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Abstract 

In this paper we give a systematic method to design Self 
- Exercising (SE) [ 11 self testing k-order comparators. The 
k-order comparator is defined as a combinational circuit 
that compares two operands and decides if these differ in 
less than k bits. According to this definition the usual 
equality comparator is the 1st-order comparator. Also in 
this paper we discuss the applicability of the k-order 
comparators in the implementation of (k- 1)-EC/AUED, 
(k-1)-EC/d-ED/AUED, (k- 1)-EC/d-UED and (k-1)-EC/d- 
ED/f-UED codes [2-7] as well as in the design of a fault 
tolerant cache memory [9] and broadcast networks. 

I. Introduction 

Self Checking Circuits (SCC) [lo] are widely used in 
applications with high reliability requirements, due to their 
ability to detect errors on line during the normal system 
operation. The type of errors covered include those caused 
by permanent, transient as well as intermittent faults. A 
SCC consists of a functional circuit, the output words of 
which belong to a certain code, and a checker that 
monitors the output of the functional circuit and indicates 
whether a code word or a noncode word has appeared. 

To achieve the totally self-checking goal (i.e., the first 
erroneous output of a functional block is signaled by the 
checker) [8] the checker was proposed to be Totally Self- 
Checking (TSC) [ll] or strongly Code Disjoint (SCD) 
1121. However the achievement of the totally self- 
checking goal in practice depends on the actual input 
vectors that the checker receives during the operation of 
the functional unit, which usually differs from application 
to application. 

In [1] it was shown that Self-Exercising (SE) Self- 
Testing or Strongly Code Disjoint checkers are more close 
to achieve the Totally Self-checking goal than TSC and 
SCD checkers. Besides a SE checker have the advantage 
that can be designed to be self-testing or strongly code 

disjoint for a more realistic fault model than TSC and SCD 
checkers. In this work we give a systematic method to 
design SE self-testing k-order comparators. SE self-testing 
checkers were defined in [ 11 as follows: 
Definition. The self-exercising checker is self-testing with 
respect to a fault set F if for each fault f in F, either the 
checker receives during normal operation a code input that 
produces a noncode output, or a noncode output is 
produced to primary outputs (Zo, 2,) (figure 1) due to the 
test phase. 

SE self-testing k-order comparator is suitable for a wide 
range of applications. As we will see in section IV the k- 
order comparator can be used in the implementation of (k- 

and (k-1)-EC/d-ED/f-UED codes. Also the k-order 
comparator can be used for the implementation of a new 
way of exploitation of the (k-1)-EC/d-ED code, well suited 
to the tag part of cache memories 191. As it was shown in 
[9] this implementation is faster and requires significantly 
less hardware than the classical implementation of these 
codes. 

The implementation of the (k-1)-EC/d-ED code using a 
k-order comparator is also suitable in broadcast networks 
where in order to cope with errors occurring during the 
transfer of the packets the destination address is encoded in 
a (k-1)-EC/d-ED code. The classical implementation of 
the code implies that each host includes a (k-1)-EC/d-ED 
error decoder where the possible errors in the destination 
address are corrected and then the corrected destination 
address is compared with the host address. On the contrary 
using the k-order comparator the encoded destination 
address is compared in each host with the host address 
encoded in the (k-1)-EC/d-ED code. If the compared 
addresses differ in less than k bit positions a match is 
signaled. 

An obvious design of the k-order comparator consists 
of three modules. The first module is a comparator 
implemented as a row of XOR gates, whose outputs drive 
the inputs of a weight generator. The weight generator is 
implemented as a tree of full and half adders (this is the 
faster implementation among the already known) and its 

l)-EC/AUED, (k- 1)-EC/d-ED/AUED, (k- I)-EC/d-UED 
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output is compared with the number k using a magnitude 
comparator. The propagation delay of this implementation 
as well as its hardware cost is large. The k-order 
comparators we propose in this work are much more 
efficient, with respect to the required hardware and delay 
than the above described k-order comparators as well as 
the comparators used in [9]. 

__  
n 

11. Design Method 

The general structure of a self-exercising checker is 
given in Figure 1 (Figure 3 in [ 11). In our case the module 
named checker is the k-order comparator. In subsection A 
we give a systematic method to design the k-order 
comparator and in subsection B we give some 
experimental results. 

A. k-order Comparator Design. 

The structure of the k-order comparator is given in 
Figure 2. Module D is similar to the threshold function 
generator given in [16]. However a systematic method for 
designing such a circuit has not been given in [16]. In the 
sequel we will analyze the operation of the D module and 
we will derive the conditions under which the comparator 
can be designed, as well as the proper nmos and pmos 
transistor sizes (width and length). 

Let VI,,,, (VLMAX) be the minimum HIGH (maximum 
LOW) input voltage which is recognized as logic 1 (0) 
from a gate. 
Taking into account the above definitions and the 
definition of the k order comparator we conclude that 
module D must be designed in such a way that: 
V,,, 2 V~HMIN when less than k of the transistors 91, q2, . . ., 
q,, are conductive and Vu,, 2 VLMAX when at least k of 
them are conductive, where VIHMIN and VLMAX refer to the 
buffer consisting of two inverters in figure 2. We can see 
that when none of the transistors 91, q2, ..., qn is 
conductive then V,,,=5 volts because transistor t l  is 
permanently conductive. When one transistor qi, iE { 1, 2, 
. . ., n} starts to conducting then V,,, is dropping by a value 
that depends on the resistance ratio between the transistors 

qi and tl. For each additional conductive transistor q,, 
j e  { 1, 2, . . ., n}, V,,, drops a little more and the above 
design targets can be redefined as follows: 
V,,, 2 VIHM~N when k-1 of the transistors 41, q2, . . ., q,, are 
conductive and V,,, 5 V L M ~ x  when k of the transistors 91, 
q2, . . ., qn are conductive. It is obvious that the range of our 
interest is between the boundaries [VLMAX, VIHMINI. 

The following analysis is based on the basic DC 
equations given in [13, pp 51-52]. We start from the 
behavior of an nmos transistor. The threshold voltage of 
nmos is V,,>O. We consider that Vg=Vdd=5 volts, 

In the linear region we have vg,-v,>vds or equally 
Vs=Vgnd=O Volts and Vd=Vuut. 

Vdd-Vtn >Vout and the current is 

Idsn = P n  ’ (Vdd - vtn)‘ - . [ “I 2 

In the saturation region the condition is V,,ut>Vdd-Vtn 
and the current is 

(Vdd - V t n ) 2  , where P, = KP,, .T W” 
Idsn = PII ’ 0 

L L n  

(KP is the Spice parameter for  COX). 
In the region of our interest [VLMAX, VIHMIN], we have 

VIHMIN<Vdd-Vtn therefore among the transistors ql ,  q2, . . ., 
qn the conductive ones are in the linear region, while the 
rest are in the cutoff region. 

The threshold voltage of a pmos transistor is VIP< 0. We 
consider Vg=Vg,,d, Vs=Vdd volts and Vd=V,,up In the linear 
region we have Vg, - V,, > Vd, or equally -Vdd - VIP > Vuut - 
v d d  or Vout< -VIP and the current is 

In the saturation region we have VoU,>-Vtp so 
2 

, where p, = KP .-. WP ( vdd 4- vtp ) 
LP 

‘dsp = P p  ‘ 2 
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In our case we have VLMAX >-VI, and -Vt,<l volt so in 
the region of interest [VILMM, VHMIN] the transistor tl is in 
the saturation region. 

conductive we get Ids,, = h . Idsn or equivalently 
Assuming that 3, of the transistors ql, qz, .., q, are 

2 

(1) 
' (Vdd - vtn ) ' vout - vout 

L ' P n  ('dd + 'tp )? 
-X2+2'((Vdd-Vtn)'X , 

The function f (  x) = is maximized 
('dd 4- vtp )? 

at the point x=Vdd-Vtn and f(x) is monotone increasing for 
x<Vdd-Vtn. We are interested in the region [VLMAX,VWMIN] 
so we assume that Vout<Vdd-Vtn. Then taking into account 
the monotony of the function we conclude that when 
Vout2V1~MI~ we have f(V,&f(VHMIN). According to the 
definition of the k-order comparator when k-1 of the 
transistors 91, q,, ..., qn are conductive the output voltage 
must satisfy the condition Vout2VIHM~~. Setting h=k-1 in 
equation (1) we get 

(2) P P  - > (k - 1) 2 ( v d d  - Vtn ). v ~ M ,  - v & M ~  

P n  - ( vdd $- vtp )2 
For VoutlVIL~Ax we get f(Vout)<f(V1HMIN). According to 

the definition of the k-order comparator when k of the 
transistors 91, q2, ..., qn are conductive the output voltage 
must satisfy the condition VoutlVIL~AX. Setting h=k in 
equation (1) we get 

P p  
2 

(3) 

Taking into account that P#,=(KPIJKP,).W/L with 
W=Wfl,  and L=L&,, from relations (2) and (3) we get : 

2 ' ( v d d  - Vtn ) ' vI,M/.X - v,,MAx - 5 k .  
P n  ('dd +'tp)L 

2 
mn 

U P  ('dd + 'tp 

' (vdd - vtn ' vlHMIN - vlHMIN < 5 (k - 1). -. 
L 

(4) < k . - .  w" ' ('dd - vtn) ' 'ILMAX - vkMAX 

WP ('dd + vtp 

Relation (4) implies 

The relation above gives all the possible values of k for 
which a k-order comparator can be designed. 

Relation (4) is used to determine the boundaries for 
W L ,  so as the k-order comparator to satisfy the conditions 
that initially have been set. After the specification of these 
boundaries, the designer has only to select the appropriate 
values of W,, L,, W,, L, ~ 

Taking under consideration the fact that the circuit 

consists of only one pmos transistor (tl) and n nmos 
transistors (41, q2, ..., q,), W,, Ln must be both minimum 
for area optimization. On the other hand, large values of 
WJL, reduce the transition time, optimizing in that way 
the design for delay. 

B. Experimental Results and Discussion. 

For our experiments we used the following tools : 
Alliance Cad System 3.0 ( Graphic Layout Editor V1.lO, 
Netlist extractor V1.10 ). 
Cazm: circuit analyzer using macromodeling. 
Sigview: X11 tool for displaying Analog and Digital 
Simulation Data. 

The technology that we used for our experiments is the 
SCN08H with minimum feature size 1.0 micron. Some 
typical values for this technology are V,=0,7522 volts 
Vt,=-0,8433 volts, KP,=1 .207.10-4 and KP,=3.434.10". 

We simulated the output buffer consisting from two- 
inverters in figure 2 to find its transition region [V,, VH]. 
Then we selected the values VIHMIN = 2,5 volts and VKMAx 
= 1,9 volts in order to satisfy the condition VIHMIN>VH and 
VEMAX<VL. For these values we have noise margins 
NML=1,90 volts and NM~=2,49 volts. 

With the above values for noise margins we can design 
k-order comparators with ke  [l,  61. Here we laid emphasis 
on large noise margins. Shortening the noise margins we 
can design comparators for greater values of k. 

For k-order comparators with k=2 and k=3 we 
calculated the theoretical boundaries of W L .  For each 
such range we selected specific values for W L  with step 
0.25 and for each value we designed two k-order 
comparators, one for area and the other for delay 
optimization. The selected values for W,, L,, W,, L, for 
each case of optimization are : 
area oDtimization: W,=Ip, L,=lp, W&, = W L  
delay optimization: W,=4p, Ln=l p, W&,= 4 W L  

For the area optimized designs we have selected for 
W/L values with step 0.5 because a step equal to 0.25 
leads to very large pmos transistor, and thus excessive area 
requirements. For example if we select the value 
W/L=3.75 then for the area optimized designs we have 
W&,=3.75 and the minimum values for W,, L, are 15 and 
4 respectively, while for W/L=3.5 we have W,=7, L,=2. 

The timing analysis of the k-order comparator [17] 
implies that the circuit is getting faster when the value of 
W,/L, increases. So for the delay optimization we should 
select the maximum possible value for W,/L,. For L, we 
selected the minimum possible value ly .  For W, we 
selected the value 4p to avoid excessive increase of W,. 

For each circuit we derived with simulation the values 
of Do and D1 where Do and D1 are the delays for the 
transitions 1 4 0  and 0+1 respectively. Do time was 
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Table 1 2-order comparators for n=16 

WIL 

6,25 
6,5 
6.75 

Area ophizatim I Delay OptirrdTdti m 
w P 4  m(m) Dl(m) k(p)l Wp Lp m(m) Dl'(m) k (p )  

I 13 1 2,W 1.78 77 

Area optimization Delay optimization 
Wp Lp DO (ns) D1 (ns) Area(pm) Wp Lp DO (ns) D1 (ns) Area(p") 

25 1 2,16 1,51 89 
13 2 3,23 2.03 42 26 I 2,29 1,5 90 

27 1 2 3 8  14R 91 

- ~ .  

7 2 3,35 2,68 30 

4 1 3.67 2,42 20 

9 2 4,14 2,37 34 

14 1 2,16 1,73 78 
15 1 2,24 1,7 79 
16 1 2,35 1,67 80 
17 1 2,5 1,64 81 
18 1 2,6 1,61 82 
19 1 2.73 1.59 83 

5 1 5,13 2,24 21 I 20 1 3112 1:57 84 I 
irrd2arion : m=lLlFI  

Table 2 3-order comparators for n=16 

1 7 1 ,75 1 3,59 1,9 23 I jg 2,44 1:47 z3 ! 
7,25 2,59 1,47 
7,5 3,94 1,91 46 30 2,83 1,46 94 
7,75 2,95 1,44 95 

Delay Optimization Wn=4 Ln=l 
Theoritical boundaries [6092,7641] 

Area Optimization Wn=l Ln=l 

measured for the case where exactly k nmos transistors 
started to conducting simultaneously. This is the worst case 
since from the timing analysis [17] we derived that the 
discharging time is reduced as the number of conductive 
nmos increases. 

Looking at the experimental results (Tables 1,2) we can 
make some observations : 
1. As it was expected, the design for delay optimization 
gives smaller delay than the design for area optimization. 
However, the difference becomes smaller as the order of 
the comparator increases. Besides that, W/L increases as 
the order of the comparator increases and for the case of 
delay optimization (where Wn/Ln=4) W, is getting 
excessively large. 
2. As the value of W&, increases the value of D1 
becomes smaller as it was commented in [17]. 
3. For each k-order comparator we observe that as WIL 
increases, Do increases too, so for area as well as for delay 
optimized designs. This happens because in both cases we 
keep &, constant and we change the value of pp. As we can 
see from (5) in [17] p, influences load capacity CL, so 
when pp increases, CL increases and Do is getting worse. 

111. Test Vector Generator. 
In the case of the k-order comparator the test Vector 
Generator (Figure 1) consists of two n-bit shift registers A 
and B (Figure 3), where n is the length of each input 
vector. In each shift register the output of the last cell 
drives the input of the first cell through an inverter. Shift 
register B is initialized with the all-zero state while the 
shift register A is initialized with the state (1 .... 10 ....... 0) 
where the count of ones and zeroes is respectively equal to 
k and n-k and the least significant bit is at the left. 

Figure 3. Test Vectors Generator 

In Table 3 we give the sequences that are generated by 
the shift registers A and B. When the XOR gates receive 
as inputs the vectors of Table 3 generate the sequence of 
vectors presented in Table 4. From Table 6 we can see that 
module D receives in turn vectors with Hamming weight k 
and k-1 respectively. Therefore, during the test phase 
when D is fault free its output will be in turn equal to 
zero and one. Taking into account the above and Figure 1 
we conclude that the module CNCI can be realized by a 
flip-flop. This flip-flop changes its state at every clock 
pulse and generates the sequence 0101. The period of the 
clock input of the flip-flop should be half the period of the 
clock input of the shift registers A and B. Then during the 
test phase and for fault free operation the outputs Zo, Z, 
will be double-rail encoded. From Table 3 we can see that 
the self-exercising k-order comparator of length n is tested 
by a test set consisting of 4n vectors. 

The SE k-order comparator of Figure 2 is self testing 
with respect to the following faults: 
a. Single or multiple stuck-at zero faults at lines X i ,  X2, 
..., Xn. From Table 4 we can see that for each line Xi, 15 
i s  n, there exist an input vector X with Hamming weight 
equal to k and Xi=l. Therefore, when D receives as input 
the vector X and Xi is stuck-at zero the output of D will be 
equal to one while it was expected to be equal to zero. 
Then the output &, Z1 is not double-rail encoded and the 
fault is detected. We can easily see that the vectors of 
Table 4 with Hamming weight equal to k detect also all 
multiple stuck-at zero faults. 
b. Single or multiple stuck-at one faults at lines X i ,  X2, 
..., Xn . From Table 4 we can see that for each line Xi, I5 
i< n, there exist an input vector X with Hamming weight 
equal to k-1 and Xi=O. Therefore, when D receives as 
input the vector X and Xi is stuck-at one the output of D 
will be equal to zero, while is was expected to be equal to 
one. Then the output &, Z1 is not double-rail encoded and 
the fault is detected. The vectors of Table 4 with 
Hamming weight equal to k-1 detect also all multiple 
stuck-at one faults. 
C. A stuck-open fault at the transistor qi is equivalent to a 
stuck-at zero fault at line Xi. Thus the single and multiple 
transistor stuck-open faults are detected. 

2 19 



Table 3 

4 A2 4 .. 4 . 3  4 - 2  A-l 4 &I &2 &3 .. 4 2  %I 

1 1 1 . . 1  1 1  1 0  0 o . . o  0 0 
1 1 1 . . 1 1 1 1 0 0 0 . . 0 0 0  
1 1 1 . . 1  1 1  1 1  0 o . . o  0 0 
1 1 1 . . 1 1 1 1 1 0 0 . . 0 0 0  
1 1 1 . . 1 1 1 1 1 1 0 . . 0 0 0  

1 1 1 . . 1 0 0 0 0 0 0 . . 0 0 0  
1 1 1 . . 1 0 0 0 0 0 0 . . 0 0 0  
1 1 I . . 1 1 0 0 0 0 0 . . 0 0 0  
1 1 1 . .  1 1  0 0 0 0 0 .. 0 0 0 
1 1 1 . . 1 1 1 0 0 0 0 . . 0 0 0  
1 1 1 . . 1 I 1 0 0 0 0 . . 0 0 0  

Eh Bz B3 '. &-2 &.I & BRkcl b 2  BMrl3 BhkM .. h . 3  h .2  h.1 
0 0 0 . .  0 0 0 0 0 0 0 . . o  0 0 0  
1 0 0  
1 0 0  
1 1 0  
1 1 0  

0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  

Table 4 

0 0 0 0 0 0 o . . o o o o  
0 0 0 0 0 0 o . . o o o o  
0 0 0 0 0 0 o . . o o o o  
0 0 0 0 0 0 0 . . 0 0 0 0  

0 0 0 0 0 0 0 . . 0 1 1 1  
0 0 0 0 0 0 0 . . 0 0 1 1  
0 0 0 0 0 0 0 . . 0 0 1 1  
0 0 0 0 0 0 0 . . 0 0 0 1  
0 0 0 0 0 0 0 . . 0 0 0 1  
0 0 0 0 0 0 o . . o o o o  

X I  x, x, .. X k - 2 X k - l  X k  X k + l  X k + 2  X k + 3  X k c 4  . .  X n - k - 2  X n - k - 1  x n - k  X n - k + l  ' .  x n - 2 x n - l  x n  
1 1 1 . . 1  1 1  0 0 0 0 . .  0 0 0 0 0 0 0  
0 1 1 . . 1  1 1  0 0 0 0 . .  0 0 0 0 . . o o o  
0 1 1 . . 1  1 1  1 0  0 0 . .  0 0 0 0 . . o o o  
0 0 1 . . 1  1 1  1 0  0 0 . .  0 0 0 0 . . o o o  
0 0 1 . . 1  1 1  1 1  0 0 . .  0 0 0 0 . . o o o  

1 1 1 . . 1 0 0 0 0 0 0 . . 0  0 0 0 . . 0 1 1  
1 1 1 . . 1  0 0 0  0 0 0 . .  0 0 0 0 . . 0 0 1  
1 1 1 . . 1  1 0 0  0 0 0 . .  0 0 0 0 . . 0 0 1  
1 1 1 . . 1 1 0 0 0 0 0 . . 0  0 0 0 . . o o o  

d. A stuck-on fault at the transistor qi is equivalent to a 
stuck-at one fault at line Xi. Therefore the single and the 
multiple transistor stuck-on faults are detected. 
e. Single or multiple stuck-open faults at transistors t i ,  t3 
and q. Two successive vectors of Table 4 are sufficient to 
detect this fault. The first vector must have Hamming 
weight equal to k and the next one equal to k-1. Then the 
output sequence will be (0, 0) while the expected sequence 
is (0, 1) and the fault is detected. 
f. Single or multiple stuck-open faults at transistors t2 
and t5. Two successive vectors of Table 4 are sufficient to 
detect this fault. The first vector should have weight equal 
to k-l and the next one equal to k. 
g. The stuck-on faults at transistors t3, t5. These faults are 
handled by an n-dominant design similar to that in [9]. 
h. The stuck-on faults at transistors t2, U. These faults are 
undetectable but the k-order comparator behavior is 
unchanged after the occurrence of such a fault. 
Furthermore, if a stuck-on fault at transistor tz or/and t4 is 
followed by a detectable fault, the resulting fault is 
detectable. 
i. Single or multiple stuck-at one faults at lines V,,,, Z,. A 
single vector with Hamming weight k is sufficient to test 
these faults. 

j. Single or multiple stuck-at zero faults at lines V,,,, Z1. 
A single vector with Hamming weight k-1 is sufficient to 
test these faults. 
k. Single stuck-at faults at the XOR gates. From Table 3 
we can easily see that each XOR gate receives during the 
test phase all possible test vectors, thus it is tested 
exhaustively. Besides the stuck at faults, depending on its 
implementation many other faults can be detected. 
1. For any type of faults that affect the CNCI module and 
change its output sequence 0101 ..... The reason is that the 
CNCI module and the shift registers A and B do not share 
any circuitry. 
m. For the faults that affect the shift registers A or/and B 
and modify the alternation of code words non-code words 
generated by the shift registers. 

IV. Applications 

The error detection and correction procedure of the k- 
EC/d-ED/AUED, k-EC/AUED, k-EC/d-UED and k-EC/d- 
ED/m-ED codes consists of three steps. The first step is a 
correction that takes place in the k-EC code part of the 
received word. The second step is the computation of the 
check symbols of the k-EC/d-ED/AUED, k-EC/AUED, k- 
EC/d-UED and k-EC/d-ED/m-ED code corresponding to 
the corrected part of the received word. The third step is a 
comparison to find whether the received word and the 
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corrected one differ in more than k bit positions. We can 
easily see that a (k+l)-order comparator is suitable for the 
implementation of the third step. 

We have to note that during the normal, fault free 
operation of the error detection and correction circuit, the 
received word and the corrected one differ in t bits, 1 I t 5 
k, when a correctable error has occurred in the received 
word and in more than k bits when an only detectable error 
has occurred. The probability a correctable error to have 
occurred in the received word is much smaller than the 
probability the received word to be error free, while the 
probability an only detectable error to have occurred is 
extremely small. From the operation of the proposed k- 
order comparator (Figure 2) we can see that it has static 
power consumption when the compared words are not 
identical. Then from the above we conclude that when the 
proposed k-order comparator is used for the 
implementation of the above codes it rarely has static 
power consumption. 

In the case that the k+l-order comparator is used for the 
implementation of a k-EC/d-ED code in the cache tag 
memory [9] the two operands (the search tag and the 
accessed tag) that are compared may differ in t positions. 
We consider the following cases : 

t = 0. In this case the search tag and the accessed tag 
are identical. Then the static power consumption of the 
(k+l)-order comparator is equal to zero. 

0 < t < k. In this case an error has occurred in the 
accessed or the search tag. The probability an error to have 
occurred in the accessed or search tag is very small thus 
the (k+l)-order comparator rarely has static power 
consumption. 

k < t. In this case the search tag and the accessed tag 
correspond to different blocks of main memory. In this 
case we have to distinct direct mapped caches and f-way 
set associative caches. In direct mapped caches just one 
(k+l)-order comparator is used. Since direct mapped 
caches with cache sizes greater than 8 Kbytes have m i s s  
ratio m, m I 6.6% [15, p.4211 we conclude that only for 
the m% of the comparisons we will have static power 
consumption in the (k+l)-order comparator. In f-way set 
associative caches f (k+l)-order comparators are used. 
The usual value of f is 2 or 4. Then for each search f-1 
(k+l)-order comparators consume static power, also 
another (k+l)-order comparator in the m% (in this case m 
< 5.4%) [15, p.4211 of the cases consume power. 
Therefore, for f-way set associative caches the static power 
consumption of the (k+l)-order comparators is significant 
and should be taken into account. Similar comments with 
respect the static power consumption can be made for the 
application of the (k+l)-order comparator in broadcast 
networks . 

The above analysis implies that the proposed k-order 
comparators are suitable for the implementation of the 
(k-1)-EC/d-ED/AUED, (k-1)-EC/AUED, (k-1)-EC/d- 

UED, (k- 1)-EC/d-ED/m-ED codes or the implementation 
of a (k-1)-EC/d-ED code in the tag part of a cache memory 
with direct mapped organization. However for cache 
memories with f-way set associative organization and 
broadcast networks k-order comparators with zero static 
power consumption should be designed. We are currently 
working to this direction. 
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