
1

A Bayesian Ensemble Regression Framework

on the Angry Birds Game
Nikolaos Tziortziotis, Georgios Papagiannis and Konstantinos Blekas

Department of Computer Science & Engineering, University of Ioannina, Greece

email: {ntziorzi,gpapagia,kblekas}@cs.uoi.gr

Abstract

In this article we introduce AngryBER, an intelligent agent architecture on the Angry Birds domain

that employs a Bayesian ensemble inference mechanism to promote decision making abilities. It is based

on an efficient tree-like structure for encoding and representing game screenshots, where it exploits its

enhanced modeling capabilities. This has the advantage to establish an informative feature space and

translate the task of game playing into a regression analysis problem. A Bayesian ensemble regression

framework is presented by considering that every combination of objects’ material and bird type has

its own regression model. We address the problem of action selection as a multi-armed bandit problem,

where the Upper Confidence Bound (UCB) strategy has been used. An efficient online learning procedure

has been also developed for training the regression models. We have evaluated the proposed methodology

on several game levels, and compared its performance with published results of all agents that participated

in the 2013 and 2014 Angry Birds AI competitions. The superiority of the new method is readily deduced

by inspecting the reported results.

Index Terms

Angry Birds game, Tree-like structure representation, Bayesian linear regression, Multi-armed bandit

problem

I. INTRODUCTION

Physics-based simulation games such as Angry Birds, have received considerable and increasing

attention during the last years. They are based on a simulator that has complete knowledge about the

physical properties of all objects of the game world. This makes these games quite realistic, as they are

able to simulate each move and its consequences to the real world with high precision. Despite the fact

2

that these games are seemingly simple at a first glance, that is far from true. The extremely large or infinite

number of the available actions, makes the particular games demanding and simultaneously attractive. The

large number of moves stems from the fact that small deviations may result in differences in the outcome

of the physics simulation. At the same time, it is really hard to predict the actions outcome in advance

without an explicit knowledge of the games physical properties. In addition, it becomes even harder in

the case where the game scenes can only be observed through a vision system, which corresponds to

how humans are perceiving these games. Consequently, it becomes clear that a number of issues have

arisen which demand new techniques that can investigate the fundamental physical game processes, so as

to establish efficient AI agents which will be able to play as good or better than the best human players.

Angry birds was first launched in 2009 by Rovio(TM), and since then it has become one of the most

popular games. The objective is to shoot birds using a slingshot in a way that all pigs are killed with the

fewest number of used birds. Pigs are usually protected by complicated structures consisting of various

types of building materials that must be destroyed. Several types of birds are available, with some of

them being more effective against particular materials. At each time step, the point where the bird is

released from the slingshot must be selected. In addition, the player has to decide about the exact tap

time during the flight of the bird where its optional special feature will be activated rendering the bird

more effective. The score (or return) achieved after each shot is calculated in terms of the number of the

killed pigs and unused birds, as well as the extent of the destruction of each structure. The fewer birds

are used as well as the more damage to the structures achieved, the higher the received score (or return).

Due to its nature (e.g. large state and action spaces, continuous tap timing, various objects’ properties,

noisy object detection, unpredictable action effects, etc.), Angry Birds constitutes a really challenging task

for the development of intelligent agents. At the same time, the Angry birds competition1 (AIBIRDS

[1]) provides a very attractive venue where various AI agents compete with each other and evaluate

their performance by playing in unknown game levels. A basic game platform [2] based on the Chrome

version of the Angry Birds is provided by the organisers, incorporating a number of available components

such as computer vision, trajectory planning and game playing interface. It should be stressed that the

aforementioned platform has also been used for the purpose of developing our proposed agent.

1https://aibirds.org/

3

A. Related work

During the last two years, a number of interesting approaches have been proposed which are focused on

the development of AI agents with playing capabilities similar to those exhibited by expert human players.

These works rely on various AI techniques, such as logic programming, qualitative reasoning, advanced

simulation, structural analysis, analysis of predicted damage, and machine learning methodologies.

In [3], [4], [5], the qualitative spatial representation and reasoning framework of [6] has been adopted

for extracting relationships among scene objects. In [3], an extension of Rectangle Algebra [7] has been

proposed for the determination of structure properties, such as its stability or the consequences after some

external influences act. On the other hand, in [4] a qualitative physics method has been presented for the

examination of the structure properties. In these two works, the action selection was made by measuring

all possible shots in terms of a heuristic value function which depends on the shot’s influence on the

structures. On the other hand, in [5] a decision making under uncertainty scheme was applied for selecting

of the most appropriate target according to an utility function. The main advantage of the aforementioned

works is their ability to analyse the building blocks that consists the structure of a game scene, according

to a number of factors, such as stability, destruction impact, connection points etc.. Therefore, they are

able to discover the weaknesses of a building block as well as the destruction induced on the structure

due to its demolishment.

An alternative work has been presented in [8] that employs the Weight Majority algorithm and the Naive

Bayesian Network for selecting the most appropriate shot at each time step. However, a disadvantage

on this scheme is that the constructed feature space is extremely large, since it incorporates a large

amount of information about the game scene. In addition, it requires a huge amount of training data to

be gathered in advance by using a number of different playing agents. Also, an extra effort is needed so

as to manually label input data as positive (shots in winning games) and negative (shots in losing games)

examples. Another work has been described in [9] based on a model-based methodology for learning the

physical model of the world. For this reason, a number of trajectories are evaluated in the approximated

model by performing a maximum impact selection mechanism. Its main characteristic is its ability to

consider a large number of different trajectories and to the most appropriate one.

Finally, two quite similar agents that won the 2013 and 2014 AIBIRDS competitions are presented in

[10] and [11], respectively. The specific agents combine a number of different strategies, some of which

are simple, and select the most appropriate one according to the structure of the game scene. In this way,

as each level is quite different, it has been shown that trying different strategies is much more possible

4

to discover the strategy that suits quite well to a specific level.

B. Proposed Scheme

In this work, we propose a Bayesian ensemble regression framework for designing an intelligent agent

for the Angry Bird domain. The novelty of the proposed methodology lies in the construction of an

informative encoding scheme of the game scenes, as well as its ability to make accurate predictions and

measure the effectiveness of each possible target through a compact ensemble model. These aspects are

very important since they manage to build a low complexity agent, rendering it applicable in a real-time

game such as Angry Birds.

Our methodology consists of the following two building blocks:

• Firstly, a novel tree-like structure is proposed for mapping scenes of game levels, where the nodes

represent different material of solid objects. More specifically, each node of the tree depicts solitary

or merged adjacent objects, which are constructed by the same material. This scene representation is

informative as incorporates all the necessary knowledge about game snapshots, and simultaneously

abstract so as to reduce the computational cost accelerating the learning procedure. The specific

tree-like representation allows the construction of an efficient and simultaneously powerful feature

space that can be used next during the prediction process.

• Secondly, an ensemble learning approach [12] is designed where every possible pair of ‘object

material’ - ‘bird type’ has its own Bayesian linear regression model for the estimation of the expected

return. In this way, the prediction ability of our scheme becomes much more accurate as it is able to

distinguish possible associations between different types of birds and objects’ materials. An ensemble

integration framework based on the UCB algorithm [13] has been employed, using the predictions of

every regressor to obtain the final ensemble prediction. After each shot, an online learning procedure

is executed in order to adjust the model parameters of the selected regressor.

As experiments indicate, the proposed agent offers both flexibility and robustness, achieving superior

modeling solutions. Additionally, our agent is compared with the results of all teams participated in the

last two AIBIRDS competitions, as well as with the naive agent, which is a sufficient baseline evaluation

criterion. In all cases, the provided experimental results prove the superiority of our solutions.

The remainder of this paper is organised as follows. The general framework of our methodology is

described step-by-step in Sections II and III. Section II presents the proposed tree-like structure, the

feature extraction and the feasibility property of the tree nodes. Furthermore, Section III describes the

decision making mechanism, which is composed by a Bayesian ensemble scheme of linear regression

5

models. In addition, the learning process for updating the model parameters is also discussed. In Section

IV, we assess the performance of the proposed methodology reporting results obtained by applying our

method to levels of the ‘Poached Eggs’ game set. Finally, in Section V we summarize the conclusions

of this paper and give suggestions for future work.

II. KNOWLEDGE REPRESENTATION

The proposed methodology is focused on describing the game scenes with an appropriate and useful

structure so as to build an efficient state space representation. In addition, a decision making mechanism

has been designed using a Bayesian ensemble regression framework that offers robustness and adaptability

to dynamically changing situations. This is quite important as the levels in the Angry Birds are completely

different to each other, while each one of the shots produces extremely different game scenes. Our work

is based on the Angry Bird Game Playing software (version 1.32) [2].

Figure 1 illustrates briefly the main building blocks of the proposed approach. The whole procedure is

repeated after each shot, every time a bird is available at the slingshot. In the following, a step-by-step

description of the proposed agent architecture is presented:

1) Construct the tree-like structure of the game scene and establish a feature space.

2) Examine the nodes feasibility in terms of their ability to be reached (possible targets).

3) Predict the expected return of each feasible node (possible target) according to a Bayesian Ensem-

ble Regression scheme, which takes into account the type of the object’s material that corresponds

to the node and the bird available on the slingshot. The most appropriate node is then selected as

target.

4) Tap timing selection and perform shooting.

5) Adjust the model parameters of the selected regressor using an online learning procedure.

In the rest of this section as well as in the next one, we meticulously describe the specific parts of our

methodology.

A. A tree-like structure representation of game scenes

The computer vision module of the AIBIRDS competition platform is used to analyse the video game

scenes. It provides a list of all objects, O, in the scene and identifies information about their type, location,

and bounding box. The particular vision component can recognize the next seven (7) types of objects’

materials:

6

1. Tree structure construction

2. Feasibility examination

3. Prediction: expected
reward calculation

4. Target and tap time selection

5. Regression model pa-
rameters adjustment

Fig. 1. Flow diagram of the proposed method.

Ice/Glass (I) Wood (W)

Stone (S) Rolling Stone (RS)

Rolling Wood (RW) Pig (P)

TNT (T)

The state space representation of the proposed method is based on the construction of an efficient

tree structure in an attempt to arrange and manipulate all the scene objects and their attributes into a

compact structure. It consists of a number of nodes that represent different spatial objects of the scene

and a number of edges between them that signify their relations.

Algorithm 1 sketches the main steps for the construction of the proposed tree structure representation.

The proposed tree structure is created through a three-stage process. Firstly, the tree nodes that correspond

to the objects of a game scene are created and are positioned at the corresponding level. A complete

tree-like structure of the game scene is designed by scanning a snapshot in the horizontal direction

starting from the ground (level 1). Each time a different object is encountered, a new node is added to

an appropriate level of the tree. After the creation of a node for each object in a game scene, a virtual

root node is created at the highest level above all the other nodes.

After building the initial tree-like structure, a tree reduction procedure is performed. During this phase,

we traverse the tree and merge nodes of either adjacent or same levels, in a recursive manner. Merging

is done between nodes that have the same material type, are (approximately) adjacent and whose their

7

Algorithm 1: The Tree Structure Construction Algorithm
Input : A list of the structure objects, O

Output : The tree structure, T

Initialize: k = 1; T = ∅

begin

1. Complete tree-like structure construction phase.

while O 6= ∅ do

Discover the object with the lowest center to the ground, o ∈ O;

Draw a straight horizontal line which passes through its center;

Find the separated objects intersected by the line, Ok;

Sort Ok according to their positions at x-axis;

Insert Ok at level Tk, where each object o ∈ Ok is added as a separated node;

O = O \ Ok;

k + +;

2. Add virtual root node at the highest level k;

3. Reduction phase: Merge nodes of the same or adjacent levels according to type and shape

properties;

4. Create edges between tree nodes;

5. Extract features from all tree nodes;

return T ;

(vertical or horizontal) sides are of equal length. More specifically, two nodes are considered to be

approximately adjacent if the distance between their sides is equal or less than 5 pixels in the actual

game scene. Obviously, the merging procedure is not allowed for the object’s type of pigs and TNTs.

As it is expected, the merging procedure is capable of significantly reducing the size of the tree and

therefore the computational cost of the decision making process, as it produces less possible targets for

shooting. An example of this phase is shown in Fig. 4 for the game scene of Fig. 3, where the number of

nodes is reduced from 30 (initial phase) to 18. In this example, the complete tree nodes s71, s72, s81, s82

that belong to the same or adjacent levels of the complete (left) tree, are merged into a single node (s51)

8

Root

s91

s81

s71

s61

s51 s52 s53

s41

s31

s21 s22

s11 s12 s13 s14 s15Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

Fig. 2. The proposed tree-like structure consisting of 16 nodes at the first game level.

in the reduced (right) tree. Similarly, nodes s11, s12 and s21 are merged together.

It must be noted that in the recursive procedure the direction (vertical or horizontal) for merging nodes

does not play any significant role in most of cases, since it leads to the same final solution. However, in

our experiments priority is given to the vertical direction, as we start merging nodes of adjacent levels.

More specifically, nodes of adjacent levels (vertical direction) are merged first and in the subsequent

step we merge nodes of the same level (horizontal direction). The whole procedure is repeated until no

merging can be performed among tree nodes, see for example Fig. 3.

Finally, after the tree reduction phase, the complete tree of the game scene is designed. More specifi-

cally, edges among the tree nodes of different levels are created, declaring a relationship among them. In

the tree-like structure, an edge between two nodes is created in the case where a segment of an object

represented by a node lies above an object represented by a node of a lower level. At the same time,

there must not be interfered an object represented by another node between them. In this way, a node

is possible to have more than one parents, as objects of more than one nodes of higher levels can be

located above the objects of that node. For example, in Fig. 2, node s41 has three parents as the objects

represented by nodes s51, s52 and s53 are located above it in the game scene. It is also worth noting that

the nodes that correspond to roof objects, i.e. objects that do not have any other object above them; are

9

(a) (b) (c) (d)

Fig. 3. A step-by-step representation of the tree reduction procedure at the 16th level of the ‘Poached Eggs’ season. Each

bounding box illustrates an individual object or a group of adjacent objects of the same material, and corresponds to a tree

node. (a) Tree nodes that corresponds to the initial tree-like structure. (b) At the second step, the tree nodes of adjacent levels

(vertical direction) are merged. (c) At the third step, the tree nodes of the same level (horizontal direction) are merged. (d)

Finally, the tree nodes of adjacent levels are concatenated if it is possible. The tree reduction phase is completed since no nodes

are available for concatenation.

connected immediately with the root node. See for example nodes s11, s15 and s91 in Fig. 2. Therefore,

the proposed tree-like structure provides a convenient and attractive layout of the objects relationships,

as well as a natural way for handling complex objects.

B. Feature Extraction

The tree-like structure framework allows us to extract quantitative features for each node s of the tree.

These features can be used during the prediction process and are summarized as follows:

• x1(s): Individual weight calculated as the product of the object’s area Area(s) with coefficient cs

whose value depends on the material of the object, i.e. x1(s) = Area(s)× cs. All types of objects

have the same value for this coefficient, cs = 1, except for Pig (P) and TNT (T) which have a much

larger value (cs = 10).

• x2(s): Distance (in pixels) to the nearest pig, normalized to [0, 1] dividing the original distance

by a threshold value for the maximum distance (100 in our case).

• x3(s): Cumulative weight calculated as the sum of individual weights of all ancestors P(s) of the

node s in the tree, i.e. x3(s) =
∑

s′∈P(s) x1(s
′).

• x4(s): Distance from the farthest ancestor, normalized to [0, 1] by dividing with a threshold value

for the maximum height (e.g. 200).

10

s11 s12 s13 s14 s15 s16 s17

s21 s22 s23

s31

s41 s42

s51 s52 s53 s54 s55 s56

s61 s62

s71 s72

s81 s82

s91 s92 s93 s94 s95

Root

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

s11 s12 s13 s14 s15

s21

s31

s41 s42 s43 s44 s45

s51

s61 s62 s63 s64 s65

Root

(a) (b)

Fig. 4. Tree-like structure represention at the 16th level of the ‘Poached Eggs’ season, before and after tree reduction phase.

(a) The initial tree-like structure (Fig.3(a)). (b) The final tree-like structure (Fig.3(d)).

At this point, it is useful to present some technical information about the calculation of the above

features. First of all, the objects weights used for the calculation of the individual weight, x1(s), have

been selected empirically. A larger coefficient value (cs = 10) is considered for both the Pig and TNT

objects, in order to distinguish objects of these types with slightly different areas. For example, in Fig.

3, the areas of the pigs are nearly the same and thus, a clear distinction among them is not evident if

a small coefficient value is used, such as cs = 1. However, this is not the case with the other object

materials, due to the merging procedure that is taking place during the construction of the tree-like

structure. Moreover, the areas of the other object materials that encountered in a game scene presents

much more diversity, in contrast to that of the Pig or TNT objects. Furthermore, it should be noted

that the euclidean distances among the objects are calculated based on their centers. Finally, different

threshold values for the maximum height and the maximum distance from a pig have been considered.

In this context, our empirical analysis has shown that the above mentioned threshold values are the most

suitable ones.

The above feature extraction strategy constructs an abstract but powerful feature space for all possible

targets of a game scene. The proposed features are mostly spatial and concern information about geo-

11

metrical, directional and topological properties of all tree nodes. An example can be seen at Table I that

represents the features values of all 16 nodes of the tree illustrated in Fig. 2.

TABLE I

THE FEATURE VECTORS ALONG WITH THE FEASIBLE AND TYPE LABELS FOR THE 16 TREE NODES OF FIG. 2.

Features

x1(s) x2(s) x3(s) x4(s)

Level Type
Personal

Weight

Pig

Dis-

tance

Cumulative

Ancestors

Weight

Farthest

Ancestor

Dis-

tance

Node

s11 1 W 78 0.818 0 0

s12 1 W 318 0.501 2467 0.65

s13 1 W 188 0.660 5532 0.64

s14 1 W 318 0.501 2467 0.645

s15 1 W 78 0.818 0 0

s21 2 I 156 0.504 2623 0.61

s22 2 I 130 0.504 2623 0.61

s31 3 W 156 0.341 2467 0.48

s41 4 W 371 0.151 2096 0.385

s51 5 W 318 0.164 416 0.36

s52 5 W 72 0.082 556 0.35

s53 5 W 318 0.198 416 0.36

s61 6 P 140 0.170 416 0.32

s71 7 W 182 0.431 234 0.1

s81 8 S 156 0.521 78 0.065

s91 9 W 78 0.651 0 0

C. Feasibility examination

The next step to our approach is to examine each node of the reduced tree-like structure in terms of its

possibility to be reached (possible target). Reachability depends on the location of the material objects

and stable obstacles.

Infeasible situations can happen in cases where an object is protected by a sheltering structure, making

it not directly reachable for a bird, see for example Fig. 5(b). Moreover, it is possible for some stable

obstacles in the path such as hills, to block a target (see for example the direct shot at Fig. 5(a)). Therefore,

an examination step is initially required at each node of the tree so as to ensure that it is reachable.

12

(a) (b)

Fig. 5. Tree’s node feasibility examination. (a) Represents a feasible node (pig) as it is reachable by at least one trajectory.

The direct shot is infeasible due to the fact that a hill is interposed between the slingshot and the target. (b) An infeasible node

(wood) is represented as it is not directly reachable due to the tree-like structure.

Two different target points are considered for each tree node. The first one corresponds to the center

of the left outer side and the second one to the center of the upper side of the node. Given a target

point in the game scene, two different trajectories are returned by the trajectory planning module, which

is provided by the AIBIRDS competition software platform: a) a direct shot (angle <= 45◦) and b) a

high arching shot (angle > 45◦). Nevertheless, as the number of possible trajectories is infinite (infinite

release points), a larger variety of trajectories can be also examined, which may lead to more effective

shots2. In this way, for each one of the two possible target points of a tree node, we examine the above

two mentioned trajectories in order to estimate the feasibility property of the node.

In the case where one of the possible targets (left or upper node side) of a node can be reached

directly from at least one of the available two trajectories, the specific node is labelled as feasible (Fig.

5(a)). Otherwise, it is labelled as infeasible (Fig. 5(b)) and thus, it cannot be treated as a possible target.

Roughly speaking, a shot is supposed to reach the target point directly, if its trajectory does not intersect

any material object or stable obstacle located leftmost of the target object (see high arching shot in Fig.

5(a)). If both targets are reachable by at least one trajectory, priority is given to the target that corresponds

to the longest side. Nevertheless, in the case where both sides -targets- of a node are of equal length,

priority is given to the left side. Additionally, if both trajectories are accepted for the selected target,

2This was suggested by anonymous referees.

13

priority is given to the direct shot due to its effectiveness.

However, there are some special cases which are treated in a different way.

• In the case of the white bird a node is considered as feasible if its upper side can be reached directly

by the bird’s egg (Fig. 6), as opposed to the other types of birds.

• A tree node that represents a pig or a TNT is considered to be feasible even if the corresponding

pig or TNT is protected by material objects, which form its sheltering structure. This is not true

only in the case where a steady structure (e.g. hills) protects them. This is adopted as the pigs and

TNTs are protected by other materials in most of the cases. In the opposite case, the agent will

mainly focus on the destruction of the structures, without taking care of the pigs than remain alive

and protected in a game scene.

• Finally, the nodes that correspond to objects which are located on the right of the rightmost pig,

rolling stone or rolling wood, are characterised as infeasible irrespectively of being reachable or not.

After the feasibility examination phase, we end up with a set which contains only the tree’s feasible

nodes, denoted as F . Only the nodes that belong at F (s ∈ F) are considered as possible targets,

thereafter. For example, after the feasibility examination process, the feasible nodes of the tree-like

structure presented in Fig. 2 are F = {s11, s12, s41, s51, s61, s71, s81, s91}.

III. DECISION MAKING AND LEARNING PROCESS

The feasible nodes of the tree-like structure constitute a set of possible targets of the scene, i.e. points

to be hit by a bird. In our approach the task of target selection has been made through an ensemble

regression framework. Specifically, as shown previously, each feasible node s ∈ F is described with a

feature vector x(s). We assume that during the game a sequence of game scores t resulting from each

shot are observed. This can be seen as the target attribute that can be modeled using a linear regression

scheme of the form:

t = w>φ(x(s)) + ε =

M∑
j=1

wjφj(x(s)) + ε. (1)

In the above equation, M is the order of the regression model and w = (w1, . . . , wM)> is the vector of

the M unknown regression coefficients. According to this equation, the score is represented as a linearly

weighted sum of M fixed basis functions denoted as φ(x(s)) = (φ1(x(s)), φ2(x(s)), . . . , φM (x)(s))>.

The error term, ε, is assumed to be zero mean Gaussian with variance 1/β, i.e. ε ∼ N (0, β−1).

To construct the M basis functions we have considered the following strategy: First a number of

samples (feature vectors) x(s) has been randomly collected from various game scenes. More specifically,

14

a random agent has been used in a number of different levels, producing a variety of different game

scenes. This agent selects a possible object material as target in a uniformly random way. Afterwards,

various features vectors are extracted by using the game scenes, produced after the execution of a random

shooting. Then, an hierarchical agglomerative clustering approach has been performed to the collected

features creating an hierarchy of data clusters. In our scheme the standardized Euclidean distance was

used as a criterion for merging pairs of clusters. At the end, a number of M clusters were selected from

the agglomerative tree whose statistics were used for building the M basis functions and creating a kernel

space. In our approach, we have considered normalized Gaussian kernels of the form:

φj(x(s)) = exp

(
−

D∑
r=1

(xr(s)−mjr)
2

2σ2jr

)
, (2)

where D represents the size of feature space. Also, mj = (mj1, . . . ,mjD) and σ2
j = (σ2j1, . . . , σ

2
jD) are

the mean and variance of the jth cluster, ∀j = 1, . . . ,M . It must be noted that the number of clusters

M was not so crucial for the performance of the method. For our experiments, a different number of

clusters M (e.g. M ∈ {75, 100, 125, . . . , 250}) have been examined. Through our analysis it has been

shown that M = 150 clusters are enough for the efficient representation of the state space. Moreover,

we have noticed that having a reasonable number of clusters does not affect the online performance of

our agent and keeps the complexity of the prediction process at reasonable levels.

Now consider a sequence of n input-target pairs of observations {(x1(s), t1), . . . , (xn(s), tn)}. Given

the set of regression model parameter values {w, β} we can model the conditional probability density

of targets tn = (t1, . . . , tn) with the normal distribution, i.e.

p(tn|w, β) = N (tn|Φnw, β
−1In) , (3)

where the matrix Φn = [φ(x1(s)),φ(x2(s)), . . . ,φ(xn(s))]> of size n×M is called design matrix and

In is the identity matrix of order n.

An important issue when using a regression model is how to define its order M (number of basis

functions). Models of small order may lead to underfitting, while large values of M may lead to

overfitting. One approach to tackle this problem is through the Bayesian regularization framework [14],

[15]. According to this scheme, a zero-mean (spherical) Gaussian prior distribution over weights w is

considered:

p(w|α) = N (w|0, a−1IM), (4)

where the hyperparameter α is the inverse variance that controls the strength of the prior and IM is the

M -order identity matrix. Thus, the posterior distribution of the weights w is also Gaussian and can be

15

obtained as:

p(w|tn, α, β) = N (w|µn,Σn) , (5)

where

µn = βΣnΦ>n tn and Σn = (βΦ>n Φn + aIM)−1, (6)

are its mean value and the covariance matrix, respectively.

As mentioned previously, we are interested in making predictions for the score value. Suppose we

have observed a sequence of n score values tn = (t1, t2, . . . , tn). According to the regression model,

when examining a feasible node q ∈ F of the tree (possible target) that has a feature vector x(q), we

can obtain the posterior predictive distribution of its score tq which is also Gaussian:

p(tq|tn, α, β) = N (tq|µ>nφ(x(q)), σ2nq) , (7)

where

σ2nq = β−1 + φ(x(q))>Σnφ(x(q)). (8)

This prediction can be used to evaluate a possible target of a game scene by calculating the quantity:

t̂q = µ>nφ(x(q)) . (9)

However, the decision about which is the optimum node to be selected as target depends on the material

type of objects represented by a node, as well as the bird that is available to the slingshot. Hence, a

separate regression estimator is used for every pair of material type-bird, so as to enhance the accuracy

of the decision process. In our approach, we have applied an ensemble scheme of regressors, where

every combination of material and bird type was assumed to have its own parametric regression model.

Therefore, since there are 7 objects× 5 birds = 35 combinations, we have 35 different linear regression

models with parameters θl = {wl, βl}, l = 1, . . . , 35. Every time only a subset of these regressors become

active based on the type of bird that is available on the slingshot and the type of object’s material found

in the game scene. The feasible nodes, q ∈ F , of the tree are then evaluated by calculating the predicted

reward value, t̂q, according to Eq. 9. This is achieved using the regression model f(q) that corresponds

to the pair of object material of node q and bird type.

The final step before generating a shot is to select the target among all feasible nodes, q ∈ F , of

the constructed tree. In our approach, we have approach the ensemble regression model as a multi-

armed bandit model. The trade-off between the need to obtain new knowledge and to exploit the already

obtained knowledge to improve performance is one of the most fundamental problems encountered in

16

nature. In this direction, we have employed the Upper Confidence Bound (UCB) strategy [13] which

offers a balance between exploration and exploitation dilemma during learning process. According to the

UCB framework we maintain the number of times nf(q) that each arm (type of regressor, f(q)) has been

played. The decision procedure is determined by maximizing the following function:

q∗ = arg max
q∈F

{(
µf(q)
nf(q)

)>
φ(x(q)) + C

√
2 lnN

nf(q)

}
, (10)

where N is the total number of plays so far (number of shots) and C is a tuning parameter of the UCB

decision making process that is used to balance exploration and exploitation (during our experiments we

have used C = 3000). Intuitively, the UCB framework manages to balance between selecting actions

with good belief (targets with large reward prediction) and/or actions which have large uncertainty (small

nf(q)).

A. Tap Timing

After the selection of best among the tree’s feasible nodes (F), the tap timing procedure is executed.

Using the trajectory planner component of the game playing framework the corresponding tap time

is calculated in advance and a tapping is performed right before the estimated collision point. In our

approach the tap time strategy depends on the type of birds used:

• Red birds (Red) is the leader of the flock, but do not have any special feature at their arsenal.

Therefore, there is no need for tapping.

• Blue birds (the Blues) split into a set of three similar birds when the player taps the screen. The

agent randomly performs a tap in an interval between 65% and 80% of the trajectory from the

slingshot to the first collision object.

• Yellow birds (Chuck) accelerate upon tapping which is performed randomly between 90% and 95%

of the trajectory in the case of high-arching shots (angle > 45◦). In the case of direct shots (angle

<= 45◦), tap time is selected randomly between 85% and 90% of the trajectory.

• White birds (Matilda) drop eggs in the target below them. In this case, tapping is executed when

the bird lies above the target (see, Fig. 6). As experiments have shown, this strategy is very efficient

for handling the specific type of birds.

• Black birds (Bombs) are the most powerful member among the birds. No tapping is performed by

the agent during the bird flight. The bird blow up in a short time period after impinging on a scene

object.

17

Fig. 6. Tap timing procedure for the white bird. Tapping is performed only when the bird lies above the target (pig).

B. Online learning of model parameters

The final step of the proposed scheme is the learning procedure. Due to the sequential nature of

data, a recursive estimation framework has been followed for updating the regression model parameters

[15]. This can be considered as an online learning solution to the Bayesian learning problem, where the

information on the parameters is updated in an online manner using new pieces of information (rewards)

as they arrive. The underlying idea is that at each measurement we treat the posterior distribution of

previous time step as the prior for the current time step.

Suppose the tree node q∗ has been selected based on the Bayesian ensemble mechanism (Eq. 10) that

corresponds to the regression model k , f(q∗). Then, the selection frequency, nk, of this regressor is

increased by one, we shoot the target and we receive a score, tknk+1. The last constitutes a new observation

for the kth regression model, i.e. tknk+1 = (tknk
, tknk+1) which is normally distributed:

p(tknk+1|wk) = N (tknk+1|wk>φ(x(q∗)), βk) , (11)

where xnk+1(q
∗) is the feature vector of the selected tree node, q∗.

We can now obtain the posterior distribution of weights wk, as:

p(wk|tknk+1) ∝ p(tknk+1|wk)p(wk|tknk
) (12)

= N (wk|µk
nk+1,Σ

k
nk+1) , (13)

where we can obtain the following recursive forms:

Σk
nk+1 =

[
(Σk

nk
)−1 + βkφ(x(q∗))φ(x(q∗))>

]−1 , (14)

µk
nk+1 = Σk

nk+1

[
βkφ(x(q∗))tknk+1 + (Σk

nk
)−1µk

nk

]
. (15)

18

The above equations constitute an efficient recursive procedure for adjusting the model parameters of

the winner regressor k, after shooting. That provides also the opportunity to monitor learning process. In

the beginning of the game, (i.e. step 0) all the information we have about the parameters of all regression

models, is the prior distribution p(wk) which is assumed to be zero mean Gaussian (µk
0 = 0) with

spherical covariance matrix (Σk
0 = a−1IM).

Algorithm 2 summarizes the basic steps of the proposed method for playing the Angry Bird game.

Algorithm 2: The AngryBER learning algorithm

while available bird on the slingshot do

1. Game scene’s objects detection;

2. Tree-like structure construction of the game scene and feature extraction (Alg. 1);

3. Tree nodes feasibility examination, F (Sec. II-C);

4. Select the best target node among all the feasible nodes, q∗ ∈ F according to Eq. 10. This

corresponds to the regressor k , f(q∗).

5. Compute the most effective timing for the tapping execution (Sec. III-A);

6. Hit the target and receive reward, tnk+1;

7. Adjust the model parameters (Eqs. 14,15) of the selected regressor, k;

IV. EXPERIMENTAL RESULTS

A series of experiments has been conducted in an effort to analyze the performance of the proposed

agent (AngryBER) in the Angry birds domain. Due to the low complexity of the general framework

where our agent is built up, the experiments have taken place in a conventional PC3. The source code

of the agent can be found in [16]. Our analysis has concentrated mainly on the first 2 episodes from the

freely available ‘Poached Eggs’ season of the Angry Birds game. Each one of the episodes consists of

21 levels, which have to be passed, in order to assume that the episode is successfully completed.

The following procedure was used for training the AngryBER agent. Ten (10) complete passes of the

previously mentioned episodes have been sequentially executed. The agent remains at the same level if he

3Intel Core 2 Quad (2.66GHz) CPU with 4GiB RAM

19

fails to destroy all pigs found in the game scene. In order to evaluate our agent we have tried to comply

with the AIBIRDS competition rules [17]. Therefore, the agent has at his disposal at least 3 minutes on

average in order to complete a game level, corresponding to a total time of 63 minutes for each episode.

It must be noted that the results have shown that our agent needs only a part of the available time for a

successful episode completion.

In our experiments, we examine two variations of the AngryBER agent, named ‘AngryBER1’ and

‘AngryBER2’, respectively. The only difference between the two versions lies in the consideration of a

diverse set of features (Sec. II-A) that are used to represent the feature space of each tree node. More

specifically, both of them use the first two distinctive features {x1, x2} that are referred to node’s personal

weight and its distance from the nearest pig, respectively. However, they differ in the way they examine

the relation of nodes with their ancestors. Roughly speaking, the first variation ‘AngryBER1’ takes into

account the density of the structure that lies above each node (x3), while the second ‘AngryBER2’

considers the height of the structure located above object materials.

In order to compare the AngryBER agent, we have used the naive agent provided by [2], which uses an

unsophisticated strategy. More particularly, the naive agent shoots the birds directly to the pigs, selecting

randomly a pig as target, without any further reasoning. It has been shown that naive agent provides a

sufficient baseline for agent’s evaluation as it is indicated by the results provided at [18]. Moreover, we

have compared our agent with the agents proposed by all teams participated in 2013 and 2014 AIBIRDS

competitions [18] (30 teams in total). It is worth mentioning that for the 2nd episode only results of the

last year teams (2014) are provided (10 teams in total), since an updated version of the vision system

was released only last year. This vision system is able to detect the real shape of objects, ground and

hills.

We have run 30 independent experiments for each variation of our agent. The results about the first

two episodes of ‘Poached Eggs’ season are presented in Tables II and III, respectively. In these tables

various measures of descriptive statistics about the score reached per level are provided, in an effort to

obtain a more comprehensive comparison study. These are: the mean, median, minimum and maximum

score found (measures of central tendency), as well as the standard deviation and the interquartile range

IQR = Q3−Q1, (measures of variability) of scores.

A number of interesting remarks stems from our empirical evaluation:

• The first one and most impressive observation is that both variants of our AngryBER agent succeed

to pass every level with success. While it may seem easy at a first glance, it is far from true as lot of

agents fail most levels, since the degree of difficulty increases continuously with every successfully

20

completed level. For example, only 15 out of 30 agents (50%) achieve to complete the 21st level of

the first episode. It becomes much more evident at the levels of the second episode. In this case,

the agents achieve to pass approximately half of the levels (51% success rate). More specifically,

DataLab Birds (best agent’s performance) achieves to pass 17 out of 21 levels (80% success rate),

while S-birds Avengers (worst agent’s performance) achieves to complete only 3 levels (14% success

rate).

• AngryBER obtains satisfactory scores in the majority of levels. According to the results, the proposed

agent manages to reach (26) high scores at the levels of the two episodes: 7 and 19 high scores

obtained at the levels of the first and second episode, respectively.

• Additionally, our agents achieve to gain ‘3-stars’ in a considerably high percentage of visited

levels. ‘3-stars’ provides a baseline that indicates superior performance. Gaining ‘3-stars’ could

be considered as a measure of the agent’s ability to destroy all pigs by using the least possible

number of birds. More specifically, AngryBER1 and AngryBER2 have achieved to gain ‘3-stars’ at

the 71% and 81% of the levels, respectively. On the other side, both best-performed agents, DataLab

Birds and Plan A+, have achieved to gain ‘3-stars’ at 31% of the levels.

• Another interesting remark is that the mean scores of our agents are always better than those of the

benchmarks, with a single exception for the first level of the first episode. Particularly, the expected

total reward gained by AngryBER1 and AngryBER2 agents at the first episode is 914039 (11th

place) and 967160 (3d place), respectively. On the other hand, the expected total reward gained by the

proposed agents at the second episode is 1120459 (1st place) and 1154292 (1st place), respectively.

Moreover, the best total reward that could be achieved by the AngryBER1 agent at the first and

second episodes is 1055790 (1st place) and 1363840 (1st place), respectively. Additionally, the best

total reward that could be achieved by the AngryBER2 agent at the two episodes is, 1096520 (1st

place) and 1394856 (1st place), respectively. Another point that should be highlighted is that if we

consider the median statistic, our agent performs significantly better than half of the agents provided

by the benchmarks.

• Finally, robustness is a key feature of our method as indicated from the small values on both

variability measurements (standard deviation and interquartile range) in most levels.

The presented experimental results highlight the superiority of both variations of our proposed approach

over many existing methods. Nevertheless, the second variant, AngryBER2, performs slightly better than

the first one, AngryBER1. This is more apparent in difficult levels. Moreover, AngryBER2 has reached

21

18 out of 26 high scores found by both agents, and has gained ‘3-stars’ at 34 out of 42 levels in total,

while AngryBER1 has gained ‘3-stars’ at 30 out of 42 levels. Additionally, it becomes evident that the

total return gained by AngryBER2 in both episodes, and especially in the case of the first one, is quite

higher than that of AngryBER1. Thus, we conclude that the consideration of the height of the structure

lying above a tree node (feature, x4) seems to be more effective than the information of the structure’s

density (feature, x3).

Another impressive characteristic of the proposed scheme is its ability to speed-up the learning process

and discover good policies quickly. This is attributed to the efficient tree-like structure representation in

combination with the ensemble learning strategy. In this context, AngryBER agent is robust and adaptive

as it is able to identify the effectiveness of various bird types in destructing particular materials.

Finally, the ‘AngryBER1’ agent has joined to the 2014 AIBIRDS competition managing to win the 2nd

prize. Our competition participation, gave us the opportunity to assess the performance and generalization

capability of our agent in unknown challenging levels. As it was proved, the AngryBER agent can cope

with success in the most of the assigned levels. The competition results can been found in [19].

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented an advanced intelligent agent for playing the Angry Birds game, based on an

ensemble of regression models. The key aspect of the proposed method lies on an efficient tree-like scene

representation. This allows the exploitation of its superior modeling capabilities to establish a rich feature

space. An ensemble scheme of Bayesian regression models is then proposed, where different regressors for

each pair of bird-material type are combined and act in a competitive fashion. The target is then selected

according to the UCB decision making process, which aims at gaining new knowledge by exploring

its environment and exploiting its current, reliable knowledge. Learning procedure is achieved in terms

of an online estimation framework. Experiments on several game levels demonstrated the ability of the

proposed methodology to achieve improved performance and robustness compared to other approaches

on the Angry Birds domain.

Although we have investigated the performance of the proposed method in a variety of challenging

levels, we are planning to examine its generalization capabilities more systematically to more advanced

levels. Since the tree-like structure is very effective and general, another future research direction is to

examine the possibility of enriching the feature space with alternative topological features, which can

be extracted from the proposed lattice structure, as the ones suggested by [3]. A general issue in the

regression analysis is how to define the proper number of basis functions. Sparse Bayesian regression

22

TABLE II

PERFORMANCE STATISTICS AT THE 21 LEVELS OF THE FIRST ‘POACHED EGGS’ EPISODE

Level 3 stars Agent Mean Std Median IQR = Q3-Q1 Min Max

AngryBER1 29068 ±116 29030 0 29030 29410

AngryBER2 28468 ±73 28430 80 28430 288001 32000

Benchmarks 29233 ±2682 29635 1360 18420 32660

AngryBER1 51196 ±4009 52410 230 33930 53850

AngryBER2 47363 ±6600 52420 9080 34160 527402 60000

Benchmarks 47932 ±8844 52180 9620 26240 62370

AngryBER1 41820 ±352 41910 0 40260 41910

AngryBER2 41804 ±405 41910 0 40260 419103 41000

Benchmarks 39029 ±4780 41280 1730 24070 42240

AngryBER1 21175 ±3932 19190 1470 18720 29150

AngryBER2 27471 ±3186 29010 1240 18990 290104 28000

Benchmarks 23458 ±6675 21420 8690 10120 36810

AngryBER1 63898 ±3028 64460 0 47870 64460

AngryBER2 63482 ±422 63520 0 61440 644605 64000

Benchmarks 60508 ±9078 64000 9340 35650 70350

AngryBER1 34580 ±3222 35640 0 24680 35720

AngryBER2 33938 ±4864 35385 60 15290 364706 35000

Benchmarks 23687 ±10630 25850 17400 0 36970

AngryBER1 33763 ±5115 37000 6600 21760 37140

AngryBER2 32933 ±5874 36940 8690 20550 457807 45000

Benchmarks 28053 ±14166 29350 14830 0 49120

AngryBER1 47439 ±10407 54730 18310 26630 57130

AngryBER2 40835 ±6644 38060 1830 28710 556308 50000

Benchmarks 39473 ±13377 43260 20330 0 57780

AngryBER1 32227 ±5758 31940 2900 23060 48780

AngryBER2 43731 ±4083 45220 0 32450 487809 50000

Benchmarks 37300 ±11914 38790 21710 0 51480

AngryBER1 46848 ±7064 47810 9530 34240 59670

AngryBER2 52939 ±8488 49720 13990 34900 6811010 55000

Benchmarks 43805 ±17857 50910 20080 0 68740

AngryBER1 44151 ±1719 44860 1050 35610 44860

AngryBER2 51347 ±2092 51425 1520 43220 5358011 54000

Benchmarks 45052 ±14644 48390 14780 0 59070

AngryBER1 52352 ±3018 53690 1300 39680 54980

AngryBER2 47412 ±7790 48985 15970 36990 5691012 45000

Benchmarks 48348 ±14306 53230 9540 0 61070

AngryBER1 26739 ±5527 26580 8920 19450 39010

AngryBER2 37725 ±7541 37520 11080 21760 4924013 47000

Benchmarks 30125 ±14480 31425 15150 0 50360

AngryBER1 60955 ±6002 65640 10000 45640 65640

AngryBER2 64177 ±3805 65640 0 49370 6564014 70000

Benchmarks 52097 ±18770 57805 12970 0 65640

AngryBER1 40549 ±6401 39350 12360 31190 50020

AngryBER2 44908 ±4756 47370 7050 32480 4962015 41000

Benchmarks 36111 ±16019 41390 13660 0 55300

AngryBER1 54554 ±5612 52610 4390 45540 70590

AngryBER2 65191 ±6622 69590 7570 47540 6959016 64000

Benchmarks 47720 ±22513 55600 11470 0 66570

AngryBER1 47161 ±3391 46850 2050 39090 55760

AngryBER2 42631 ±3360 42935 5510 37400 4990017 53000

Benchmarks 39260 ±16278 44970 8570 0 54750

AngryBER1 42668 ±3961 43305 6810 36350 49790

AngryBER2 51669 ±5297 54180 7380 38860 5644018 48000

Benchmarks 35704 ±18691 43435 10370 0 54500

AngryBER1 33681 ±3763 35530 6750 27570 38090

AngryBER2 35461 ±2817 36690 2910 25420 3922019 35000

Benchmarks 25043 ±15020 30425 20120 0 40100

AngryBER1 46094 ±6784 45470 14500 36060 55590

AngryBER2 50124 ±6517 54040 8250 37170 5855020 50000

Benchmarks 27268 ±21750 36995 43730 0 56050

AngryBER1 63121 ±6029 62395 8190 50740 74240

AngryBER2 63551 ±6091 63000 8110 52370 7614021 75000

Benchmarks 34232 ±32956 53795 65190 0 75870

23

TABLE III

PERFORMANCE STATISTICS AT THE 21 LEVELS OF THE SECOND ‘POACHED EGGS’ EPISODE

Level 3 stars Agent Mean Std Median IQR = Q3-Q1 Min Max

AngryBER1 51449 ±5559 52635 9960 42770 61470

AngryBER2 54363 ±5392 56880 7490 43950 648201 60000

Benchmarks 38922 ±27610 48120 59990 0 64050

AngryBER1 52769 ±2865 52795 3030 47140 59880

AngryBER2 53203 ±2747 53205 3270 47650 586402 60000

Benchmarks 19510 ±33934 0 45790 0 96180

AngryBER1 96909 ±6007 98165 8070 86510 114160

AngryBER2 100960 ±8532 99240 9400 87730 1165103 102000

Benchmarks 69156 ±47915 96375 99490 0 108510

AngryBER1 50784 ±7366 54540 10420 26490 58910

AngryBER2 51685 ±5862 52290 7680 32230 596904 50000

Benchmarks 26018 ±27511 24290 52620 0 56550

AngryBER1 84366 ±5676 84775 6410 69730 93910

AngryBER2 82075 ±6506 83800 7720 66650 913205 80000

Benchmarks 43862 ±37933 67440 74940 0 78810

AngryBER1 59301 ±4998 57905 8230 51270 69500

AngryBER2 60641 ±6010 58765 7470 53990 724806 62000

Benchmarks 34275 ±24892 41640 56750 0 58270

AngryBER1 42047 ±5583 43430 9710 33260 53740

AngryBER2 48265 ±6839 47980 8960 31480 621407 50000

Benchmarks 38245 ±20456 46855 8580 0 53450

AngryBER1 49397 ±5494 47915 9550 39470 58380

AngryBER2 48942 ±6170 48325 10840 38210 592608 53000

Benchmarks 34706 ±24160 47340 50300 0 57300

AngryBER1 23239 ±3288 22635 2370 19150 34430

AngryBER2 24416 ±3274 23340 3620 20420 333109 28000

Benchmarks 21007 ±13517 22650 6380 0 46240

AngryBER1 39714 ±3674 40720 2280 32940 49910

AngryBER2 35459 ±1517 35610 1170 30550 4126010 40000

Benchmarks 28863 ±16553 35535 16920 0 43600

AngryBER1 86921 ±9421 86490 12830 71780 103620

AngryBER2 87175 ±9486 85725 18050 74270 10115011 69000

Benchmarks 23159 ±38533 0 53470 0 90540

AngryBER1 46768 ±5216 46455 3420 37300 62340

AngryBER2 47335 ±5644 45785 5010 36820 6173012 60000

Benchmarks 18796 ±20255 15785 35880 0 46720

AngryBER1 68954 ±7582 70825 12270 50440 78450

AngryBER2 73665 ±6492 72945 9190 58010 8566013 70000

Benchmarks 49398 ±34248 67425 71970 0 77000

AngryBER1 40646 ±4143 41765 6000 33220 47790

AngryBER2 46955 ±5308 46685 8170 33580 5671014 50000

Benchmarks 27376 ±19612 35275 43670 0 45230

AngryBER1 38923 ±6883 39325 8880 28270 52590

AngryBER2 38473 ±7922 38390 14040 28390 5378015 50000

Benchmarks 5935 ±12531 0 0 0 31120

AngryBER1 53034 ±3972 53435 4020 44160 60280

AngryBER2 54949 ±4099 55245 4480 46450 6650016 62000

Benchmarks 5614 ±17753 0 0 0 56140

AngryBER1 29289 ±2837 28535 5120 25350 35080

AngryBER2 29773 ±2258 29205 2390 27050 3561017 36000

Benchmarks 2944 ±9310 0 0 0 29440

AngryBER1 49648 ±7015 47945 8930 39910 67960

AngryBER2 51621 ±6740 51020 6810 40400 6910018 60000

Benchmarks 9734 ±20795 0 0 0 55800

AngryBER1 38727 ±5941 39550 6030 26890 54390

AngryBER2 42745 ±7840 40090 11540 32190 6152019 47000

Benchmarks 8335 ±17668 0 0 0 45580

AngryBER1 47751 ±8239 47130 16360 32990 56630

AngryBER2 52784 ±5267 55150 10 37770 5587020 52000

Benchmarks 0 ±0 0 0 0 0

AngryBER1 70323 ±8395 70500 9910 56890 90420

AngryBER2 68808 ±7316 67410 10300 53770 8779021 75000

Benchmarks 6849 ±21658 0 0 0 68490

24

offers a solution to the model selection problem by introducing sparse priors on the model parameters

[14], [20], [21]. During training, the coefficients that are not significant are vanished due to the prior,

thus only a few coefficients are retained in the model which are considered significant for the particular

training data. This constitutes a possible direction for our future work that may improve further the

proposed methodology. Finally, alternative regression mechanisms could be applied, such as Gaussian

Processes, etc. [22].

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers, for their careful and detailed comments and sug-

gestions, which have significantly improved the manuscript.

REFERENCES

[1] J. Renz, “AIBIRDS: The Angry Birds Artificial Intelligence Competition,” in Proceedings of the Twenty-Ninth AAAI

Conference on Artificial Intelligence, 2015, pp. 4326–4327.

[2] X. Ge, S. Gould, J. Renz, S. Abeyasinghe, J. Keys, A. Wang, and P. Zhang, “Angry Birds Game Playing Software, Version

1.32, aibirds.org,” Research School of Computer Science, The Australian National University, Tech. Rep., 2014.

[3] P. Zhang and J. Renz, “Qualitative Spatial Representation and Reasoning in Angry Birds: The Extended Rectangle Algebra,”

in Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR,

2014.

[4] P. Walega, T. Lechowski, and M. Zawidzk, “Qualitative Physics in Angry Birds: first results,” in Symposium on Artificial

Intelligence in Angry Birds, 2014.

[5] L. A. Ferreira, G. A. W. Lopes, and P. E. Santos, “Combining qualitative spatial reasoning utility function and decision

making under uncertainty on the angry birds domain,” in Symposium on Artificial Intelligence in Angry Birds, 2013.

[6] A. G. Cohn and J. Renz, “Qualitative Spatial Reasoning,” in Handbook of Knowledge Representation. Elsevier, 2007,

pp. 551–584.

[7] P. Balbiani, J. F. Condotta, and L. F. D. Cerro, “A new tractable subclass of the rectangle algebra,” in Proceedings of the

16th International Joint Conference on Artifical Intelligence (IJCAI), 1999, pp. 442–447.

[8] A. Narayan-Chen, L. Xu, and J. Shavlik, “An Empirical Evaluation of Machine Learning Approaches for Angry Birds,”

in Symposium on Artificial Intelligence in Angry Birds, 2013.

[9] M. Polceanu and C. Buche, “Towards a Theory-Of-Mind-Inspired Generic Decision-Making Framework,” in Symposium

on Artificial Intelligence in Angry Birds, 2013.

[10] A. Jutzeler, M. Katanic, and J. J. Li, “Managing Luck: A Multi-Armed Bandits Meta-Agent for the Angry Birds

Competition,” https://aibirds.org/2013-Papers/Team-Descriptions/beaurivage.pdf, 2013.

[11] T. Borovička, R. Špetlı́k, and K. Rymeš, “DataLab Birds Angry Birds AI,” https://aibirds.org/2014-papers/datalab-birds.pdf,

2014.

[12] J. Mendes-Moreira, C. Soares, A. Jorge, and J. F. de Sousa, “Ensemble approaches for regression: A survey,” ACM

Computing Surveys, vol. 45, no. 1, pp. 1–10, 2012.

25

[13] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit problem,” Machine Learning,

vol. 47, no. 2-3, pp. 235–256, 2002.

[14] M. Tipping, “Sparse Bayesian Learning and the Relevance Vector Machine,” Journal of Machine Learning Research, vol. 1,

pp. 211–244, 2001.

[15] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[16] N. Tziortziotis, G. Papagiannis, and K. Blekas, “AngryBER: An advanced agent for the angry birds game,” https://code.

google.com/p/angry-ber/, 2014.

[17] “AIBIRDS 2014 Competition Rules,” https://aibirds.org/angry-birds-ai-competition/competition-rules.html, [Online; Ac-

cessed: 01-December-2014].

[18] “AIBIRDS 2014 Benchmarks,” https://aibirds.org/benchmarks.html, [Online; Accessed: 01-December-2014].

[19] “AIBIRDS 2014 Competition Results,” https://aibirds.org/angry-birds-ai-competition/competition-results.html, [Online;

Accessed: 01-December-2014].

[20] M. Seeger, “Bayesian Inference and Optimal Design for the Sparse Linear Model,” Journal of Machine Learning Research,

vol. 9, pp. 759–813, 2008.

[21] K. Blekas and A. Likas, “Sparse Regression Mixture Modeling with the Multi-kernel Relevance Vector Machine,”

Knowledge and Information Systems (KAIS), vol. 39, no. 2, pp. 241–264, 2014.

[22] C. E. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. The MIT Press, 2005.

