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Abstract

This paper presents a new method for designing totally self-checking (TSC) Berger code checkers for any
number k of information bits, even for k"2r~1, taking into account realistic faults as stuck-at, transistor
stuck-open, transistor stuck-on and resistive bridging faults. Double- as well as single-output TSC checkers
are given. The proposed single-output TSC Berger code checkers are the "rst in the open literature. The
checkers designed following the proposed method are signi"cantly more e$cient, with respect to the required
area and speed, than the corresponding already known from the open literature checkers. ( 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Self-checking circuits (SCC) [1] are widely used in applications with high reliability require-
ments, due to their ability to detect errors on line during the normal system operation. The errors
covered include those caused by permanent, transient as well as intermittent faults. A SCC consists
of a functional circuit, whose output words belong to a certain code, and a checker that monitors
the output of the functional circuit and indicates if it is a code or a noncode word. The structure of
such a SCC is shown in Fig. 1.

The reliability of a SCC depends on the ability of its checker to behave correctly despite the
possible occurrence of internal faults. It has been shown that this is achieved when the checker
satis"es either the totally self checking (TSC) [2] or the strongly code-disjoint (SCD) [3] property.
In this paper we will take into account the TSC property. The TSC checker is a circuit which
satis"es the self-testing, fault secure and code disjoint properties [2,4].
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Fig. 1. Self-checking circuit.

De5nition 1. A circuit is self-testing for a set of faults F if, for every fault in F, the circuit produces
a noncode output for at least one code input.

De5nition 2. A circuit is fault secure for a set of faults F if, for every fault in F, the circuit never
produces an incorrect code output for all code inputs.

De5nition 3. A circuit is code disjoint if, during fault free operation, code inputs map into code
outputs and noncode inputs map into noncode outputs.

Some authors believe that the fault secure property is meaningless for checkers [5,6] while some
others believe that it is useful for all others except for the "nal checker [7].

It has been observed for many years that a large number of errors in VLSI circuits and compact
laser disks are of unidirectional type [8}10]. Berger codes [11] are the least redundant separable
codes among the all unidirectional error detecting (AUED) codes [12]. For k information bits, the
check part has length r"vlog

2
(k#1)w . There are two di!erent encoding schemes for Berger code:

B
0

and B
1
. The B

0
encoding scheme uses the binary representation of the number of 0's in the

information bits as the check symbol, whereas the B
1

encoding scheme uses the ones complement
of the number of 1's in the information bits.

Due to the wide use of Berger codes, several design methods of Berger code checkers were
proposed in the open literature [13}19]. Among them only the design methods given in [16}19]
can be used for designing Berger code checkers when the number of information bits is equal to 2r.
Taking into account that in most cases the information length is a power of two, we conclude that
this is a great disadvantage of the methods given in [13}15]. The checkers given in [13}17] are TSC
only with respect to single stuck-at faults; only the checkers designed in [18,19] are TSC with
respect to a realistic fault model [20] including node stuck-at, transistor stuck-open, transistor
stuck-on and resistive bridging faults. Apart from the above the checkers given in [19] have the
advantage that require less area and feature higher speed than the checkers proposed in [16}18].
However, the checkers proposed in [19] have static power consumption.

In this paper a new method for designing TSC Berger code checkers is proposed. The checkers
designed according to this method are TSC with respect to all node stuck-at, transistor stuck-on,
transistor stuck-open and resistive bridging faults. The proposed checkers are signi"cantly more
e$cient, with respect to area and speed, than the already known TSC Berger code checkers. Apart
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from this the proposed checkers have signi"cantly lower power consumption than the checkers
given in [19]. We use the B

1
encoding scheme, but the modi"cations for B

0
scheme are straight-

forward.
The rest of the paper is organised as follows. In Section 2 we give the proposed design method,

Section 3 presents the testability analysis, while comparisons are given in Section 4.

2. Design method

The design of the proposed Berger code checkers is based on the use of the k-weight threshold
circuit which is de"ned as follows.

De5nition. A single output circuit is called a k-weight threshold circuit if when k or more of its
inputs are high, its output is high else its output is low.

Consider the circuit of Fig. 2. In this circuit all nmos transistors have the same sizes=
/.

and
¸
/.

. The circuit of Fig. 2 is similar to the threshold function generator used in [19]. However,
a systematic method for designing such a circuit has not been given in [19]. A systematic method to
design a k-weight threshold circuit has been given in [21]. In [21] we have shown that the circuit of
Fig. 2 is a k-weight threshold circuit as long as the ratio of the transistor aspect ratios
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The following notation has been used:

f <
IHMIN

(<
ILMAX

) is the minimum HIGH (maximum LOW) input voltage which is recognised as
logic 1 (0) from a driven gate.

f <
5/

(<
51
) is the threshold voltage of nmos (pmos) transistor.

f KP
/
(KP

1
) is the Spice parameter for k

/
)C

09
(k

1
)C

09
).

The following relation gives all the possible values of k for which a k-threshold circuit can be
designed:
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The relation above, is a reformulation of the relation we have given in [21]. From the above
relation we can see that the values of k depend not only on the values of the noise margins but also
on the transition voltage of the inverter. Therefore, in order to achieve large values of k with
acceptable noise margins we can suitably select the transition voltage, that is, b

1
/b

/
of the inverter.
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Fig. 2. k-weight threshold circuit.

Hereafter we will use the abbreviations
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therefore from relation (1) we get

C
H
) (k!1))
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) k. (2)

In the sequel the k-weight threshold circuit will go through successive modi"cations in order to
take a circuit suitable for the implementation of the Berger code checker.

Consider now the circuit of Fig. 3. In this circuit we have chosen all nmos transistors to have
sizes=

/.
/¸

/.
"1. Then we can choose the size of the i pmos transistor, 1)i)q, so that the ratio

=/¸ satis"es relation (2) for k"i. That is, the aspect ratio of the pmos transistors were chosen
according to the following relations

C
H
) (i!1))

=
1.i

¸
1.i

)C
L
) i (3)

for i"1, 2,2, q.
Therefore setting a line d

i
equal to zero, i3M1, 2,2, qN, and the rest lines d

j
equal to one, for

j"1, 2,2, q and jOi, the circuit of Fig. 3 functions as the i-weight threshold circuit. In other
words, we can specify the weight of this circuit by setting the proper line d

i
to low. This circuit will

be called a (1 to q)-programmable-weight threshold circuit.
It is easy to modify the (1 to q)-programmable weight threshold circuit to a (0 to q)- programm-

able weight threshold circuit. To this end we append one pmos transistor, pm
0
, and one nmos

transistor, nm
0
, to the (1 to q) - programmable - weight threshold circuit of Fig. 3, so as to get the

circuit of Fig. 4. The sizes of the transistors pm
0
and nm

0
have been chosen equal to the sizes of pm

1
and nm

1
transistors, respectively. For d

0
"1 both pm

0
and nm

0
are not conductive, hence

the circuit behaves as a (1 to q) - programmable - weight threshold circuit. When d
0
"0,
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Fig. 3. (1 to q)-programmable weight threshold circuit.

Fig. 4. (0 to q) programmable weight threshold circuit.

d
1
"d

2
"2"d

q
"1, then from the pmos transistors pm

0
, pm

1
,2,pm

q
, only pm

0
is conductive.

Transistor nm
0

is also conductive. Then taking into account that =
1.0

/¸
1.0

"=
1.1

/¸
1.1

and
=

/.0
/¸

/.0
"=

/.1
/¸

/.1
(nm

0
dominates pm

0
) we conclude that regardless of how many input

lines among of X
1
, X

2
,2, X

n
are high, OUT remains high, so the circuit behaves in fact as

a 0-weight threshold circuit. Therefore the circuit of Fig. 4 is a (0 to q) - programmable weight
threshold circuit.

Adding a pmos transistor pm
I
in the circuit of Fig. 4 we get the circuit of Fig. 5. The operation of

the circuit of Fig. 5 depends on the value of the input I. The aspect ratio of pm
I
was chosen

according to the following relation.

C
H
) i)
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L
) (i#1). (4)

Relation (4) describes the operation of the circuit when both transistors pm
i
, i3M0, 1,2, qN, and

pm
I
are conductive. It is well known that the parallel connection of two transistors p

1
, p

2
with

conductances G
1

and G
2

is equivalent to a single transistor with conductance G"G
1
#G

2
. The

conductance G
i
of a transistor p

i
is given in [[22] p. 61] as G

i
"D(=

i
/¸

i
), where D is a factor which

is the same for all transistors connected in parallel, so we have

G"G
1
#G

2
or equivalently,

G"D(=
1
/¸

1
#=

2
/¸

2
).
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In other words, the parallel connection of two transistors p
1
, p

2
behaves in the same way with

a single transistor p with ratio equal to the sum of the ratios of the transistors p
1

and p
2
. Then it is

easy to see that when the input I is equal to one then due to relation (3) the circuit behaves
identically to the circuit of Fig. 4. When the input I is equal to zero then for d

i
equal to zero,

i3M0, 1, 2,2, qN, and the rest inputs d
j

equal to one, the circuit behaves as an (i#1)-weight
threshold circuit, due to relation 4. In other words, for I"1 the circuit of Fig. 5 behaves as a (0 to
q)-programmable-weight threshold circuit, while for I"0 it behaves as a (1 to q#1)-program-
mable-weight threshold circuit. We will call this circuit a (0 to q)/(1 to q#1)-programmable-weight
threshold circuit.

For the implementation of the Berger code checker another module, the decoder shown in Fig.
6 will be used. The truth table of the decoder is shown in Table 1 for the case that we have seven
information bits. The input CP is the system clock signal and it is used to isolate the outputs from
the power supply (when CP"1) in order to accelerate the 1P0 transition of the output that is to
fall according to the information bits.

The proposed Berger code checker is shown in Fig. 7. C
02

C
r~1

is the check part of the Berger
code word and X

1
,2, X

n
are the information bits. Let= denote the Hamming weight (number of

ones) of the input vector X
1
, X

2
,2, X

n
and d

.
the output of the decoder that is equal to zero. Then

the outputs of the checker for each possible input are shown in Table 2. It can be easily veri"ed that

Fig. 5. (0 to q)/(1 to q#1) programmable weight threshold circuit.

Fig. 6. Decoder design.
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Table 1
Truth table for the 1-out-of-8 decoder

Check part
c2 c1 c0

Decoder outputs
d7 d6 d5 d4 d3 d2 d1 d0

Weight
(X

12
X

7
)

1 1 1 1 1 1 1 1 1 1 0 0
1 1 0 1 1 1 1 1 1 0 1 1
1 0 1 1 1 1 1 1 0 1 1 2
1 0 0 1 1 1 1 0 1 1 1 3
0 1 1 1 1 1 0 1 1 1 1 4
0 1 0 1 1 0 1 1 1 1 1 5
0 0 1 1 0 1 1 1 1 1 1 6
0 0 0 0 1 1 1 1 1 1 1 7

Fig. 7. Berger code checker for n"2r!1.

when I"0 then module M
0

operates as the (0 to q) - programmable - weight threshold circuit and
module M

1
operates as the (1 to q#1) - programmable - weight threshold circuit so if

d
i
"0, i3M0, 1,2, qN, then module M

0
is the i-weight threshold circuit and module M

1
is the

(i#1)-weight threshold circuit. For I"1, M
0

operates as a (1 to q#1) - programmable - weight

X. Kavousianos et al. / INTEGRATION, the VLSI journal 28 (1999) 101}118 107



Table 2

Input (I) Hamming weight (=) Output (Q
0
) Output (Q

1
)

=(m 0 0
0 ="m 1 0

='m 1 1

=(m 0 0
1 ="m 0 1

='m 1 1

Fig. 8. Waveforms.

threshold circuit and M
1

as a (0 to q) - programmable - weight threshold circuit. The input I of the
checker is driven by a clock signal with frequency equal to the half of the operation frequency of the
checker, that is to the half of the system clock. The signal I can be easily generated from the system
clock using ¹ #ip-#op. The operation waveforms of the checker are shown in Fig. 8. It is obvious
that the Data (X

1
, X

2
,2, X

n
, C

0
, C

1
,2, C

r~1
) must be applied during the low phase of the clock

CP and remain stable during the high phase. The response of the checker (Q
0
, Q

1
) is valid during

the high phase of the clock.
From Table 2 we conclude that the circuit of Fig. 7 is a Berger code checker since for each

encoded input, it produces the 2-rail encoded outputs 01 or 10 and for each non code input it
produces the non-2-rail encoded outputs 00 or 11.

We have to note here that when the number of the information bits of the implemented Berger
code is n, n(2r!1, the decoder that we use has q"n#1 outputs, where n#1(2r, that is, the
decoder is not complete. In that case if the checker receives a noncodeword with check part
C

r~1
C

r~22
C

0
where

CM
r~1

) 2r~1#CM
r~2

) 2r~2#2#CM
0
) 20'n
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then all the outputs of the decoder are inactive (high). This error is signaled, (Q
0
, Q

1
)"(1, 1), if the

information part of the noncodeword has at least one bit X
i
high. If all the information bits X

i
are

low (1)i)n), due to a unidirectional error, then the above error is not signaled. For that case we
use one pmos transistor `testa in each module as shown in Fig. 9, with size equal to pm

1
, which

conducts only when CP"0. This transistor forces both modules to the state (Q
0
, Q

1
)"(0, 0) when

CP"0 and =(X)"0 and this state remains unchanged for CP"1, under the presence of the
above noncodeword, and consequently the error is signaled. Transistor `testa is conductive only in
the phase CP"0 therefore it does not a!ect the normal operation of the circuit in any other way.
Therefore, when the number of information bits n is equal to 2r!1 either the checker of Fig. 7 or
9 can be used, while for nO2r!1 the checker of Fig. 9 must be used.

In the sequel we will give two alternative designs that require less implementation area and
exhibit lower power consumption, however they are slower than the checkers given in Figs. 7 and 9.

In Fig. 10 the module M
1

is identical to the module M
1

of Fig. 7. The input I is driven by
a periodic signal with frequency equal to the double of the frequency of the CP signal. This is the
reason that the test transistors used in the checker of Fig. 9 are unnecessary in this design. From
Table 2 we can see that the design of Fig. 10 is a Berger code checker. With this structure we have

Fig. 9. Berger code checker for nO2r!1.
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Fig. 10.

Fig. 11. Single output berger code TSC checker.

a further reduction in area as well as reduction in power consumption in comparison with the
checker of Fig. 7 or 9.

There are cases that a single output TSC checker with its output two-rail encoded in time may
have some advantages over the double output checker [30,31]. For example the routing of the
error signals coming from di!erent checkers would be simpli"ed. There are also applications, for
example automotive controllers and smart cards, where the system poses particular constraints on
the number of possibly used input/output signals [23]. To this end we propose the single output
checker of Fig. 11. In this design the frequency of the clock signal I should be equal to the double of
the frequency of the CP signal, and the module M

1
is identical to the module M

1
of Fig. 7 checker.

We can easily verify, using Table 2, that the design of Fig. 11 is a single output Berger code checker.
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When the input vector is a code word and the checker is fault free then during a period of CP the
output Q

1
gets the values (0, 1). When the input vector is not a code word then during a period the

output Q
1

gets the values (1, 1) or (0, 0).

3. Testability analysis

We will "rstly investigate the testability of the checker of Fig. 9.
In the appendix we give a detailed testability analysis for the node stuck-at, transistor stuck-on

and transistor stuck-open faults. The conclusion is that all the faults of this type are detectable
during the normal operation, except of a stuck-on fault on the pmos transistor of the inverter INV

0
or INV

1
or INV

2
or Inverter

i
or transistor t1 which is undetectable but the checker behaviour

remains unchanged under this fault. After the occurrence of any one of the undetectable faults or of
any sequence of them the checker remains code disjoint. Furthermore if any sequence of them is
followed by a detectable fault, the resulting fault is detectable.

The checker of Fig. 9 is not self-testing with respect to a stuck-open fault at one of the two
transistors test. However, we have to note here that stuck-open faults have been veri"ed to be less
likely to occur than the other faults [20,24,25]. Moreover, the possibility for such faults to occur
can be reduced further if the checker layout is suitably designed [26}28]. Additionally, these faults
can be detected o!-line, using the following two noncode words, C@X@ and CAXA, where
=(C@)"=(CA)"=(XA)"0 and =(X@)'0. Applying the vector C@X@ for I"0 and in the
sequence the vector CAXA for I"1 we get after the application of the second input vector
(Q

0
, Q

1
)"(0, 0) for fault free operation and (Q

0
, Q

1
)"(1, 0) when the test transistor of module

M
1

is stuck-open. To detect a stuck-open fault on the test transistor of module M
0

we apply the
input vector C@X@ for I"1 and in the sequence the vector CAXA for I"0. Then, after the ap-
plication of the second vector we get for the fault free operation (Q

0
, Q

1
)"(0, 0) while under the

stuck-open fault we get (Q
0
, Q

1
)"(0, 1).

The self-checking capability of the proposed designs with respect to resistive bridging faults has
been evaluated with extensive circuit-level simulations. Resistive bridging faults (RBFs) between
two transistor terminals or between two inputs or between d

i
and d

i`1
, or a

i
and a

i`1
, or b

i
and

b
i`1

lines, with i3M1, 2,2, q!1N, have been considered. All RBFs with connecting resistance
R3[0, Rmax] are detected, where Rmax depends on the sizing of the transistors. For an implemen-
tation in 1 lm technology we used the transistor aspect ratios (=/¸) shown in Table 3. We are
interested for resistances in the range [0, 6 K)] [24]. During the simulation the inputs of the
checker are driven by standard cell inverters with aspect ratios (=/¸)p"12 and (=/¸)n"6.
Speci"cally we found that all the resistive bridging faults are detected in the range [0, 6 K], except
those shown in Table 4.

The testability analysis for the checkers of Figs. 7, 10 and 11 is similar to the analysis made for
the checker of Fig. 9. However, the checkers of Figs. 7, 10 and 11 have the advantage that they do
not use the transistors test. Furthermore, the checker of Fig. 11 has one more advantage that
a stuck-at 0 or 1 fault on line I is detected without the use of a checker for periodic signals.

It is very easy to verify that for any single fault the output of the Berger code checker
(Figs. 7, 9 and 10 or 11) is the correct code word or a noncode word, therefore the checker is fault
secure.
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Table 3

Transistor Module =/¸

pmos of Inverter
i

Decoder 4/1
nmos of Inverter

i
Decoder 2/1

nmos driven by C
i
, CF

i
Decoder 6/1

p
i

Decoder 2/1
pm

0
, pm

1
, pm

5%45
¸
0

or ¸
1

10/2
pm

2
¸
0

or ¸
1

22/2
pm

3
¸
0

or ¸
1

16/1
pm

4
¸
0

or ¸
1

22/1
pm

5
¸
0

or ¸
1

26/1
pm

6
¸
0

or ¸
1

32/1
pm

7
¸
0

or ¸
1

38/1
pm

8
¸
0

or ¸
1

42/1
nm

i
, i3M1,2, nN ¸

0
or ¸

1
2/1

pmos of INV
0
, INV

1
, INV

2
¸
0

or ¸
1

4/1
nmos of INV

0
, INV

1
, INV

2
¸
0

or ¸
1

2/1
tt
1

¸
0

or ¸
1

4/1
t
2

¸
0

or ¸
1

2/1

Table 4

Transistor Type of bridging fault R
.!9

(K))

pi of decoder Source}gate 1.1
nmos of Inverter

i
of decoder Source}gate 4

nmos of Inverter
i
of decoder Source}drain 1.2

nm
i

Gate}drain 4
pm

0
Source}drain 3

pm
0

Gate}source 3
pm

1
Gate}source 1.5

pm
2

Source}drain 5

4. Comparisons and discussion

Among the already known TSC checkers for Berger codes the checkers proposed in [19] are the
most e$cient with respect to the required area and speed as well as the fault model. These Berger
code checkers take into account apart from single stuck-at faults, stuck-on, stuck-open and
resistive bridging faults too. The checkers proposed in this paper, as we will show, are more
compact, faster and have signi"cantly lower power consumption than the checkers given in [19]
while they use the same fault model.

We will present "rstly a qualitative comparison between the proposed checkers and the checkers
given in [19].
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The proposed design is much smaller than that of [19] because:

1. It is obvious that we have compacted the TFG module of [19] in only two rows of the n
used there (where n is the number of information bits) using the two programmable weight
threshold circuits. So we use only 2 ) n nmos transistors while TFG in [19] uses n2 nmos
transistors.

2. The decoder module of the proposed checkers is much smaller from the rest modules, TSFC,
BDEC, CDEC and TRC, of the checkers given in [19].

With respect to speed we can say that module ¸
0

or ¸
1

have similar delay with the module TFG
in [19], while the delay of the decoder is expected to be smaller than the aggregate delay of modules
TSFC, BDEC and TRC.

We have implemented the proposed Berger code checkers, the design of Fig. 9, as well as that
given in [19] for 8 information bits in 1 lm technology. The proposed here Berger code checker of
Fig. 9 features reductions in area, delay and power consumption equal to 53.9%, 50% and 73.1%,
respectively.

A further reduction of power consumption and the required area can be achieved using the TSC
checker given in Fig. 10 or 11. However, the maximum frequency of operation of these checkers is
half of that of the checkers of Figs. 7 and 9, that is, it is the same with the maximum frequency of
operation of the checker given in [19].

5. Conclusion

In this paper we presented a novel method for designing double and single output TSC Berger
code checkers under a realistic fault model including stuck-at, stuck-on, stuck-open and resistive
bridging faults.

The checkers designed following our method are signi"cantly more e$cient with respect to area
and speed in comparison to the corresponding already known checkers. The proposed single
output TSC Berger code checkers are the "rst known in the open literature.

Appendix A

We present the testability analysis for the checker of Fig. 9, where the input I is driven by a clock
signal with frequency equal to half of the frequency of the system clock signal. We consider the
node stuck-at, transistor stuck-on and transistor stuck-open faults in each module of the checker.
Throughout the appendix X and X@ will denote the information parts of two di!erent Berger code
words.

A.1. Faults at the decoder

The decoder is shown in Fig. 6 for the case that we have 3 check bits and 7 information bits. The
inverted inputs CF

i
are driven by inverters (Inverter

i
) which are not shown in the "gure. The

analysis is similar for all the possible cases.
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1. Line d
i

stuck-at 0. When the checker receives a code word with =(X)"j, jOi, then
(Q

0
, Q

1
)"(0, 0).

2. Line d
i
stuck-at 1. When the checker receives a code word with=(X)"i then for i'0 we have

(Q
0
, Q

1
)"(1, 1), while for i"0 we have (Q

0
, Q

1
)"(0, 0) due to the existence of transistors

`testa. In both cases the fault is detected.
3. Line CP stuck-at 0. It is the same with 2.
4. Line CP stuck-at 1. When the checker receives two successive code words with=(X)O=(X@),

then for the second code word we get (Q
0
, Q

1
)"(0, 0).

5. Line C
i
stuck-at 0. When the checker receives a code word with C

i
"1 then if the information

part has weight=(X)'0 then (Q
0
, Q

1
)"(1, 1), else (Q

0
, Q

1
)"(0, 0) due to the existence of the

`testa transistor. In both cases the fault is detected.
6. Line CF

i
stuck-at 0. When the checker receives a code word with C

i
"0 then if the information

part has weight=(X)'0 then (Q
0
, Q

1
)"(1, 1) else (Q

0
, Q

1
)"(0, 0) due to the existence of the

`testa transistor. In both cases the fault is detected.
7. Line C

i
stuck-at 1 or line CF

i
stuck-0. When the checker receives a vector with C

i
"0 then

(Q
0
, Q

1
)"(0, 0).

8. Stuck-on fault on one of the nmos transistors driven by signals C
i
(CF

i
) shown in Fig. 6. When

the checker receives a code vector with C
i
"0 (C

i
"1) then (Q

0
, Q

1
)"(0, 0).

9. Stuck-open fault on one of the nmos transistors driven by signals C
i
(CF

i
) shown in Fig. 6.

When the checker receives a code word with C
i
"1 (C

i
"0) then if the information part has

weight=(X)'0 then (Q
0
, Q

1
)"(1, 1) else (Q

0
, Q

1
)"(0, 0) due to the existence of the `testa

transistor. In both cases the fault is detected.
10. Transistor p

i
stuck-open. When the checker receives two successive code words with

=(X)O=(X@) and=(X)"i then for the second code word we get (Q
0
, Q

1
)"(0, 0).

11. Stuck-on fault on the nmos transistor of the inverter Inverter
i
. The Inverter

i
is constructed with

n-dominate logic so when the checker receives a code word with C
i
"0 then if the information

part has weight=(X)'0 then (Q
0
, Q

1
)"(1, 1) else (Q

0
, Q

1
)"(0, 0) due to the existence of the

`testa transistor. In both cases the fault is detected.
12. Stuck-open fault on the nmos transistor of the inverter Inverter

i
. When the checker receives

two successive code words with C
i
equal to 0 and 1, respectively, then for the second word we

get (Q
0
, Q

1
)"(0, 0).

13. Stuck-open fault on the pmos transistor of the inverter Inverter
i
. When the checker receives

two successive code words with C
i
equal to 1 and 0, respectively, then if the information part of

the second vector has weight=(X)'0 then (Q
0
, Q

1
)"(1, 1) else (Q

0
, Q

1
)"(0, 0) due to the

existence of the `testa transistor. In both cases the fault is detected.

A.2. Faults that awect both modules ¸
0

and ¸
1
.

Such faults are stuck-at 0/1 on lines d
02

d
q
and X

12
X

n
.

1. Line X
i
stuck-at 0. When the checker receives a code word with X

i
"1 then (Q

0
, Q

1
)"(0, 0).

2. Line X
i
stuck-at 1. When the checker receives a code word with X

i
"0 then (Q

0
, Q

1
)"(1, 1).

3. Line d
i
stuck at 0/1. These faults are analysed in (1) and (2) of Section A.1 respectively.

4. Line I stuck-at 0 or 1. These faults are detected with a checker for periodic signals [29].
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A.3. Faults that awect only module ¸
0
.

1. Line Z
i
stuck-at 0 or transistor nm

i
stuck-open. When the checker receives a code word with

X
i
"1 and I"0 then (Q

0
, Q

1
)"(0, 0).

2. Line Z
i
stuck-at 1 or transistor nm

i
stuck-on. When the checker receives a code word with

X
i
"0 and I"1 then (Q

0
, Q

1
)"(1, 1).

3. Line Z
`1

stuck-at 0 or transistor pm
I
stuck-on. When the checker receives a code word with

I"0 then (Q
0
, Q

1
)"(0, 0).

4. Line Z
`1

stuck-at 1 or transistor pm
I
stuck-open. When the checker receives a code word with

I"1 then (Q
0
, Q

1
)"(1, 1).

5. Line b
i
stuck-at 0 or transistor pm

i
stuck-on. When the checker receives a code word with

=(X)Oi and I"0 then (Q
0
, Q

1
)"(0, 0).

6. Line b
i
stuck-at 1 or transistor pm

i
stuck-open. When the checker receives a code word with

=(X)"i and I"1 then (Q
0
, Q

1
)"(1, 1).

7. Line e
0

stuck-at 0. When the checker receives a code word with =(X)O0 and I"1 then
(Q

0
, Q

1
)"(1, 1).

8. Line e
0

stuck-at 1. When the checker receives a code word with =(X)"0 then
(Q

0
, Q

1
)"(0, 0).

9. Line<
1
stuck-at 0 or line Q

0
stuck-at 1. When the checker receives a code word with I"1 then

(Q
0
, Q

1
)"(1, 1).

10. Line<
1
stuck-at 1 or line Q

0
stuck-at 0. When the checker receives a code word with I"0 then

(Q
0
, Q

1
)"(0, 0).

11. Transistor t
2
stuck-on. The inverter at the output of the module is constructed with n-dominate

logic, so this fault is detected when the checker receives a code word with I"0 because
(Q

0
, Q

1
)"(0, 0).

12. Transistor t
1

stuck-open. When the checker receives two successive code words with
I equal to 1 and 0, respectively, then for the second code word we get
(Q

0
, Q

1
)"(0, 0).

13. Transistor t
2

stuck-open. When the checker receives two successive code words with I equal to
0 and 1, respectively, then for the second code word we get (Q

0
, Q

1
)"(1, 1).

14. Transistor nmos of the inverter INV
0

stuck-open. When the checker receives two successive
code words with=(X)"0,=(X@)O0 and I equal to 0 and 1, respectively, then for the second
word we get (Q

0
, Q

1
)"(1, 1).

15. Transistor nmos of the inverter INV
0

stuck-on. The inverter INV
0

is constructed with
n-dominate logic so when the checker receives a code word with =(X)"0 we have
(Q

0
, Q

1
)"(0, 0).

16. Transistor pmos of the inverter INV
0

stuck-open. When the checker receives two successive
code words with=(X)O0,=(X@)"0 and I equal to 1 and 0, respectively, then for the second
code word we get (Q

0
, Q

1
)"(0, 0).

17. Transistor nmos of the inverter INV
2

stuck-open. When the checker receives two successive
code words with I equal to 0 and 1, respectively, then for the second code word we get
(Q

0
, Q

1
)"(1, 1).

18. Transistor nmos of the inverter INV
2

stuck-on. The inverter is constructed with n dominate
logic, so when I"0 we get (Q

0
, Q

1
)"(0, 0).
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19. Transistor pmos of the inverter INV
2

stuck-open. When the checker receives two successive
code words with I equal to 1 and 0, respectively, then for the second code word we get
(Q

0
, Q

1
)"(0, 0).

20. Transistor test stuck-on or line ¹
1
stuck-at 0. When the checker receives a code word and I"0

we have (Q
0
, Q

1
)"(0, 0).

21. Line I
0

stuck-at 0. When the checker receives a code word and I"1 then (Q
0
, Q

1
)"

(1, 1).
22. Line I

0
stuck-at 1. When the checker receives a code word and I"0 then (Q

0
, Q

1
)"

(0, 0).

A.4. Faults that awect only module ¸
1
.

1. Line >
i
stuck-at 0 or transistor nm

i
stuck-open. When the checker receives a code word with

X
i
"1 and I"1 then (Q

0
, Q

1
)"(0, 0).

2. Line >
i
stuck-at 1 or transistor nm

i
stuck-on. When the checker receives a code word with

X
i
"0 and I"0 then (Q

0
, Q

1
)"(1, 1).

3. Line f
0

stuck-at 0. When the checker receives a code word with =(X)O0 and I"0 then
(Q

0
, Q

1
)"(1, 1).

4. Line f
0

stuck-at 1. When the checker receives a code word with =(X)"0 and I"1 then
(Q

0
, Q

1
)"(0, 0).

5. Transistor t
1

stuck-open. When the checker receives two successive code words with I equal to
0 and 1, respectively, then for the second code word we get (Q

0
, Q

1
)"(0, 0).

6. Transistor pmos of the inverter INV
1

stuck-on. The inverter INV
1

is constructed with p-
dominate logic so when the checker receives a nonzero code word with I"0 we have
(Q

0
, Q

1
)"(1, 1).

7. Transistor pmos of the inverter INV
1

stuck-on. When the checker receives 2 successive code
words with =(X)O0,=(X@)"0 and I equal to 0 and 1, respectively, then for the second
vector we get (Q

0
, Q

1
)"(0, 0).

8. Transistor nmos of the inverter INV
1

stuck-open. When the checker receives two successive
code words with=(X)"0,=(X@)O0 and I equal to 0 and 1, respectively, then for the second
code word we get (Q

0
, Q

1
)"(1, 1).

9. Line I
1

stuck-at 0. When the checker receives a code word and I"1 then (Q
0
, Q

1
)"

(0, 0).
10. Line I

1
stuck-at 1. When the checker receives a code word and I"0 then (Q

0
, Q

1
)"

(1, 1).

The rest of the faults a!ecting module ¸
1

are detected in the same way as in module ¸
0

with the
modi"cation that in each vector we need the complemented value of I.

A stuck-on fault on the pmos transistor of the inverter INV
0

or INV
1

or INV
2

or Inverter
i
or

transistor t1 is undetectable but the checker behaviour remains unchanged under this fault. After
the occurrence of any one of them or of any sequence of them the checker remains code disjoint.
Furthermore if any sequence of them is followed by a detectable fault, the resulting fault is
detectable. As for the undetectable stuck open faults at the transistors test or line ¹

1
stuck-at 1 or

line ¹
2

stuck-at 1 we have already referred at the testability analysis section.
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