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:

Abstract: This paper proposes a greedy algorithm for
learning a mixture of motifs model through likeli-
hood maximization, in order to discover common sub-
strings, knewn as meovif5, to a given collection of re-
fated biosequences. The approach adds sequentially a
new motif te a mixture model by performing a com-
bined scheme of giobal and local search for appropri-
ately initializing its parameters. In comparison with
the well-known MEME approach, the algorithm is ad-
vantageous in terms of identifying motifs with signifi-
cant conservation and the development of larger pro-
tein fingerprints, t

EKeywords: motif discovery, mixture of motifs, KM ai-
gorithm, fingerprints, MEME algovithm.

I INTRODUCTION

'he motif identification is one of the most important prob-
ms in protein sequence analysis covering many applica-
1 areas. 1t concerns the discovery of portions of protein
rands of major biological interest with important struc-
Land functional features. Motifs can also be used for
cterizing biological families and searching for new
ily members. This Jeads to the development of diag-
- signatures (fingerprints) that contain groups of con-
d motifs used to characterize.a family. The PRINTS
RINT-S) database [1] is an exampie of protein fin-
ints database containing ungapped motifs.
ly, patterns or motifs can be either deterministic

abilistic [6]. A simplified way. of modeling a
Probabniistic ngapned motif i the mae

WM) representing the relative frequency of each
r.at-each motif position. The Gibbs sampling
MEME [2] represent probebilistic methods for
ing multiple shared motifs within a set of unaligned
equences. The MEME algorithm fits a two-
finite mixture model to a set of sequences
\pectation Maximization (EM) algorithm [5],
omponent describes the motif and the other
€ background (other positions in the se-
-Multipié motifs are discovered by sequentially
mixture mode] with two components to
maining after erasing the occurrences of
Y idehtified motifs,
2 pape We present an innovative approach for dis-
;. _lgl?%ﬁgqnt motifs in a set of sequences based
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on recently developed incremental schemes for Gaussian
mixture learning [7]. Our method leamns a mixture of mo-
tifs model in a greedy fashion by incrementally adding
components (motifs) to the mixture. Starting with one
component that models the background, at each step a
new component is added whick corresponds to a candi-
date motif. The algorithm tries to identify a good initial-
ization for the parameters of the new motif by performing
global search over the input substrings together with local
search for fine tuning of the parameters of the new com-
ponent. In-addition, a hierarchical clustering procedure is
proposed based on kd-tree techniques [3] for partitioning
the input dataset of substrings, which can reduce the time
complexity for global searching.

Ii. GREEDY EM ALGORITHM FOR MOTIFS
DISCOVERY

A. The mixture of motifs model

Consider a finite set of characters 3 = {a1,...,00}
where 0 = [IZ|. Any sequence § = aias...ayr, of
length L, such that L >> 1 and a; € I, is called a string
(or sequence) over the character set T, The consecutive
characters e; ... a;ow..; forma substring z; of S length
W, identified by the starting position 4 over the string S.

There are n = L — W + 1 such possible substrings of
length W' generated from sequence 5. We assume a set

of IV unaligned sequences S = {S,... S} of length

Ln,..., Ly, respectively. In order to deal with the prob-
lem of Hiotif discovery of length W we construct a new

dataset containing all subsirings of length W in 9. There-

fore, we obtain a training dataset X = {z1,...,2,} of

n substrings (n = 370 {Ls — W + 1}) for the learning

problem.

A mixture of motifs model f for an arbitrary substring x;

assuming g components can be written as:

: g
Flai Ug) = 37 msds (24 6y), (1
i=l

where W, is the vector of all unknown parameters
in the mixture model of g components, ie. U, =
ey g1, 01,000, 8,1 The mixing proportion w;
{m; = 0) can be viewed as the prior probability that data
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- ‘:ci--ha-s--been.genera‘ied by the jth component of the mix-

ture and they satisfy 351 75 = 1.

Each one of the g components corresponds to either a mo- .

tif or the background. Following the position weight ma-
trix representation, 2 motif 7 can be modeled by PWM; =
p7 ) of size [£2 x W], where each value pj ;, denotes the
probability that the letter oz is Jocated In motif position
k. On the other hand, 2 background component is rep-
resented using a probability vectot BPM,; (of length ),
where each parameter value ¢ denotes the probability of
Jetter ¢y to occur at an arbitrary position. The probability
that a substring ; = Gi1- .- W has been generated by
the component § is

bi(3;05) = { M Pess (07 motif .

if 7 is background

Hz;l Qg—ik
@

The log-tikelihood of the observed dataset X correspond-
ing to the above model is

L(Ly) =S log f(wii V) (3)

f==1

Formulating the problem as an incomplete-data problem
[5], each substring z; can be considered as having arisen
from one of the g components of the mixture model of
Equation 1. Therefore, we can introduce the parameters
zyy =1lor 0 that indicate whether z; has been generated
by the j-th component of the mixture. The EM algorithm
can be applied for the log-likelihood maximization prob-
lem by treating the Z;; a8 missing data. The following
update equations are ohtained for each component 712,5]

g3 (@ 6)

(t+1) — o e, Uy = 3
AT = Pz =1z ¥ Y= G
4 = HE R T oy w)
1 k3
,7;“’1) == z zg'ﬂ}. . (5
P = _.;.lif‘——» if § is motif
pltY) = L fﬁ:l Lk ,
§ = _.—él-——; if j is background
b=t 7t
(6)

where the elements c{,v (é‘; } correspond to the observed
frequency of letter oy at posision & of motif § occurrences
(at background j arbitrary positions) and can be formally
expressed as
8= Tim 24 i, 1) if § is motif '
&= S z§;+i) EKV=1 L, 1) if7is background

The indicator {a:x, [) denotes 2 binary function which

takes value 1 if the substring @; contains fetter oy at posi-
tion k (a4 = 1) and O otherwise.

Equations 4-6 can be used to estimate the parameter val-
ues ¥, of the g-component mixture model which maxi-
mize the log-likelihood function and ensure the conver-
gence of the algorithm to a local maximum of the like-
lihood function [5]. However, its great dependence on
parameter initialization and its local pature (it gets stuck
in local maxima of the jikelihood function) do not allow
us to directly apply the EM glgorithm to 2 g component
mixture of motifs model. To overcome the problem of
poor initialization, We next propose an gfficient combined
scheme of global searching over appropriate defined can-
didate motifs, followed by 2 local searching for fine tun-
ing the parameters of a new motif.

B. Greedy mixiure learning

Assume that a new component bgr1 (@i fg+1) that cor-
responds to 2 motif is added to a g-cornponent mixture
model f(xs;¥g). Then the resulting mixture has the fol-
lowing form

flzi Yyi1) = (1”9')Jc(mi§ @.g)*@¢g+l(mi§99+l); g

with ¢ € {0,1). The vector T ,41 specifies the new pa-

rameter vector and consists of the parameter vector Uy of
the g-component MIxture, the weight a and the parameter :
vector fg+1. This formnulation proposes a two-component |
likelthood maximization problem, where the first com- |
ponent is described by the old mixture Flzy; ¥y) and
the second one is the motif component Bgr1{Zis Bgr1)-
If we consider that the parameters Yo of f (23 Ug) ver
rmain fixed during maximization of LW gy1), the problem
can be treated by applying searching techniques 10 opti
mally specify the parameters & and 8,43 which maximize:
L(¥g41): ‘
As presented in [7], an EM algorithm can be appii
where the learning procedure is applied only t0 the mi

ing weight & and the probabilistic quantities pﬁl of the
newly inseried component. Foliowing Equations 57,1
next update procedures can be derived

ey a'{t) ¢’g~+—1(3«'i§ 9&3.1)
Tl T (1) o ) ISR
{1—-a )f(m?v ‘I"g) +a ¢g+1(mz‘339+1)( :

n .
) = 15
- i,9+17
=1
~g+1
gty = {ﬁg“] where piit = _ bk
g+l = P b Pie = 50 gl
21-;1 1,k

H

(1l

where

ks
sl __ (¢+1) )
Lk = E :zi,g+11(azk=l)-
f==1
8

The above partial EM steps constitute 2 simple and

method for local searching the maxima of £ ‘I’gﬁ.‘)l
However, the problem of poor initialization still rem®al
since this scheme is very sensitive to the propét inftia

tion of the two parameters & and Bg41. FOT this reas

4




global search strategy has been developed {7] which sub-
stitutes the log-likelihood function using & Taylor approx-
imation about a point ¢ == 44, and then using the resulting
estimate to search for the optimal 8.7 value, Therefore
we expand L{W,..,) by second order Taylor expansion
about ag = 0.5 and then the resulting quadratic fime-
tion is maximized with respect to a. It can be shown [7]
that, for a given parameter vector 8., a local maximum of
L(Tg41) near ag = 0.5 1 given by

: - i V) 1 (@4 0,
,Q@JWEZMgf@ !w+;“d& )y
il

1 6w 80P

; , (11
IS, Py D
and is obtained for ‘ '

§==_ }_ Z?‘:z'a(xi;ef) (12}

1
2 23 3z 0.y

i where ‘

o Fles T) = o (4 6,)
o br) = F@i %) + bgpr(ms 6,) 13)

The above methodology has the benefit of medifying the
problem of maximizing the likelihood function to become
independent on the selection of initial value for the mix-
ing weight a. The only problem is now the identification
of candidate values 8., 50 as to properly initialize the mo-
tif parameters and to conduct partial EM steps,

A reasonable approach is to search for candidates di-
rectly over the total dataset of substrings X = {z.},
{r = 1,...,n). For this reason we associate with each
substring z, = @,y ...y a position weight matrix 6,
“constructed as follows :

> (14)

L A o, = o
. - T T .

: 97. [p] ], where Py = { TS S
where the parameter ) has a fixed value in the range

0,1). Therefore, the log-likelihood £(8,) is determined

izes the right hand size of Equation 11.
he ‘drawback of the above approach is the increasing
complexity (O{n?)) of the search procedure, In or-
t0 reduce the complexity, we perform a hierarchical
g technique based on the notion of kd-trees f31,
sing a modified approach in order to deal with se-
iential symbolic data, In particular, using an appropriate
B2 Jtﬁflp'n based on maximum character variance, we apply
ritioning scheme that divides the original set X into
t Of C<< 7 clusters. The position weight matrices
u?‘-?,’-‘,’_?_,‘l“) corresponding to the centroids of the clus-
\Consersis substrings) constitute the candidate ma-

1 :%' (_Te—- L., C) used in global search (Equations

yselectingamong e 7 matrices e tnie which maxi

Table 1: The seed substrings in the artificial datasets

mo s T seed motifs ‘

P 23 A5 8 T8 9 30 1 1203 Wi 16 ¢ 45 19 b1
P'lw v e x v 8+ ERE § T 1 NGV I £ w
2|5 8 57t noaAcror oD Y DE DI C AT E p
30 R 1 ME RS T A G EDE ST 6NI NG
41w a1 1T w7 #E 61 A NT TR & M
508 1 8 wa ot E L ow AM 1 L E N A E M
6|lar1 5 T1 b1 5 x N A M1 L ENAGE M

Special treatment has also been given 1o avoid overlap-
pings with the already discovered motifs during the se-
lection of a candidate motif instance. This is achieved by
excluding, from the set C of consensus substrings (can-
didate motifs), those substrings that overlap with motif
occuITences.

11 EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of our method we
have conducted a series of experiments considering both
artificial and real sets of biological sequences. In all cases
the width W of the. motifs is considered constant, while
good values for the A parameter used to initialize the
candidate position weight matrices (Equation 14), were
found to be in the range [0.6, 0.8]. For all the experiments]
datasets we have also applied the MEME approach using
the available software from the corresponding Web site !,
Experiments with artificial datasets .

In the artificial datasets used in our experiments each mo-
tif has an associated randomly geperated seed substring”
and copies of the motif are created by randomly perform-
ing a number of substitutions (mutations) with a mutation
probability p,,. We created artificial sequences of vari-
able length (between 310 and 330) by randomly locating
(ensuring no overlapping) and mutating copies of six (6)
different seed substrings of length W' = 20 (Table 1), The
rest positions were filled with characters from the amino
acids (AAY alphshet (0 = 20). Asiliustated in rable
1 the last two. seed suhstrings (5 and 6} are exactly the
same in half of their length (from position 11 to 20). As-
suming three different values of the mutation probability
(om = {0,0.1,0.2}), three different datasets of twenty
(N = 20) artificial protein sequences were constructed,
The comparative results with the MEME algorithm have
shown the superiority of the greedy EM algorithm in dis-
covering all the incorporated motifs in the three datasets.
The MEME approach was unable to identify the motifs §
and 6 and considered them as one motif,

Experiments with real datasets
The real datasets used in our experiments were obtained
from the PRINTS database f1] which contains protein

"The Web site of MEME/MAST system version 3.0 can be found at
htip:/imeme.sdsc. eduimemetwebsitel




Table 2: Comparative results

Problem Oreedy EM MEME
Ace. number | Moy | ~TC Monf 1. 1C
PRO0OSS i 724434 | 1 | 43.2093
I ! 724550 1 1 56.9837
(W = 20) I | 721314 | mf ! 494185
16 seqs IV 16736821 | IV | 46.0057
of 207 AA VI B0AGES
6 motifs Vi 69,7300
VIE T 853407
VI [ 370378
PROS10 I 372183 1 1 | 343275
I 352812 | H 1 33.008)
(W = 10) I | 34.7850 | 1Y | 31.8698
6 seqs IV 133.0090 | 1v' | 30,0046
of 286 AA V2078
2 motifs VI 20E50)
PRG1268 1 597265 | 1 57.5664
I | 570125 7 1 56,2638
(W =17 Bl 587026 | T | 83.1302
19 segs v 57.5660 .
of 209 AA V[ 56.0634
3 motifs VI 3EIE35
VI [ 514565
VIIT 1"33.0620
X 33105
motif fingerprints. Three families from the PRINTS

database were selected, describing fingerprints for L5
ribosomal proteing (PRO0058), secretion pathway pro-
tein C (PRO0810) and pi-class glutathione S-transferases
(PRO01268). Each motif discovered was evaluated in
terms of the information content (I1C) [2], specified as

follows
W _ o
ICi=3%7% P log,

k=1 op el

(15)

where p} indicates the overall background probability of
letter ¢y in the dataset. This score becomes maximal if
the motif is well conserved.

Table 2 summarizes the comparative results obtained us-
ing the three protein families, The superiority of the

greedy EM algorthm over MEME is obvious not only

in terms of the greater number of real-motifs discovered
but also in terms of the degree of motif conservations as
indicated by the I scores. In all cases, the number of
the discovered motifs is also greater than the number of
motifs specified in the PRINTS database (Table 2). This
means that the proposed method has led to the discovery
of larger fingerprints (containing more motifs) and thus
constitutes a promising tool for biclogical sequence anal-
ysis.

IV. CONCLUSIONS

In this paper we have proposed a greedy EM algorithm for
solving the muitiple motif discovery problem in biologi-
cal sequences. Our approach learns a mixture of motifs

14

model in a greedy fashion by iteratively adding new com.
ponents, through a combined scheme of local and globaj
search which ensures fine tuning of the parameter vector
of the new. component. . )

The main difference with the MEME technique is the way
that the mixture models are applied. Although both meth-
ods treat the same problem through mixture learning us-
ing the EM algorithm, our approach is able to effectively
fit multiple-component mixture models, overcoming the
problem of poor initialization of EM that frequently gets
stuck cn local maxima of the likelihood function, This re.
sults in exploring the input dataset efficiently and the dis-
covery of greater number of motifs, The MEME scheme
of erasing motif occurrences, pruning in such way thé in-
put dataset, does not allow the parameters of the discov-
ered motifs to be reestimated, and thus future discovered
motifs cannot contribute to possible re-allocation of the
character distribution in the motif positions. As the re-
suits indicate, this drawback becomes sigrificant in cases
where they exist motifs that partially match, since these
motifs are recognized by the MEME algorithm as one
“composite” motif that cannot be further analyzed.
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