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ABSTRACT: The paper presents an application of the GARIC architecture to au-
tonomous vehicle navigation. This method constitutes a fuzzy neural approach that
maps fuzzy control rules into the architecture of a neural network and uses a reinforce.
ment learning scheme employing an adaptive heuristic critic to adjust the parameters
of the fuzzy variables. Since the original ‘GARIC formulation assumes continuous-
valued control variables, we have developed a modified scheme that can be applied
to problems assuming discrete control variables (as is the case with our motjon con-
trol problem). Experimenta) tests on difficult grounds comprising left and right turns
justify the effectiveness of the proposed method, since the vehicle learns to navigate

almost perfectly in only a few steps and exhibits very steep learning curves compared
to the pure reinforcement case,

1  Introduction

Reinforcement learning has been successfully applied to autonomous vehjcle navigation
In unknown environments. Previous attemnpts [4, 2, 3] assumed no prior knowledge
about the task and the system to be controlled. Therefore, based on ihe received
scalar reinforcement values, the learning system has to discover the most appropriate
actions corresponding to the state of the environment as it is perceived through a set
of sensors with which the vehicle is equipped [2].

In the present work, we have considered a fuzzy-neural reinforcement learning ap-
proach to the motion control problem, according to which prior knowledge is embedded
into the action network in the form of fuzzy rules whose parameters have to be tuned
while the vehicle operates, using the reinforcement values received by the environment.
One recently proposed architecture that is based on the mapping of a fuzzy expert
system into the architecture of a feedforward neural network and the subsequent ad-
justing of its parameters using reinforcement learning, is the GARIC {Generalized
Approximate Reasoning-based Intelligent Control) architecture [1]. One characteristic
of this approach is that it assumes continuous-valued outputs and, therefore, it is not
straightforward to apply it to control problems that are charscterized by a discrete
action space, as is the case with cur motion control problem.
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To achieve this, we have developed a modification to the original GARIC schemg,
Our approach considers an Action Selection Network (ASN) having a number of dis.
crete output units, instead of one continuous output unit as js the case with the origina)

The organization of thig paper is as follows. In the next section the principles of the
GARIC architecture are briefly discussed, while in Section 3 we present the propesed
modifications in order to dea) with centrol problems assuming a discrete actjon space,
Finally in Section 4, we provide experimental results from the application of the moq.
ified arhitecture to an autonomous vehicle navigation problem and particularly to the
control of the motion of ap autonomous vehicle so that it can move without collisions
through paths comprising left and right turns.

2 The GARIC Architecture

The Generalized Approximate Reasoning-based Intelligent Contro] (GARIC) architec
ture [1] results from the combination of neural networks, fuzzy sytems and reinforce-
ment learning. It consitutes a new method of learning and adjusting the parameters
of fuzzy systems using reinforcement values received from the environment.

The system is composed of two networks : the Action Selection Network (ASN) and
the Action Evaluation Network (AEN). The first network maps an input state vector
into an action, while the second (AEN) provides an evaluation of the current state.
There is also a Stochastic Action Modifier (SAM) which receives the recommended
actlon and an interng! reinforcernent signal and produces a final action that i actually
applied to the physical system.

network evaluates the action suggested by the ASN network apd produces an internal
reinforcement signal. In the learning phase this signal is backpropagated through the
network updating the weights of its links.

The architecture of ASN i¢ suitable for mapping the rules of a fuzzy expert system,
As it is shown in Figure 1, five layers are needed to implement the fuzzy inference
process, each of them performing one stage of this process. The nodes of the input
layer correspond to the linguistic variables of interest. The first hidden layer stores
the antecedent conditions of the fuzzy rules. The number of its nodes js equal to the
nureber of possible values of the linguistic variables. The operation that is performed s
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Figure 1: The architecture of the Action Selection Network

the fuzzification, i.e., the computation of the membership function values. Triangular
shapes for the computation of membership values are preferable as they are simpler
and more efficient.

The fuzzy rule bank is stored in the second hidden layer, thus, the number of nodes
s equal to the number of fuzzy rules. The softmin operation takes place at each node
providing the degree of applicability of each rule. The nodes in the third hidden layer
correspond to the consequent parts of the fuzzy rules. The process of defuzzification is
performed using the LMOM (local mean-of-maximum) method (1. Finally the output
layer contains as many nodes as is the number of the control variables. Each output
node is connected to the nodes of the second and the third hidden layer and computes a
continuous ouput value which corresponds to the action selected by the ASN network.
During the learning phase the fuzzy control parameters of the network are updated in
a reward/punishement fashion. :

Finally, the SAM uses the internal reinforcemnent (provided by the AEN) and the
recommended action F (suggested by the ASN) to stochastically generate an action
F' which is a Gaussian random variable with mean . This stochastic perturbation
results in better cxploration of the state and increased generalization ability.
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3 The Proposed Approach

In its previously described original formulation the GARIC architecture assumes that
the outputs of the ASN network take continuous values. In many cases there is the
limitation that the control action assumes values from » discrete set of possible actions.
One such case concerns the autonomous vehicle navigation application that is described
in the next section. In order to deal with the requirement of discrete output space,
we have developed a modification of the original GARIC architecture that mainly
concerns the manner in which the defuzzification process is performed. The proposed
architecture conciders an action selection network (ASN) having a number of discrete
output units, instead of one continuous cutput unit as is in the case with the original
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Figure 2: The modified Action Selection Network
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GARIC formulation. At each step only one of the output units can be in the ‘on’
state, and the corresponding action jg applied to the system. Furthermore, We are not
using a stochastic action modifier since at each step the strength of each fuzzy rule
contributes to the probability of selecting the corresponding action,

r'=r—elz) (1)

Equation (1) is different from the one used in (1], because we have to deal with ap
tmmediate reinforcement problem and not with » delayed one as is the case in (1], The
above internal reinforcement valuye Plays the role of the error which is backpropagated
to the network in order for the weights to be updated, Moreover, as we will s2e next,
it iz 2lss used in the learning phase of the action selection network.

3.1 The Modified ASN

The ASN implements an inference scheme based on fuzzy control rules by providing
at each step the control action that corresponds to the state of the system. It consists
of five layers, as in the original GARIC formulation, byt some of them operate ip 5
different way,

Figure 2 displays the proposed architecture for the ASN. The first layer is the
input layer consisting of the real-valued input vector that constitutes the state of tha
system. Each second layer unit corresponds to a possible linguistic value of an input
variable and computes the triangular-shaped membership function value 4 according
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ple) = 1« fe=d frefe~sp c) (2)

sL
0 otherwise

where ¢, sy and sg denote the centers, left spreads and right spreads of the linguistic
variables.

Each node in the third layer corresponds to a rule of the fuzzy rule bank and
receives the membership degrees of the values of the linguistic variables appearing
In the if part of the rule. The output w, of a node r provides the strength of the
corresponding rule and is computed through the softmin operation:

z:’ fufﬁ_kui
wr = "'“"""""‘"—""'““-‘——E{ €~ku; (3)
where the index 7 concerns all the nodes of the second layer that are connected to r.
The nodes in the fourth layer correspond to the possible output actions with inputs
coming from all the rules which suggest the particular action. The output of each node
¢ of this layer is computed as follows:

_ 2
= 1 + eu Zr(wr-ﬂ-s)

1 (4)

my

The above operation provides a way for computing the potential of action ; based on
the contributions w, of the rules suggesting that output, Obviously, the potential My
takes values in the range [-1,1].

The last layer (five) will have as many units as there are in the fourth layer (equal to
the nurnber of output actions). Each node s in this layer receives the potential m; from
the previous layer and, using the Boltzmann distribution, computes the normalized
probability that the corresponding action is selected:

em;/T
pi = e ()

where T is the temperature of the system. Random selection using this probability
vector provides the control action « that js applied to the system.

Initially, the value of the parameter T is large, having all the output actions with
almost the same selection probability (when T — oo, e™/T 3 independently of the
action i}. Thus, in the first steps the stochastisity of the network js high investigating
better every possible action. As learning proceeds, the temperature value gradually
decreases, decreasing at the same time the stochasticity and biasing the probabilities
towards selecting the actjon with the greatest potential,

3.2 Training of the ASN

The objective of learning in the ASN s the adjustment of the network parameters
which are the centroid, left and right spreads corresponding to each linguistic valye.




sponding parameters are appropriately updated. This evaluation g used to update
the centers and the spreads of the linguistic variables which are included in the fuzzy
rules suggesting the selected output actjoq . Considering only the selected output
@ and traversing the network backwards, the learning equation for the parameter o
(where may be any of the ¢, SR, §1} can be written:

3

om,, O, Suw,
Z =

AC,Q = nr “'-"——-aso =7 4 awr “g;—
r = Omg O, B
I o

with 7 being the learning rate of the ASN. Clearly, all the above derivatives can be
computed locally at each node using the corresponding equations during the forward
Pass through the network.,

From equation (4), it can be found that the derative Omg /6w, is computed as:

== g(l +ma)(1 = m,) (7)

where the index r concerns every ryle Suggesting output o, It i clear from the above
equation that the derivative of m does not depend on . Moreover, using equation (3),
it can be shown that the partial derivative of w, with respect to Hj 1s the following:

Jw, _ e"&“i(l + k(w, — #5))
aru.? h Es' e'—é“i

Finally, Table 1 displays the derivatives of the membership values with respect to
the centers and left and right spreads of the values of the linguistic variables ysed i
the fuzzy rules, Using the derivatives provided from equations (7), (8) and Table I,
equation (6) can be ysed at each step io compute the nessecary updates of the network
Parameters,

(8)

4 Autonomous Vehicle Navigation

We have applied the modified GARIC architecture to an jnterestmg control problem,
concerning the collision-free autonomous navigation of 2 vehicle in various uknown
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Figure 3. The Positions of the sensors

grounds, We Previously attempted to deal with this problem using pure connectionist
reinforcement learning schemes assuming no a prior knowledge and our objective here
is to investigate the benefits from using a fuzzy neura) approach.

The experimental study of the problem has been performed through simulation ys.
ing an appropriate graphical interface. The vehicle perceives its environment through
the use of a number of sensors. The number and the configuration of the sensors play
& very important role in the control task. On the ope hand they cannot be too many
as the purpose is to have small knowledge of the.environment, and on the other
hand their pumber must be sufficient to provide the necessary information abouyt the
vehicle’s environment.

Nine sensors seem to he zdequate b5 describe bhe state of the vehicje at each time

Ingtant. As can be observed from F igure 3, four sensorg are placed at the front, two

by each sensor is measured by a value in the range [0,.,. ,27] and the nine integer
values provided by the sensors constitute the input state of the system.

The vehicle is able to perform one of fve possible actions jn respouse to the current
state, These driving commands are:

A ¢ Ahead

R30 : 30 degrees right
K80 : g9 degrees right
Lib : 30 degrees left
Leo . sp degrees left

The evaluation of » state should be based on how probable it is for the vehicle to
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§
=y (9)
where ¢ take vajues from the set {3,..., 27}. The values & =0,1,2 indicate that the
specific sensor § has detected an obstacle right in front of it, while larger values of &
correspond to obstacles at » longer distance, ‘If at least one of the SeNSors ¢ satisfies
the condition §i=0,1,2 the global reinforcement assumes a zero valye.,

In order to map the task of vehicle navigation into the action network, we have
to introduce fuzzy linguistic variables together with fuzzy rules being able to describe
the principles that the vehicle must respect for collision-free savigailon. We have
considerad fous linguisiic variables, the same for each sensor :

VE : VeryFar  [28...21)
FA : Far [21...14]
NE : Near [14...7]
VN ' Very Near [7...0]

The expressions next to the four linguistic variables describe the initia] range of their
values, which wil] be adjusted during the learning phase of the action network,

Ten rules are used to control the motion of the vehicle, These rules are shown in
Table 2. The fist two rules are able {o move the vehicle forward while the next four
suggest right steering and the final four rules left steering, Each numbey following the
linguistic variahles in the fuzzy rules corresponds to one of the sensors. For example,
the third rule (R3) means that if the third sensor detects 5 near obstacle, and ihe

seventh detects very far obstacle, then the vehicle must burn 30 degrees pight.
<, then g g
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Figure 4: A typical ground

From the previous specifications, we eap determine the size of each layer in the
ASN. There are ¢ inputs, 36 units in the second layer (equal to the number of linguistjc
variables), 10 units in the third layer (equal to the number of rules), 5 unjts in the
fourth layer (equal to the number of possible actions) and, finally, 5 units in the
last layer too, F igure 2 displays the architecure of thig network, where the necessary
connection weights corresponding to rule R3 are also depicted. In onp experiments,
the softmin parameter & Was set equal t0 0.1 and the valye of the learning rate 7 was
0.05 for the ASN and 0.2 for the AEN. The initial value of T was 0,05 and if 4 cycle
was achieved with length greater than 450 steps it was set equal to 0.005 Finally, the
AEN network contained one hidden layer with g units and one output upit.

4.1 Experimental Results

Each experiment consisted of a sequence of cycles, where each cycle began with the
vehicle at the same initial state and énded with a fajlure signal. At the start of
each experiment the vehicle was placed at » randomly selected pesition, Statistical
resulis of the effect]veness of learning during each experiment were obtained as follows.
For smoothing purposes, at the end of each cycle an average value of the number of
steps per cycle was computed by averaging over all cycles from the begining of the
experiment up to that point. This representation aims at giving an overall view of the
progress of learning without being affected by random fuctuations, Of course, under
this style of presentation, the contribution of high scores is not readily visualized, sipce
it slowly affects the average value,

To this end, a large number of grounds were tested using both the GARIC approach
and pure reinforcernent neural network techniques without fuzzy rules snd assuming
00 2 priori knowledge about the task [2, 3], In the latter case, since the rules had to be
discovered by the learning system, learning'was very slow. In the initia) stages, when
the network was ‘naive’, the behavior of the vehicle was very unstable. The vehicle
could not stay on the road before significant training was accomplished, However,
at the end the vehicle exhibited good behavior, j.e, long cycles were accomplished,

but after 5 large pumber of cycles. On the contrary,-in the GARIO approach, due
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Figure 5: Performance of the vehicle using: (a) pure reinforcement learning and (b)
the proposed GARIC approach

to reach almost perfect (coHssmmfree) behavior, while the performance of the pure
reinforcement method js improving with a very small rate.
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