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model interconnect with bends. Hence, the proposed cascading method
is more appropriate.

It is important to note that the given formulas of the model param-
eters are fit to our specific test chip and process. Moreover, these for-
mulas are only valid within a geometrical range, which is within the
coverage of our test structures. For the corner segments, the valid range
for the width is from 3 to 20 �m and the angles are 45� and 90�. How-
ever, as stated in Section II-A and [2], most of the on-wafer intercon-
nects used in RFICs are within this range.

V. CONCLUSION

An equivalent circuit model is proposed for real case on-wafer
CMOS RFIC interconnects. The equivalent circuit of the entire com-
plex shaped interconnect is obtained by cascading basic sub-segment
models according to the physical structure. The model parameters are
extracted from the on-wafer �-parameter measurements and formu-
lated into empirical expressions. The validity of the proposed model
is proved by the measurements of the test structures within a tolerance
of 9%. It is highlighted that with the geometrical information, i.e.,
the length, width and angel of the bend, most of the commonly used
on-wafer RF CMOS interconnect can be characterized by using this
proposed model. Moreover, given the compact nature of the model, it
can be easily implemented into commercial EDA tools.
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Multilevel-Huffman Test-Data Compression for IP Cores
With Multiple Scan Chains

Xrysovalantis Kavousianos, Emmanouil Kalligeros, and
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Abstract—Various compression methods have been proposed for tackling
the problem of increasing test-data volume of contemporary, core-based
systems. Despite their effectiveness, most of the approaches that are based
on classical codes (e.g., run-lengths, Huffman) cannot exploit the test-ap-
plication-time advantage of multiple-scan-chain cores, since they are not
able to perform parallel decompression of the encoded data. In this paper,
we take advantage of the inherent parallelism of Huffman decoding and
we present a generalized multilevel Huffman-based compression approach
that is suitable for cores with multiple scan chains. The size of the encoded
data blocks is independent of the slice size (i.e., the number of scan chains),
and thus it can be adjusted so as to maximize the compression ratio. At the
same time, the parallel data-block decoding ensures the exploitation of most
of the scan chains’ parallelism. The proposed decompression architecture
can be easily modified to suit any Huffman-based compression scheme.

Index Terms—Huffman encoding, test data compression.

I. INTRODUCTION

In order to meet the tight time-to-market constraints, contempo-
rary digital systems embed predesigned and preverified Intellectual
Property (IP) cores. The structure of IP cores is often hidden from
the system integrator and as a result, neither fault simulation, nor
test pattern generation can be performed for them; only a precom-
puted test set is delivered along with such a core. Various methods
have been proposed for reducing both the test-data volume and
test-application time of unknown-structure IP cores [1]–[7], [9], [10],
[12]–[18], [20]–[25]. Many of them encode directly the statically
or dynamically compacted test sets using various (usually classical)
compression codes like Golomb [2], [3], [21], alternating run-length
[4], frequency-directed run-length (FDR) [5], [18], statistical codes
[7], [10], [12], nine-coded-based [23], and combinations of codes [22].
Unfortunately, these code-based methods cannot exploit the existence
of multiple scan chains in a core. This shortcoming stems from the
fact that parallel decompression is not possible due to either the nature
of the code or the way it is used in the specific method. For example,
the decoding of the various run-length codes is performed in a strictly
serial manner. On the other hand, the straightforward approach for
parallelizing selective Huffman decoding (i.e., by encoding slice-sized
data blocks and then by loading the scan chains in parallel with
a whole slice after the decoding of every codeword) leads to both
large decompressors and very low compression ratios. Since the vast
majority of the cores have multiple scan chains, a serial-in, parallel-out
register must be used for spreading the decoded data in them and thus,
no test-time savings, despite the existence of multiple scan chains, are
possible. The solution of using multiple decoders in parallel is too
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Fig. 1. (a) Scan chains, clusters, and blocks. (b) Pseudorandom generator.

expensive and thus inapplicable. Hence, although classical codes com-
pare favorably, in terms of compression ratio, against many methods
for multiple scan-chain cores, they are rarely used for such cores.

In this paper, we take advantage of the inherent parallelism of
Huffman decoding (a whole block is decoded in a single clock cycle,
after codeword identification), and we propose a Huffman-based
compression scheme that exploits most of the parallelism offered
by the multiple scan chains of a core. Specifically, we generalize
the multilevel Huffman encoding of [12], and we present a novel
and low overhead decompression architecture. Since the size of the
encoded data blocks is independent of the slice-size (i.e., the number
of scan chains), the former can be adjusted to maximize the compres-
sion ratios, while the parallel data-block decoding offers significant
test-time improvements. Moreover, the decoder can be easily modified
to support any Huffman-based compression scheme.

II. COMPRESSION METHOD

Consider a core with ��� balanced scan chains of ��� scan cells
each [see Fig. 1(a)]. Each test cube (test vector with � values) is par-
titioned into ��� consecutive slices of ��� bits and every slice is par-
titioned into clusters of size CS. If ��� is not divided exactly by CS,
then the last cluster of all slices is shorter than the others. More for-
mally, each test cube is partitioned into ��� � �������� test clusters
and the test set consists of totally �� � ��� � �������� � ������

clusters (������ is the number of test cubes).
The proposed encoding scheme is based on pseudorandom bit gen-

eration and multilevel Huffman coding. As pseudorandom generator
we use a small internal-XOR linear feedback shift register (LFSR) and
a phase shifter [see Fig. 1(b)], which can produce pseudorandom clus-
ters of size CS. The phase shifter is initially designed as proposed in
[19] and, then, for being able to choose among different sequences of
pseudorandom clusters for the same time period, we add one extra input
(i.e., one XOR gate) to each XOR tree [11]. A single MUX is used for
selecting among various cells of the LFSR and its output is connected
to the extra input of every XOR tree. For every different cell selected
by the MUX, different linear functions are implemented by the phase
shifter and a different sequence of pseudorandom clusters is generated.
Hereafter, every time we refer to the pseudorandom cluster-sequence
of (inverted) LFSR cell �, we will mean the cluster sequence generated
when the (inverted) output of LFSR cell � is driven to the extra input of
the XOR trees.

According to the proposed encoding scheme, the test clusters of each
slice are encoded from cluster 0 to cluster �������� � � [starting
from slice ��� � � down to slice 0; see Fig. 1(a)]. Therefore, for
every sequence of the test cubes, a sequence of TC test clusters is im-
plied. Throughout the decoding process, the LFSR advances its state

TC times and thus, the generator of Fig. 1(b) produces totally TC pseu-
dorandom clusters (i.e., each pseudorandom cluster corresponds to one
test cluster). If a test cluster is compatible with the corresponding pseu-
dorandom cluster, then the former is produced by the pseudorandom
generator. The volume of test clusters that are compatible with pseu-
dorandom ones is maximized by considering the cluster sequences of
more than one LFSR cells. Thus, if a test cluster cannot be matched by
the corresponding pseudorandom cluster of a cell’s cluster-sequence,
it may be compatible with the respective cluster of another cell’s se-
quence.

The LFSR is loaded only once, initially, with a random seed and the
pseudorandom cluster-sequences of all normal and inverted LFSR cells
with length equal to TC are generated. Then the test cubes are ordered
in������ iterations, so as to form the sequence of test clusters (one test
cube is selected in every iteration and its test clusters are appended at
the end of the sequence). Specifically, the��� ��������� test clusters
of every unordered test cube are compared at each iteration, against
the corresponding ��� � �������� pseudorandom clusters of every
normal and inverted LFSR cell. Then, a cube weight is calculated as
follows: for every test cluster of a cube that is compatible with the
corresponding pseudorandom cluster of a (normal or inverted) cell’s
sequence, the test cluster’s defined-bits volume is added to the cube
weight. The cube with the maximum weight is selected.

Next, a predetermined number of LFSR cells are iteratively selected.
At each iteration, a weight is calculated for every cell, which is equal
to the sum of the defined-bit volumes of all test clusters that are com-
patible with the corresponding pseudorandom clusters of that cell. The
cell with the maximum weight is selected and the test clusters which
are compatible with the corresponding pseudorandom clusters of that
cell are not further considered for the selection of the rest LFSR cells.

After the selection of the LFSR cells, each test cluster is either:
(a) compatible with at least one of the corresponding pseudorandom
clusters of the selected cells’ sequences or (b) not compatible with any
one of them. Clusters of category (a) are encoded using Cell encoding.
Specifically for generating them, the selection address of the MUX of
Fig. 1(b) is encoded, i.e., each Huffman codeword is used for enabling
an LFSR cell to drive the XOR trees’ extra input. Clusters of category
(b) are labeled as failed and a single Huffman codeword is used for dis-
tinguishing them from those of category (a).

In many cases, consecutive test clusters (cluster groups) can be
generated by using the same LFSR cell. We encode such groups with
a Cell-encoding codeword that indicates the selected cell, followed
by a Length encoding codeword indicating the number of consecutive
clusters that will be generated by using that cell (group length). The
group lengths are chosen from the following list of distinct lengths:
�
�	 ��	 � � � 	 ����, where �

��� 
 ��� 
����� (max_length is the
maximum number of consecutive test clusters that are compatible with
the corresponding pseudorandom clusters of an LFSR cell). Every
Cell-encoding codeword is followed by a Length-encoding one, if the
encoded test cluster is not a failed cluster.

The association of the test clusters of category (a) with the selected
LFSR cells is done in an iterative fashion: at each iteration, the pseu-
dorandom-cluster sequences of all selected cells are compared against
the test-cluster sequence. All successive pseudorandom clusters which
are compatible with the corresponding test clusters are grouped and
the largest group is selected. If its size is not equal to one of the distinct
lengths in the length list, it is set equal to the greatest possible distinct
length by removing some pseudorandom clusters from the end of the
group. If there is more than one maximum-sized group generated by
different cells, the one produced by the most frequently used cell is
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Fig. 2. Associating test clusters with LFSR cells (example).

selected, so as to skew the occurrence frequencies of the LFSR cells.
The test clusters matched by the pseudorandom clusters of the selected
group are not further considered in the remaining iterations.

For the test clusters of category (b) Block encoding is adopted. That
is, all failed clusters are partitioned into blocks of size BS, and the
blocks with the highest probabilities of occurrence are encoded using
selective Huffman coding [10]. Some blocks remain unencoded (failed
blocks) and are embedded directly in the compressed test set. Contrary
to [10] where an extra bit is used in front of all codewords, in the pro-
posed approach a single codeword is appended in front of only each
failed block (as in the case of failed clusters).

Example: Consider a core with ��� � �� and ��� � ��. Four
LFSR cells (A, B, C, and D) and four cluster-group lengths (1, 2, 4,
and 8) are used for encoding the test set. Assume that �� � � and
�� � �. Fig. 2 presents the sequence of the first 6 pseudorandom
clusters ��� � � � � �� of the selected cells (the cluster labels of cells B,
C, and D have been omitted), as well as the sequence of the first 6 test
clusters to be encoded (��� � � � � �� of the first cube). Each cluster �� in
gray is compatible with the corresponding test cluster ��. The largest
group of successive pseudorandom clusters that are compatible with
the corresponding test clusters is the group of ��-�� of cell C. How-
ever, the greatest distinct length that does not exceed the length of the
group is 4. Therefore, test clusters ��-�� are encoded as a group of size
4 (and are generated by using cell C), whereas pseudorandom cluster
�� is removed from the group and is used afterwards for encoding ��.
Failed test cluster �� is partitioned into two blocks. At the end of the en-
coding process, the four most frequently occurring blocks are encoded,
whereas the rest are marked as failed.

For simplifying the decoder, the same codewords are used for all
three encodings as proposed in [12] (the volumes of the selected cells,
list lengths, and encoded data blocks are equal). Thus, a codeword,
depending on the mode of the decoding process, corresponds to three
different kinds of information (and hence it is decoded differently):
to an LFSR cell (normal or inverted), to a cluster-group length or to
a data block. For efficiently compressing the test data, the Huffman
codewords are generated considering all three encodings. The proposed
generalized approach for multiple scan chains combines the advantages
of multilevel coding with the flexibility of choosing the best cluster and
block sizes, independently of the slice size.

III. DECOMPRESSION ARCHITECTURE

The proposed decompression architecture is shown in Fig. 3. The
Input Buffer receives the encoded data from the automatic test equip-
ment (ATE) channels in parallel (ATE_DATA) with the frequency of
the ATE clock (ATE_CLK), shifts them serially into the Huffman FSM

Fig. 3. Decompression architecture.

(finite-state machine) unit with the frequency of the system clock, and
notifies the ATE to send the next test data (Empty � �). When the
Huffman FSM recognizes a codeword, it sets Valid Code � � and
places on the bus CodeIndex a binary value. This value is used as the
Cell Selection Address of the pseudorandom generator [see Fig. 1(b)]
when the decoded cluster is not a failed one. Block and Cluster Group
Length units are combinational blocks (or lookup tables) that generate
respectively the encoded block or the group length corresponding to
CodeIndex, when the received codeword is either a Length-encoding
or a Block-encoding codeword. Since each block of a failed cluster
is either Huffman encoded or not (i.e., embedded as is into the com-
pressed data in the latter case), signal Select Huffman/ATE is used for
distinguishing these two cases. The selected data are driven in parallel
through a MUX to the Source Select unit. This unit receives pseudo-
random clusters and blocks of failed clusters in parallel and, depending
on the Select Cluster/Block signal, it gradually constructs the slice that
will enter the scan chains. In other words, each slice is first formed in
the Source Select unit in a number of clock cycles, and then is loaded
in the scan chains (and hence, the scan chains are not fed with decoded
data in every clock cycle).

The Controller, which is a state machine, waits until the first code-
word has been received (Valid Code � �), and if it indicates a non-
failed cluster, it stores the cell address to the CSR register (��	 
� �

�) and initiates the decoding of the next codeword (indicating the group
length). When its decoding has been completed, the Controller loads
Group Counter with the data returned by the Cluster Group Length
unit and sets Select Cluster/Block � �. The latter action enables pseu-
dorandom data to enter the Source Select unit in parallel, for a number
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Fig. 4. Source Select unit.

of clock cycles equal to the length of the group (in every cycle, CS bits
enter the Source Select unit). In each of these cycles, Group Counter
decreases and the LFSR evolves (���� �� � �). The produced pseu-
dorandom clusters are loaded in the Source Select unit until the end of
the group (Group Done � �). Every time a whole test slice is ready, it
is loaded in the scan chains.

In case that the first codeword indicates a failed cluster, the subse-
quent codewords are decoded as data blocks. For every encoded block,
the Controller sets Select Huffman/ATE � � and Select Cluster/Block
� � for driving the output of the Block unit (which contains the de-
coded block) into the Source Select unit. For every failed block, the
Controller sets Select Huffman/ATE � �, Select Cluster/Block � �,
and ���� � � for signaling the ATE to send the failed block, which is
driven in parallel to the Source Select unit (ATE_CLK is sampled, so as
the Source Select unit to be enabled to receive the data at the right mo-
ment). When all blocks of the failed cluster have been generated, the
LFSR is triggered once (���� �� � �) to pass from the state that
produces the pseudorandom cluster which corresponds to the current
failed cluster.

The Source Select unit [see Fig. 4(a)] receives cluster data from
the pseudorandom generator (encoded clusters—Cluster Data bus),
as well as block data either from the Block unit (Huffman encoded
blocks—Block Data bus) or from the ATE (failed blocks). The received
data are stored in the Scan Buffer which has size equal to that of a
slice (	��). The Scan Buffer consists of �	��
��� registers with size
equal to BS, grouped into � � �	��

�� groups of � � 
�
��

registers (a group has the size of a cluster and includes � blocks). The
Buffer Groups are loaded in a round robin fashion (Buffer Group � is
loaded after Buffer Group �� �). When Select Cluster/Block � �, the
Cluster Data bus (of width CS) loads, through the MUX unit, all reg-
isters of a group simultaneously (in one clock cycle), whereas when
Select Cluster/Block � �, the Block Data bus (of width BS) is driven to
every register (� clock cycles are needed for loading a whole group).
This operation is handled by the Controller through the use of � en-
able signals ����� � � � � ����������, one for each register in the group
[Buffer Group � is shown in Fig. 4(b)]. Totally, � � � enable signals
are generated for the whole Scan Buffer. In order for a cluster to be
loaded into Buffer Group �, all � enable signals of this group are acti-
vated. When a failed cluster is loaded into Buffer Group �, its registers
are enabled one after the other, until all the blocks of the failed cluster

TABLE I
COMPRESSION RESULTS

are loaded into the corresponding registers. When Scan Buffer is full,
the scan chains are loaded. Note that the Source Select unit allows the
encoded-block sizes to be independent of the slice size. Thus, a sim-
ilar unit can be utilized along with any Huffman-based compression
method for multiple-scan-chain cores.

IV. EVALUATION AND COMPARISONS

We implemented the proposed method in the C programming lan-
guage, and we performed experiments on a Pentium PC for the largest
ISCAS’89 benchmarks circuits using the dynamically compacted
Mintest test sets [8]. A primitive-polynomial LFSR of size 20 was
used, while each XOR tree of the phase shifter comprised three gates.
BS ranged from 5 to 10 (it was considered equal to the available ATE
channels), whereas CS ranged from 20 to 50. The run time was a few
seconds for each experiment.

In Table I the compression results of the proposed method for	�� �

��� ��� ��� and ���, and for 16 and 24 LFSR cells (labeled 16c and
24c) are shown (various CS and BS values were examined and the best
results are reported). In column 2, the sizes of the original Mintest
test sets are presented. It is obvious that compression improves as the
number of cells increases. The last column presents the reductions over
Mintest, considering the best results of the proposed method (bold-
faced).

We will next present comparisons against techniques suitable for un-
known structure IP cores, which have reported results for the Mintest
test sets. Methods [1], [14], [15], [17], [24], and [25] provide results
for different test sets, and thus no direct comparison can be made with
them. This is also the case for [13]. However, since [13] is a method that
utilizes LFSRs and Huffman encoding like the proposed one, we im-
plemented it and we performed experiments for the Mintest test sets,
using LFSR sizes between 40 and 80 and scan-chain volumes in the
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TABLE II
COMPRESSED DATA REDUCTION PERCENTAGES OVER OTHER TECHNIQUES

Fig. 5. TAT reduction.

range 5–40. No comparisons are provided against: 1) [6] since sev-
eral conditions have to be satisfied by a core nearby the CUT so as
to be used as decompressor and 2) [9] since its performance depends
on the scan-chain structure of the cores. Note that we do not compare
against approaches which employ fault simulation, and/or specially
constrained ATPG processes. Also, we do not consider methods that
use dictionaries, since they suffer from high hardware overhead.

In Table II, we present the improvements of the proposed ap-
proach over methods suitable for cores: 1) with a single scan chain
(Columns 2–11) and 2) with multiple scan chains (Columns 12–14).
The proposed approach performs better than all the other methods
except for the case of s38584 of [16], which provides a marginally
better result, and that of s38417 of [20]. However, the results reported
in [20] do not include control information of significant volume
should be also stored in the ATE for every core. Moreover, note that
the reduced performance of [13] is due to the application of LFSR
reseeding to the highly compacted Mintest test sets.

For assessing the test application time (TAT) improvements of our
method, we performed two sets of experiments, for the best cases of
Table I. In the first one, we study the TAT reduction achieved over the
case in which the test set is downloaded uncompressed (UNC) to the
core, using the same number of ATE channels. Fig. 5 presents the av-
erage (UNC:AVG), min (UNC:MIN), and max (UNC:MAX) improve-
ments for various values of � � ��������� for all benchmarks. It is
obvious that as� increases, the test-time gain is greater. In the second
set of experiments, we compare the test application time of the pro-
posed method against the single-scan-chain Multilevel Huffman ap-
proach of [12] for the ATE-channel volumes used in this paper. The best
results of the proposed method and [12] have been compared and the
average ([12]:AVG), min ([12]:MIN) and max ([12]:MAX) improve-
ments are shown in Fig. 5. The TAT gain is very high in all cases
(40%-81.6%). However, although the gain attributed to the parallel
loading of multiple scan chains is constant, the serialization of the de-
coded data in [12] is carried out faster as� increases and thus the test-
time reduction drops. We also compared the proposed method against
methods [13], [16], and [20], which are suitable for cores with mul-
tiple scan chains. The average TAT reduction achieved by the proposed
method over [13], [16], and [20] ranged, respectively, from 39.8% to

TABLE III
HARDWARE OVERHEAD (IN GATE EQUIVALENTS)

44.2%, from 82.7% to 89.1%, and from 15.2% to 46.3%, as � varied
from 8 to 24.

For assessing the area overhead of the proposed method, we syn-
thesized three decompressors for 8, 16, and 24 LFSR cells, assuming
10 ATE channels, ��� � ��, �� � 20 bits, and �� � 10 bits. The
Block and Cluster Group Length units were implemented as combina-
tional circuits. The overhead of the proposed approach, as well as that
of [2], [4], [7], and [12] are shown in Table III in gate equivalents (a gate
equivalent corresponds to a two-input NAND gate). The hardware over-
head of [10] is greater than that of [7]. Note that in our results we have
not considered the overhead of the Scan Buffer, since such a structure
is always required for reforming the decoded data (LFSR-based tech-
niques use a phase shifter). Furthermore, it can be avoided if the core
is equipped with a separate scan enable for each scan chain (the enable
signals shown in Fig. 4 can be used for driving the scan enables). It is
obvious that the area occupied by the proposed decompressor is com-
parable to that of the above techniques, even though the latter perform
the simpler and less hardware intensive serial decoding. The methods
of [16] and [20] have low hardware overhead but they do not offer as
high compression ratios as the proposed one.

One common decompressor can be used for testing, one after the
other, several cores of a chip. Units Huffman FSM, CSR, the LFSR and
the phase shifter can be implemented only once. If all cores have the
same number of scan chains, the Controller and the Source Select unit
can be also shared among them. Otherwise, the Source Select unit is
implemented by taking into account the core with the greatest number
of scan chains and the Controller is slightly modified so as to be able to
load only the proper part of the Scan Buffer for the rest cores (through
the activation of the proper subset of the enable signals). The rest de-
coder units (Block, Cluster Group Length, and the MUX of the pseu-
dorandom generator) must be implemented for every core. The area of
the latter units is equal to 7.7%, 14%, and 19.7% of the total area of
the decompressor for 8, 16, and 24 cells, respectively. Therefore, only
a small amount of hardware should be added for each additional core,
which can be almost eliminated if the Block and Cluster Group Length
units are implemented as lookup tables, and loaded with the specific
data of every core at the beginning of each test session. As shown in
[12], by sharing the same Huffman FSM unit, the compression ratio
suffers only a marginal decrease.

V. CONCLUSION

In this paper, we generalized the multilevel Huffman test-data com-
pression approach for IP cores with multiple scan chains, and we pre-
sented a low-overhead decompression architecture capable of gener-
ating whole clusters of test bits in parallel. The proposed method of-
fers reduced test-application times and high compression ratios. Also,
by making the sizes of the encoded data blocks independent of the slice
size, we demonstrated how Huffman-based test-data compression can
be applied to multiple scan-chain cores.
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Improving the Transition Fault Coverage of Functional
Broadside Tests by Observation Point Insertion

Irith Pomeranz and Sudhakar M. Reddy

Abstract—Functional broadside tests were defined to address overtesting
that may occur due to high peak current demands when tests for delay
faults take the circuit through states that it cannot visit during functional
operation (unreachable states). The fault coverage achievable by functional
broadside tests is typically lower than the fault coverage achievable by (un-
restricted) broadside tests. A solution to this loss in fault coverage in the
form of observation point insertion is described. Observation points do
not affect the state of the circuit. Thus, functional broadside tests retain
their property of testing the circuit using only reachable states to avoid
overtesting due to high peak current demands. However, the extra observ-
ability allows additional faults to be detected. A procedure for observation
point insertion to improve the coverage of transition faults is described. Ex-
perimental results are presented to demonstrate that significant improve-
ments in transition fault coverage by functional broadside tests is obtained.

Index Terms—Broadside tests, functional broadside tests, observation
points, overtesting, transition faults.

I. INTRODUCTION

Detection of delay faults requires the application of two-pattern tests.
In scan-based circuits, a broadside test [1] specifies a scan-in state de-
noted by �, and two primary input vectors denoted by �� and ��. We
denote a broadside test by ��� ��� ���. Application of the test starts by
scanning in �. The primary input vectors �� and �� are then applied in
functional mode. The scan-in state � together with �� define the first
pattern of the test. The next state reached under � and ��, together with
��, define the second pattern of the test. The final state reached after
the application of �� is scanned out.

Functional scan-based tests were defined as scan-based tests that
detect target faults using only states that the circuit can visit during
functional operation [2]. Based on this definition, functional broadside
tests were defined as broadside tests that detect faults using only states
that the circuit can visit during functional operation [3]. States that the
circuit can visit during functional operation are also called reachable
states. In general, a reachable state is a state that can be reached from
all the states of the circuit. An important property of a reachable state
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