work is focused on studying alternative
methods both in the classification and the motif discovery stage.
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