
Self - Exercising Self Testing k-order Comparators

X. Kavousianos & D. Nikolos

Department of Computer Engineering and Informatics
University of Patras, 26500, Patras, Greece

e-mail : kabousia@ceid.upatras.gr, nikolosd@cti.gr

Abstract

In this paper we give a systematic method to design Self
- Exercising (SE) [11 self testing k-order comparators. The
k-order comparator is defined as a combinational circuit
that compares two operands and decides if these differ in
less than k bits. According to this definition the usual
equality comparator is the 1st-order comparator. Also in
this paper we discuss the applicability of the k-order
comparators in the implementation of (k- 1)-EC/AUED,
(k-1)-EC/d-ED/AUED, (k- 1)-EC/d-UED and (k-1)-EC/d-
ED/f-UED codes [2-7] as well as in the design of a fault
tolerant cache memory [9] and broadcast networks.

I. Introduction

Self Checking Circuits (SCC) [lo] are widely used in
applications with high reliability requirements, due to their
ability to detect errors on line during the normal system
operation. The type of errors covered include those caused
by permanent, transient as well as intermittent faults. A
SCC consists of a functional circuit, the output words of
which belong to a certain code, and a checker that
monitors the output of the functional circuit and indicates
whether a code word or a noncode word has appeared.

To achieve the totally self-checking goal (i.e., the first
erroneous output of a functional block is signaled by the
checker) [8] the checker was proposed to be Totally Self-
Checking (TSC) [ll] or strongly Code Disjoint (SCD)
1121. However the achievement of the totally self-
checking goal in practice depends on the actual input
vectors that the checker receives during the operation of
the functional unit, which usually differs from application
to application.

In [1] it was shown that Self-Exercising (SE) Self-
Testing or Strongly Code Disjoint checkers are more close
to achieve the Totally Self-checking goal than TSC and
SCD checkers. Besides a SE checker have the advantage
that can be designed to be self-testing or strongly code

disjoint for a more realistic fault model than TSC and SCD
checkers. In this work we give a systematic method to
design SE self-testing k-order comparators. SE self-testing
checkers were defined in [11 as follows:
Definition. The self-exercising checker is self-testing with
respect to a fault set F if for each fault f in F, either the
checker receives during normal operation a code input that
produces a noncode output, or a noncode output is
produced to primary outputs (Zo, 2,) (figure 1) due to the
test phase.

SE self-testing k-order comparator is suitable for a wide
range of applications. As we will see in section IV the k-
order comparator can be used in the implementation of (k-

and (k-1)-EC/d-ED/f-UED codes. Also the k-order
comparator can be used for the implementation of a new
way of exploitation of the (k-1)-EC/d-ED code, well suited
to the tag part of cache memories 191. As it was shown in
[9] this implementation is faster and requires significantly
less hardware than the classical implementation of these
codes.

The implementation of the (k-1)-EC/d-ED code using a
k-order comparator is also suitable in broadcast networks
where in order to cope with errors occurring during the
transfer of the packets the destination address is encoded in
a (k-1)-EC/d-ED code. The classical implementation of
the code implies that each host includes a (k-1)-EC/d-ED
error decoder where the possible errors in the destination
address are corrected and then the corrected destination
address is compared with the host address. On the contrary
using the k-order comparator the encoded destination
address is compared in each host with the host address
encoded in the (k-1)-EC/d-ED code. If the compared
addresses differ in less than k bit positions a match is
signaled.

An obvious design of the k-order comparator consists
of three modules. The first module is a comparator
implemented as a row of XOR gates, whose outputs drive
the inputs of a weight generator. The weight generator is
implemented as a tree of full and half adders (this is the
faster implementation among the already known) and its

l)-EC/AUED, (k- 1)-EC/d-ED/AUED, (k- I)-EC/d-UED

216
0-8186-7810-0/97 $10.00 0 1997 IEEE

Primary

output is compared with the number k using a magnitude
comparator. The propagation delay of this implementation
as well as its hardware cost is large. The k-order
comparators we propose in this work are much more
efficient, with respect to the required hardware and delay
than the above described k-order comparators as well as
the comparators used in [9].

__
n

11. Design Method

The general structure of a self-exercising checker is
given in Figure 1 (Figure 3 in [11). In our case the module
named checker is the k-order comparator. In subsection A
we give a systematic method to design the k-order
comparator and in subsection B we give some
experimental results.

A. k-order Comparator Design.

The structure of the k-order comparator is given in
Figure 2. Module D is similar to the threshold function
generator given in [16]. However a systematic method for
designing such a circuit has not been given in [16]. In the
sequel we will analyze the operation of the D module and
we will derive the conditions under which the comparator
can be designed, as well as the proper nmos and pmos
transistor sizes (width and length).

Let VI,,,, (VLMAX) be the minimum HIGH (maximum
LOW) input voltage which is recognized as logic 1 (0)
from a gate.
Taking into account the above definitions and the
definition of the k order comparator we conclude that
module D must be designed in such a way that:
V,,, 2 V~HMIN when less than k of the transistors 91, q2, . . .,
q,, are conductive and Vu,, 2 VLMAX when at least k of
them are conductive, where VIHMIN and VLMAX refer to the
buffer consisting of two inverters in figure 2. We can see
that when none of the transistors 91, q2, ..., qn is
conductive then V,,,=5 volts because transistor t l is
permanently conductive. When one transistor qi, iE { 1, 2,
. . ., n} starts to conducting then V,,, is dropping by a value
that depends on the resistance ratio between the transistors

qi and tl. For each additional conductive transistor q,,
j e { 1, 2, . . ., n}, V,,, drops a little more and the above
design targets can be redefined as follows:
V,,, 2 VIHM~N when k-1 of the transistors 41, q2, . . ., q,, are
conductive and V,,, 5 V L M ~ x when k of the transistors 91,
q2, . . ., qn are conductive. It is obvious that the range of our
interest is between the boundaries [VLMAX, VIHMINI.

The following analysis is based on the basic DC
equations given in [13, pp 51-52]. We start from the
behavior of an nmos transistor. The threshold voltage of
nmos is V,,>O. We consider that Vg=Vdd=5 volts,

In the linear region we have vg,-v,>vds or equally
Vs=Vgnd=O Volts and Vd=Vuut.

Vdd-Vtn >Vout and the current is

Idsn = P n ’ (Vdd - vtn)‘ - . [“I 2

In the saturation region the condition is V,,ut>Vdd-Vtn
and the current is

(Vdd - V t n) 2 , where P, = KP,, .T W”
Idsn = PII ’ 0

L L n

(KP is the Spice parameter for COX).
In the region of our interest [VLMAX, VIHMIN], we have

VIHMIN<Vdd-Vtn therefore among the transistors ql , q2, . . .,
qn the conductive ones are in the linear region, while the
rest are in the cutoff region.

The threshold voltage of a pmos transistor is VIP< 0. We
consider Vg=Vg,,d, Vs=Vdd volts and Vd=V,,up In the linear
region we have Vg, - V,, > Vd, or equally -Vdd - VIP > Vuut -
v d d or Vout< -VIP and the current is

In the saturation region we have VoU,>-Vtp so
2

, where p, = KP .-. WP (vdd 4- vtp)
LP

‘dsp = P p ‘ 2

217

In our case we have VLMAX >-VI, and -Vt,<l volt so in
the region of interest [VILMM, VHMIN] the transistor tl is in
the saturation region.

conductive we get Ids,, = h . Idsn or equivalently
Assuming that 3, of the transistors ql, qz, .., q, are

2

(1)
' (Vdd - vtn) ' vout - vout

L ' P n ('dd + 'tp)?
-X2+2'((Vdd-Vtn)'X ,

The function f (x) = is maximized
('dd 4- vtp)?

at the point x=Vdd-Vtn and f(x) is monotone increasing for
x<Vdd-Vtn. We are interested in the region [VLMAX,VWMIN]
so we assume that Vout<Vdd-Vtn. Then taking into account
the monotony of the function we conclude that when
Vout2V1~MI~ we have f(V,&f(VHMIN). According to the
definition of the k-order comparator when k-1 of the
transistors 91, q,, ..., qn are conductive the output voltage
must satisfy the condition Vout2VIHM~~. Setting h=k-1 in
equation (1) we get

(2) P P - > (k - 1) 2 (v d d - Vtn). v ~ M , - v & M ~

P n - (vdd $- vtp)2
For VoutlVIL~Ax we get f(Vout)<f(V1HMIN). According to

the definition of the k-order comparator when k of the
transistors 91, q2, ..., qn are conductive the output voltage
must satisfy the condition VoutlVIL~AX. Setting h=k in
equation (1) we get

P p
2

(3)

Taking into account that P#,=(KPIJKP,).W/L with
W=Wfl, and L=L&,, from relations (2) and (3) we get :

2 ' (v d d - Vtn) ' vI,M/.X - v,,MAx - 5 k .
P n ('dd +'tp)L

2
mn

U P ('dd + 'tp

' (vdd - vtn ' vlHMIN - vlHMIN < 5 (k - 1). -.
L

(4) < k . - . w" ' ('dd - vtn) ' 'ILMAX - vkMAX

WP ('dd + vtp

Relation (4) implies

The relation above gives all the possible values of k for
which a k-order comparator can be designed.

Relation (4) is used to determine the boundaries for
W L , so as the k-order comparator to satisfy the conditions
that initially have been set. After the specification of these
boundaries, the designer has only to select the appropriate
values of W,, L,, W,, L, ~

Taking under consideration the fact that the circuit

consists of only one pmos transistor (tl) and n nmos
transistors (41, q2, ..., q,), W,, Ln must be both minimum
for area optimization. On the other hand, large values of
WJL, reduce the transition time, optimizing in that way
the design for delay.

B. Experimental Results and Discussion.

For our experiments we used the following tools :
Alliance Cad System 3.0 (Graphic Layout Editor V1.lO,
Netlist extractor V1.10).
Cazm: circuit analyzer using macromodeling.
Sigview: X11 tool for displaying Analog and Digital
Simulation Data.

The technology that we used for our experiments is the
SCN08H with minimum feature size 1.0 micron. Some
typical values for this technology are V,=0,7522 volts
Vt,=-0,8433 volts, KP,=1 .207.10-4 and KP,=3.434.10".

We simulated the output buffer consisting from two-
inverters in figure 2 to find its transition region [V,, VH].
Then we selected the values VIHMIN = 2,5 volts and VKMAx
= 1,9 volts in order to satisfy the condition VIHMIN>VH and
VEMAX<VL. For these values we have noise margins
NML=1,90 volts and NM~=2,49 volts.

With the above values for noise margins we can design
k-order comparators with ke [l, 61. Here we laid emphasis
on large noise margins. Shortening the noise margins we
can design comparators for greater values of k.

For k-order comparators with k=2 and k=3 we
calculated the theoretical boundaries of W L . For each
such range we selected specific values for W L with step
0.25 and for each value we designed two k-order
comparators, one for area and the other for delay
optimization. The selected values for W,, L,, W,, L, for
each case of optimization are :
area oDtimization: W,=Ip, L,=lp, W&, = W L
delay optimization: W,=4p, Ln=l p, W&,= 4 W L

For the area optimized designs we have selected for
W/L values with step 0.5 because a step equal to 0.25
leads to very large pmos transistor, and thus excessive area
requirements. For example if we select the value
W/L=3.75 then for the area optimized designs we have
W&,=3.75 and the minimum values for W,, L, are 15 and
4 respectively, while for W/L=3.5 we have W,=7, L,=2.

The timing analysis of the k-order comparator [17]
implies that the circuit is getting faster when the value of
W,/L, increases. So for the delay optimization we should
select the maximum possible value for W,/L,. For L, we
selected the minimum possible value ly . For W, we
selected the value 4p to avoid excessive increase of W,.

For each circuit we derived with simulation the values
of Do and D1 where Do and D1 are the delays for the
transitions 1 4 0 and 0+1 respectively. Do time was

2 18

Table 1 2-order comparators for n=16

WIL

6,25
6,5
6.75

Area ophizatim I Delay OptirrdTdti m
w P 4 m(m) Dl(m) k(p)l Wp Lp m(m) Dl'(m) k (p)

I 13 1 2,W 1.78 77

Area optimization Delay optimization
Wp Lp DO (ns) D1 (ns) Area(pm) Wp Lp DO (ns) D1 (ns) Area(p")

25 1 2,16 1,51 89
13 2 3,23 2.03 42 26 I 2,29 1,5 90

27 1 2 3 8 14R 91

- ~ .

7 2 3,35 2,68 30

4 1 3.67 2,42 20

9 2 4,14 2,37 34

14 1 2,16 1,73 78
15 1 2,24 1,7 79
16 1 2,35 1,67 80
17 1 2,5 1,64 81
18 1 2,6 1,61 82
19 1 2.73 1.59 83

5 1 5,13 2,24 21 I 20 1 3112 1:57 84 I
irrd2arion : m=lLlFI

Table 2 3-order comparators for n=16

1 7 1 ,75 1 3,59 1,9 23 I jg 2,44 1:47 z3 !
7,25 2,59 1,47
7,5 3,94 1,91 46 30 2,83 1,46 94
7,75 2,95 1,44 95

Delay Optimization Wn=4 Ln=l
Theoritical boundaries [6092,7641]

Area Optimization Wn=l Ln=l

measured for the case where exactly k nmos transistors
started to conducting simultaneously. This is the worst case
since from the timing analysis [17] we derived that the
discharging time is reduced as the number of conductive
nmos increases.

Looking at the experimental results (Tables 1,2) we can
make some observations :
1. As it was expected, the design for delay optimization
gives smaller delay than the design for area optimization.
However, the difference becomes smaller as the order of
the comparator increases. Besides that, W/L increases as
the order of the comparator increases and for the case of
delay optimization (where Wn/Ln=4) W, is getting
excessively large.
2. As the value of W&, increases the value of D1
becomes smaller as it was commented in [17].
3. For each k-order comparator we observe that as WIL
increases, Do increases too, so for area as well as for delay
optimized designs. This happens because in both cases we
keep &, constant and we change the value of pp. As we can
see from (5) in [17] p, influences load capacity CL, so
when pp increases, CL increases and Do is getting worse.

111. Test Vector Generator.
In the case of the k-order comparator the test Vector
Generator (Figure 1) consists of two n-bit shift registers A
and B (Figure 3), where n is the length of each input
vector. In each shift register the output of the last cell
drives the input of the first cell through an inverter. Shift
register B is initialized with the all-zero state while the
shift register A is initialized with the state (1 10 0)
where the count of ones and zeroes is respectively equal to
k and n-k and the least significant bit is at the left.

Figure 3. Test Vectors Generator

In Table 3 we give the sequences that are generated by
the shift registers A and B. When the XOR gates receive
as inputs the vectors of Table 3 generate the sequence of
vectors presented in Table 4. From Table 6 we can see that
module D receives in turn vectors with Hamming weight k
and k-1 respectively. Therefore, during the test phase
when D is fault free its output will be in turn equal to
zero and one. Taking into account the above and Figure 1
we conclude that the module CNCI can be realized by a
flip-flop. This flip-flop changes its state at every clock
pulse and generates the sequence 0101. The period of the
clock input of the flip-flop should be half the period of the
clock input of the shift registers A and B. Then during the
test phase and for fault free operation the outputs Zo, Z,
will be double-rail encoded. From Table 3 we can see that
the self-exercising k-order comparator of length n is tested
by a test set consisting of 4n vectors.

The SE k-order comparator of Figure 2 is self testing
with respect to the following faults:
a. Single or multiple stuck-at zero faults at lines X i , X2,
..., Xn. From Table 4 we can see that for each line Xi, 15
i s n, there exist an input vector X with Hamming weight
equal to k and Xi=l. Therefore, when D receives as input
the vector X and Xi is stuck-at zero the output of D will be
equal to one while it was expected to be equal to zero.
Then the output &, Z1 is not double-rail encoded and the
fault is detected. We can easily see that the vectors of
Table 4 with Hamming weight equal to k detect also all
multiple stuck-at zero faults.
b. Single or multiple stuck-at one faults at lines X i , X2,
..., Xn . From Table 4 we can see that for each line Xi, I5
i< n, there exist an input vector X with Hamming weight
equal to k-1 and Xi=O. Therefore, when D receives as
input the vector X and Xi is stuck-at one the output of D
will be equal to zero, while is was expected to be equal to
one. Then the output &, Z1 is not double-rail encoded and
the fault is detected. The vectors of Table 4 with
Hamming weight equal to k-1 detect also all multiple
stuck-at one faults.
C. A stuck-open fault at the transistor qi is equivalent to a
stuck-at zero fault at line Xi. Thus the single and multiple
transistor stuck-open faults are detected.

2 19

Table 3

4 A2 4 .. 4 . 3 4 - 2 A-l 4 &I &2 &3 .. 4 2 %I

1 1 1 . . 1 1 1 1 0 0 o . . o 0 0
1 1 1 . . 1 1 1 1 0 0 0 . . 0 0 0
1 1 1 . . 1 1 1 1 1 0 o . . o 0 0
1 1 1 . . 1 1 1 1 1 0 0 . . 0 0 0
1 1 1 . . 1 1 1 1 1 1 0 . . 0 0 0

1 1 1 . . 1 0 0 0 0 0 0 . . 0 0 0
1 1 1 . . 1 0 0 0 0 0 0 . . 0 0 0
1 1 I . . 1 1 0 0 0 0 0 . . 0 0 0
1 1 1 . . 1 1 0 0 0 0 0 .. 0 0 0
1 1 1 . . 1 1 1 0 0 0 0 . . 0 0 0
1 1 1 . . 1 I 1 0 0 0 0 . . 0 0 0

Eh Bz B3 '. &-2 &.I & BRkcl b 2 BMrl3 BhkM .. h . 3 h .2 h.1
0 0 0 . . 0 0 0 0 0 0 0 . . o 0 0 0
1 0 0
1 0 0
1 1 0
1 1 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Table 4

0 0 0 0 0 0 o . . o o o o
0 0 0 0 0 0 o . . o o o o
0 0 0 0 0 0 o . . o o o o
0 0 0 0 0 0 0 . . 0 0 0 0

0 0 0 0 0 0 0 . . 0 1 1 1
0 0 0 0 0 0 0 . . 0 0 1 1
0 0 0 0 0 0 0 . . 0 0 1 1
0 0 0 0 0 0 0 . . 0 0 0 1
0 0 0 0 0 0 0 . . 0 0 0 1
0 0 0 0 0 0 o . . o o o o

X I x, x, .. X k - 2 X k - l X k X k + l X k + 2 X k + 3 X k c 4 . . X n - k - 2 X n - k - 1 x n - k X n - k + l ' . x n - 2 x n - l x n
1 1 1 . . 1 1 1 0 0 0 0 . . 0 0 0 0 0 0 0
0 1 1 . . 1 1 1 0 0 0 0 . . 0 0 0 0 . . o o o
0 1 1 . . 1 1 1 1 0 0 0 . . 0 0 0 0 . . o o o
0 0 1 . . 1 1 1 1 0 0 0 . . 0 0 0 0 . . o o o
0 0 1 . . 1 1 1 1 1 0 0 . . 0 0 0 0 . . o o o

1 1 1 . . 1 0 0 0 0 0 0 . . 0 0 0 0 . . 0 1 1
1 1 1 . . 1 0 0 0 0 0 0 . . 0 0 0 0 . . 0 0 1
1 1 1 . . 1 1 0 0 0 0 0 . . 0 0 0 0 . . 0 0 1
1 1 1 . . 1 1 0 0 0 0 0 . . 0 0 0 0 . . o o o

d. A stuck-on fault at the transistor qi is equivalent to a
stuck-at one fault at line Xi. Therefore the single and the
multiple transistor stuck-on faults are detected.
e. Single or multiple stuck-open faults at transistors t i , t3
and q. Two successive vectors of Table 4 are sufficient to
detect this fault. The first vector must have Hamming
weight equal to k and the next one equal to k-1. Then the
output sequence will be (0, 0) while the expected sequence
is (0, 1) and the fault is detected.
f. Single or multiple stuck-open faults at transistors t2
and t5. Two successive vectors of Table 4 are sufficient to
detect this fault. The first vector should have weight equal
to k-l and the next one equal to k.
g. The stuck-on faults at transistors t3, t5. These faults are
handled by an n-dominant design similar to that in [9].
h. The stuck-on faults at transistors t2, U. These faults are
undetectable but the k-order comparator behavior is
unchanged after the occurrence of such a fault.
Furthermore, if a stuck-on fault at transistor tz or/and t4 is
followed by a detectable fault, the resulting fault is
detectable.
i. Single or multiple stuck-at one faults at lines V,,,, Z,. A
single vector with Hamming weight k is sufficient to test
these faults.

j. Single or multiple stuck-at zero faults at lines V,,,, Z1.
A single vector with Hamming weight k-1 is sufficient to
test these faults.
k. Single stuck-at faults at the XOR gates. From Table 3
we can easily see that each XOR gate receives during the
test phase all possible test vectors, thus it is tested
exhaustively. Besides the stuck at faults, depending on its
implementation many other faults can be detected.
1. For any type of faults that affect the CNCI module and
change its output sequence 0101 The reason is that the
CNCI module and the shift registers A and B do not share
any circuitry.
m. For the faults that affect the shift registers A or/and B
and modify the alternation of code words non-code words
generated by the shift registers.

IV. Applications

The error detection and correction procedure of the k-
EC/d-ED/AUED, k-EC/AUED, k-EC/d-UED and k-EC/d-
ED/m-ED codes consists of three steps. The first step is a
correction that takes place in the k-EC code part of the
received word. The second step is the computation of the
check symbols of the k-EC/d-ED/AUED, k-EC/AUED, k-
EC/d-UED and k-EC/d-ED/m-ED code corresponding to
the corrected part of the received word. The third step is a
comparison to find whether the received word and the

220

corrected one differ in more than k bit positions. We can
easily see that a (k+l)-order comparator is suitable for the
implementation of the third step.

We have to note that during the normal, fault free
operation of the error detection and correction circuit, the
received word and the corrected one differ in t bits, 1 I t 5
k, when a correctable error has occurred in the received
word and in more than k bits when an only detectable error
has occurred. The probability a correctable error to have
occurred in the received word is much smaller than the
probability the received word to be error free, while the
probability an only detectable error to have occurred is
extremely small. From the operation of the proposed k-
order comparator (Figure 2) we can see that it has static
power consumption when the compared words are not
identical. Then from the above we conclude that when the
proposed k-order comparator is used for the
implementation of the above codes it rarely has static
power consumption.

In the case that the k+l-order comparator is used for the
implementation of a k-EC/d-ED code in the cache tag
memory [9] the two operands (the search tag and the
accessed tag) that are compared may differ in t positions.
We consider the following cases :

t = 0. In this case the search tag and the accessed tag
are identical. Then the static power consumption of the
(k+l)-order comparator is equal to zero.

0 < t < k. In this case an error has occurred in the
accessed or the search tag. The probability an error to have
occurred in the accessed or search tag is very small thus
the (k+l)-order comparator rarely has static power
consumption.

k < t. In this case the search tag and the accessed tag
correspond to different blocks of main memory. In this
case we have to distinct direct mapped caches and f-way
set associative caches. In direct mapped caches just one
(k+l)-order comparator is used. Since direct mapped
caches with cache sizes greater than 8 Kbytes have m i s s
ratio m, m I 6.6% [15, p.4211 we conclude that only for
the m% of the comparisons we will have static power
consumption in the (k+l)-order comparator. In f-way set
associative caches f (k+l)-order comparators are used.
The usual value of f is 2 or 4. Then for each search f-1
(k+l)-order comparators consume static power, also
another (k+l)-order comparator in the m% (in this case m
< 5.4%) [15, p.4211 of the cases consume power.
Therefore, for f-way set associative caches the static power
consumption of the (k+l)-order comparators is significant
and should be taken into account. Similar comments with
respect the static power consumption can be made for the
application of the (k+l)-order comparator in broadcast
networks .

The above analysis implies that the proposed k-order
comparators are suitable for the implementation of the
(k-1)-EC/d-ED/AUED, (k-1)-EC/AUED, (k-1)-EC/d-

UED, (k- 1)-EC/d-ED/m-ED codes or the implementation
of a (k-1)-EC/d-ED code in the tag part of a cache memory
with direct mapped organization. However for cache
memories with f-way set associative organization and
broadcast networks k-order comparators with zero static
power consumption should be designed. We are currently
working to this direction.

References

[11 M. Nicolaidis, "Self-Exercising Checkers for Unified Built-in
Self-Test (UBIST)", IEEE Trans. on CAD, Vol. 8, No 3,
March 1989.

[2] B. Bose and D.K. Pradhan, "Optimal unidirectional error
detecting correcting codes", IEEE Trans. Comput., Vo1.C-3 1,
pp.564-568, June 1982.

D.J. Lin and B. Bose, <<Theory and Design of t-Error
Correcting and d (d>t)-Unidirectional Error Detecting (t-
EC/d-UED) Codes>>, IEEE Trans. Comput., April 1988, pp.
433-439.

[4] T.R.N. Rao, E. Fujiwara, "Error-Control coding for computer
systems. " Prentice-Hall International.

[5] M. Blaum and H.V. Tilborg, "On t-Error CorrcctinglAll
Unidirectional Error Detecting Codes", IEEE Trans. Comp.

[6] D. Nikolos, "Theory and Design of t-Error Correctindd-Error
Detecting (t<d) and All Unidirectional Error Detecting
Codes." IEEE Trans. Comp., Feb. 1991, pp.132-142.

[7] D. Nikolos, and A. Krokos, "Theory and Design of t-Error
Correcting, k-Error Detecting and d-Unidirectional Error
Detecting Codes with d>k>t.", IEEE Trans. on Comput.,

[8] Jien-Chung Lo and Eiji Fujiwara, "Probability to Achieve
TSC Goal", IEEE Trans. on Comput., April 1996.

[9] H.T. Vergos and D. Nikolos, "Efficient Fault Tolerant Cache
Memory Design", Micropr. and Microprogr., The Euromicro
Journal, 41 (1995) pp. 153-169.

[lo] W. C. Carter and P. F. Schneider, "Design of dynamically
checked computers", in Proc. 41h Cong. IFIP, Edinburgh,
Scotland, vol. 2, pp. 878-883, Aug. 5-10, 1968.

[I I] D. A. Anderson, "Design of self-checking networks using
coding techniques", Coord. Sci. Lab., Univ. Illinois, Urbana,
IL, Tech. Rep. R-527, 1971

[12] M. Nicolaidis and B. Courtois, "Strongly Code Disjoint
Checkers", IEEE Trans. Comput., June 1988.

"Principles of
CMOS VLSI Design, A systems Perspective" , 2nd ed.,
Addison Wesley.

141 V.G. Oklobdzija and P.G. Konijanic, "On testability of
CMOS-domino logic, " in Proc. 14'h Int. Symp. Fault-
Tolerant Comput., June 1984.

151 J.L. Hennessy & D.A. Patterson, "Computer Architecture a
Quantitive Approach", Morgan Kaufmann Publishers Inc.

161 C. Metra, Jien C. Lo "Compact and High Speed Berger
Code Checker" 2nd IEEE Int. On-Line Testing Workshop,
Biarritz, France July 8-10, 1996, pp. 144-149.

[171 X. Kavousianos, D. Nikolos "Self-Exercising k-order
Comparators: Design and Applications" CTI TR 97.1.9

[3]

NOV. 1989, pp. 1493-1501.

April 1992, pp. 41 1-419.

131 Neil H. E. Weste, Kamran Eshraghian,

221

