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Abstract. Excessive peak power dissipation during testing can result in reduced 
reliability and yield loss due to power and/or thermal constraint violation. In 
this paper we propose a novel peak power dissipation reduction method based 
on test vector ordering with vector repetition and vector modification. 
Experimental results validate that the proposed method achieves favourable 
peak power dissipation reductions with respect to the test sequence produced 
by the test vector ordering with vector repetition technique proposed a few 
years ago. 

1 Introduction 

Power dissipation during testing has gained significant attention during the last few years 
due to the problems arising by elevated average and peak power dissipation. Such problems 
are decreased reliability and system life cycle, decreased overall yield and increased 
product costs [1, 2]. Several techniques have been proposed in order to reduce switching 
activity, consequently the amount of power consumed in a circuit, during testing. Among 
them post-ATPG test vector ordering techniques have been presented in [3-7]. However, 
most of the cases target the reduction of average power dissipation, without guaranteeing 
any reduction in peak power dissipation.  

Peak power dissipation reduction was studied in [7, 8]. In [7] a test vector ordering with 
vector repetition algorithm (TVO_VR), based on the use of minimum spanning trees, was 
proposed. In [8] the authors attempt to insert a number of vectors between the two vectors 
(i, j) that are responsible for a violation in peak power dissipation. More specifically, k 
vectors are inserted between vectors i and j in such a manner that the Hamming distance of 
vectors i and j is evenly distributed over the k+1 vector pairs created by the insertion of the 
k vectors. However, the reduction in the Hamming distance of a vector pair cannot 
guarantee the reduction in the peak power dissipation.  

In this work we utilize the TVO_VR algorithm and relax the constraint that the repeated 
vectors must originate from the initial test set so as to further reduce the peak power 
dissipation during testing. The proposed approach uses the output of the TVO_VR [3, 7] 
algorithm as the starting point for further changing the test sequence through modification, 
copying or removal of the vectors of the vector pair that causes a violation in peak power 
dissipation.  
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2 Preliminaries 

The TVO_VR algorithm [7] receives as input an initial test set, denoted as TV, consisting of 
n test vectors and produces a test sequence of at most 2n test vectors. The test sequence 
produced can be split into the set of initial test vectors, denoted as FA, and the set of the 
vectors the TVO_VR algorithm repeats while trying to reduce the peak power dissipation, 
denoted as R. The vectors of set R, henceforth called repeated vectors, do not contribute to 
the final fault coverage since the vectors of set FA contain all the initial vectors of set TV 
and therefore can be modified in order to further reduce the peak power dissipation. 

The TVO_VR algorithm provides the maximum reduction in peak power dissipation 
under the constraints that the test sequence length is shorter that 2n and that its test vectors 
are taken from the initial test set only. Thus using the output of the TVO_VR algorithm and 
modifying the vectors of set R we can further reduce the peak power dissipation.  

Before we present the proposed peak power dissipation reduction method let us define 
the terms of instantaneous (IPD) and peak power dissipation (PPD) [1]. The instantaneous 
power dissipation is equal to the power dissipated by a pair of consecutive test vectors. If 
we consider all pairs of the test sequence and their respective instantaneous power 
dissipation values then the pair whose instantaneous power dissipation is the highest among 
all other pairs is the one responsible for the peak power dissipation observed at the circuit. 

3 Peak power dissipation reduction 
3.1 The peak power dissipation reduction method 
The aim of the peak power dissipation reduction procedure is to drop peak power 
dissipation under a user defined threshold (UDThr). Our procedure reduces step by step the 
peak power dissipation until it reaches UDThr or until no further reduction is possible. 

Before introducing the proposed approach we define the following operators: 
a)  modify vector (MV), which returns true if the modification of a vector reduces the IPD 

of the two vector pairs it participates in.  
b) copy vector (CV), which returns true when either a copy of a vector is found in the test 

sequence or a vector is copied successfully elsewhere in the test sequence 
c) remove vector (RV), which returns true when the removal of one or both of the vectors 

of the pair that is responsible for the current peak power dissipation is successful.  
A detailed description of the three operators will be given in the following subsections. 

The proposed algorithm receives as input the test sequence produced by the TVO_VR 
algorithm and at each iteration it considers the pair of consecutive vectors that is 
responsible for the current peak power dissipated in the circuit. It then tries to reduce the 
current peak power dissipation of the pair by applying one or a combination of the above 
operators. Let (i, j) be the vector pair that is responsible for the current peak power 
dissipation in the circuit. The algorithm distinguishes 4 different cases (see Figure 1). 

 
Figure 1: Peak power reduction algorithm 
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The first case considers the situation where one of triplets (j, i, j) and (i, j, i) exists. If we 
assume the zero delay model, the two vector pairs of the triplet exhibit the same IPD in the 
circuit, which is equal to the current PPD. If we can copy the middle vector elsewhere 
successfully then the removal of both the two last vectors of the triplet reduces the PPD. If 
however we fail to find a place to copy the middle vector of the triplet then we consider that 
pair (i, j) belongs to one of the rest cases. 

The second case considers that both vectors of the pair belong to set R. The MV 
operator is at first used on both vectors i and j so as to determine which vector will be 
modified. Assume that vector h (k) appears before (after) vector i (j). Both calls of the MV 
operator will result in modified versions of vectors i and j and both the resulting triplets (h, 
i′, j) and (i, j′, k). Among the two modified vectors we choose the one that yields the lowest 
maximum IPD in the triplets above, provided that it is lower than the PPD, caused by pair 
(i, j), that is the one that fulfils the expression below: 

min( max( IPD(h, i′), IPD(i′, j) ), max( IPD(i, j′), IPD(j′, k) ) < IPD(i, j) 
If, however, the MV operator fails to lower the current PPD then we can remove one or 
both vectors of the pair, by applying the RV operator on vectors i, j or on the vector pair, 
without affecting the fault coverage, since both vectors are members of set R. The 
algorithm exits in case all the above vector removal actions fail to reduce the PPD. 

The third case considers that one, for example i, of the two vectors is a member of set 
FA. Obviously, we cannot modify i but we can apply the MV operator on vector j. If the 
MV operator fails to lower the current PPD, then we can try to remove vector j by the use 
of the RV operator. A failure in vector removal causes the algorithm to exit.  

The final case is the one where both vectors belong to set FA. In this case both vectors i, 
j are candidates for modification, provided that we can copy them successfully. We apply 
the CV operator on vector i and if it returns true then the MV operator is used on i at the 
initial place. If the MV operator fails then we try to remove vector i at the initial place. If 
this action also fails then we apply the same course of action on vector j. If this also fails 
the algorithm exits. 

3.2 Vector modification 

The modify vector (MV) operator modifies a vector, for example j, of pair (i, j), so as to 
reduce its IPD. Obviously the modification of the vector takes into account the presence of 
the neighboring vectors, that is i and k, and produces a new vector, say j′, such that both 
values of the IPD of pairs (i, j′) and (j′, k) are lower than the IPD of pair (i, j).  

The modification is based on the criterion of reducing the Hamming distances of vector 
j with respect to the neighboring vectors. Specifically, the operator examines vectors i and k 
for similar values in corresponding bit positions and assigns the corresponding bit of vector 
j to the same value, thus minimizing the Hamming distance of vector j with its neighboring 
vectors. The IPD of pairs (i, j′) and (j′, k) is then estimated by simulation and the maximum 
among them is stored in variable Current. The reduction in the Hamming distances may not 
lead to reduction in IPD and thus we examine whether there is no need to change all the bits 
of j. We scan vector j from left to right until we find a changed bit and we restore it to its 
original value. If this action lowers the IPD of pairs (i, j′) and (j′, k) below the value of 
Current, then we accept the original bit value, update Current and rescan j from left to 
right. Upon reaching the rightmost bit of j without performing a bit restoration the operator 
returns true if the value of Current is lower than the IPD of the initial pair (i, j). 
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3.3 Vector copying 

The copy vector (CV) operator always receives as input the vector pair responsible for the 
current PPD observed at the circuit, which is stored in variable Target, and the vector, say j, 
that must be copied. The operator either finds a copy of j or copies j elsewhere in the 
sequence so as to obtain a test sequence where the IPD of the vector pairs the copy of 
vector j participates in is lower than or equal to the current PPD observed in the circuit.  

At first, the operator takes advantage of the repeated vectors of the test sequence and 
checks if a copy of vector j, say j′, already exists. If this is the case, then by construction the 
IPD of vector pairs (x, j′) and (j′, y), where x, y are the neighboring vectors of j′, is lower 
than or equal to Target, so the operator returns true.  

When a copy of j does not exist then we try to copy j at a place in the sequence without 
creating test vector pairs whose IPD is higher than the value of Target. The place where 
vector j will be copied is determined by simulation. For each two consecutive vectors (p, q) 
of the test sequence we simulate the triplet (p, j, q) and check if it fulfills one of the 
following two conditions in the order mentioned below:  
a) if vectors p and q belong both to the FA set then the insertion of the chosen vector must 

not cause IPD higher than the value of Target in both pairs formed, that is, 
 IPD(p, j) < Target and IPD(j, q) < Target  (1) 
b) if one or both vectors p and q belong to set R then we seek to minimize the sum of the 

IPD of pairs (p, j) and (j, q). Moreover if p or q is a member of set FA then the IPD of 
the pair formed by this vector and j must not be higher than variable Target.  

 min( IPD(p, j) + IPD(j, q) )  (2) 
 if  p ∈ FA or q ∈ FA then IPD(p, j) < Target or IPD(j, q) < Target  (3)  

The condition in (a) is stringent since in general there may not be any pairs that abide by 
(1). Condition (2) may not assure that the IPD of pairs (p, j) and (j, q) is lower than the 
value of Target. However, since one or both vectors belong to set R we have the potential to 
reduce the IPD of the above pairs by the use of the MV operator. Once we have found a 
place to insert the copy of vector j we use, if possible, the MV operator on one or both of 
the vectors that surround the copy of j. The operator returns true if the IPD of each of the 
vector pairs affected by the presence of the copy of j is lower than or equal to Target.  

3.4 Vector removal 

The RV operator tries to remove a vector or a pair of vectors. It receives as input the vector 
j or pair of vectors (i, j) that need to be removed together with a target for IPD that must not 
be exceeded. For the first case the target is equal to the largest IPD of the pairs vector j 
participates in, while for the second it is equal to the IPD of pair (i, j). The removal of a 
vector yields a new test vector pair whose IPD must be lower than the target.  

The operator upon removal of a vector or a pair of vectors examines if the IPD of the 
resulting pair is lower that the given target. If h and k are the neighboring vectors of pair (i, 
j) then the IPD of pair (i, k) for the case of single vector removal or the IPD of pair (h, k) 
for the case of vector pair removal must be lower than the given target. For the case of 
single vector removal if the IPD of pair (i, k) is higher than the target then we can try to 
reduce the IPD by using the MV operator on any of the vectors i or k, provided that at least 
one of them belongs to set R. The operator returns true if any of the above actions yields a 
test vector with IPD lower than the given target.  
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4 Comparison 

In our experiments we used test sets, generated by the Synopsys ATPG tools, targeting all 
single stuck at faults of the ISCAS’85 benchmark circuits. These test sets were used as 
input to the TVO_VR algorithm [7] in order to produce the test sequences that will be 
further modified by the peak power reduction (PPR) algorithm.  

The TVO_VR algorithm uses a graph, denoted as TG, where each edge is assigned a 
weight using one of the following metrics: a) the number of transitions activated in the 
CUT after the application of a test vector pair [3, 6, 7] (TRANS), b) the Hamming distances 
of the test vectors [4] (HAM), and c) the sum of induced activity function values for all 
primary inputs changing from 1 to 0 and vice versa after the application of a test vector pair 
[5] (IAF). The TVO_VR algorithm produces a minimum spanning tree (MST) of graph TG 
and utilizes the inorder traversal of the MST to produce the test sequence. In our 
experiments, we consider that set FA, consists of the vectors that appear in the produced 
test sequence in the same order as they appear in the inorder traversal of the MST, and set R 
consists of the remaining vectors. 

The TVO_VR algorithm also uses a parameter peak, which in [7] is set equal to the 
largest edge weight of the MST, denoted as max. We have to note that when this parameter 
is set equal to a value lower than max then the peak power dissipation of the test sequence 
produced remains equal to max. In our case we set parameter peak equal to the user defined 
threshold UDThr. Since UDThr is in general lower than max, the peak power dissipation of 
the test sequence produced by the TVO_VR remains equal to max, but we achieve the 
following advantages: a) the average power dissipation of the test sequence is lower [3], b) 
there is an increase in the number of repeated vectors which provides a lot of alternatives 
for the operators of the PPR algorithm and c) the PPR algorithm must handle less vector 
pairs whose IPD is higher than UDThr. In our experiments, we do not have specific values 
for UDThr, so we set it equal to the average weight of the MST edges as proposed in [3]. 

In Table 1 we compare the PPD achieved by the use of the PPR algorithm against the 
PPD achieved by the use of the TVO_VR algorithm proposed in [7]. The PPD is estimated 
by the maximum number of transitions activated in the circuit by a vector pair of the test 
sequence assuming the zero-delay model, which according to [9] is reasonable for 
comparisons. As it can be seen from Table 1, the proposed technique can achieve 
significant savings in peak power dissipation, which can reach up to 43.9% for the case of 
circuit c499. Even though using the HAM and IAF metrics achieves significant savings we 
can observe that the actual peak power dissipation values achieved by the use of the 
TRANS metric are lower than the respective values concerning the other two metrics. 

The average power dissipation is also lowered since the PPR algorithm reduces the 
instantaneous power dissipation of at least one vector pair during each iteration. The extent 
of average power dissipation reduction is determined by the number of vectors the 
algorithm modifies and copies. 

Table 1: Peak power dissipation reduction achieved 
 HAM IAF TRANS 

Circuit PPD Reduction PPD Reduction PPD Reduction
c432 113 18.1% 127 14.2% 91 8.1% 
c499 129 11.6% 92 43.9% 78 0.0% 
c880 280 23.3% 271 21.4% 198 25.6% 
c1355 262 18.1% 271 17.1% 259 0.0% 
c1908 511 27.9% 511 20.3% 461 10.8% 
c2670 615 30.0% 604 26.3% 553 11.7% 
c3540 885 24.2% 902 9.2% 746 4.0% 
c5315 1596 24.4% 1629 17.5% 1579 4.5% 
c6288 1861 11.0% 1861 10.0% 1767 5.4% 
c7552 2489 19.3% 2019 20.6% 1928 10.0% 
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The time needed for the completion of the PPR algorithm is very low. In most cases, the 

time required for the execution of the PPR algorithm on a 500 MHz Intel® Pentium® III 
personal computer equipped with 384MB RAM was a few seconds and reached a few 
minutes for the largest circuits and initial test sets.  

5 Conclusions 

The use of test vector ordering with vector repetition technique presented in [7] results in 
test sequences with reduced peak power dissipation when compared to the test vector 
ordering without vector repetition approach. Even though the method presented in [7] 
guarantees an optimum solution in peak power dissipation when the vectors of the test 
sequence are taken from the initial test set, we present a method, which achieves further 
reduction in peak power dissipation. The proposed method takes advantage of the vectors 
repeated by the method of [3, 7] and through modification and copying/removal of vectors 
it achieves significant savings on peak power dissipation.  
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