

Efficient Test-Data Compression for IP Cores Using Multilevel Huffman Coding*

X. Kavousianos1, E. Kalligeros1,2 and D. Nikolos2,3
1Computer Science Dept., University of Ioannina, 45110 Ioannina, Greece

2Computer Engineering & Informatics Dept., University of Patras, 26500 Patras, Greece
3Research Academic Computer Tech. Institute, N. Kazantzaki, Univ. Campus, 26500 Patras, Greece

kabousia@cs.uoi.gr, kalliger@ceid.upatras.gr, nikolsd@cti.gr

Abstract*
In this paper we introduce a new test-data compression

method for IP cores with unknown structure. The proposed
method encodes the test data provided by the core vendor
using a new, very effective compression scheme based on
multilevel Huffman coding. Specifically, three different kinds
of information are compressed using the same Huffman code,
and thus significant test data reductions are achieved. A
simple architecture is proposed for decoding on-chip the
compressed data. Its hardware overhead is very low and
comparable to that of the most efficient methods in the litera-
ture. Additionally, the proposed technique offers increased
probability of detection of unmodeled faults since the major-
ity of the unknown values of the test set are replaced by
pseudorandom data generated by an LFSR.

1. Introduction

Due to the very tight time-to-market constraints, contem-
porary digital systems embed pre-designed and pre-verified
modules, which are called IP (Intellectual Property) cores.
The structure of IP cores is often hidden from the system
integrator and a pre-computed test set is provided by the
vendor. Therefore, neither fault simulation nor test pattern
generation can be performed for such cores. In order for the
required testability to be achieved, proper test structures
should be incorporated in the system. Several methods have
been proposed for coping with testing of IP cores. Some of
them embed the pre-computed test vectors in longer pseudo-
random sequences, which are generated on chip [1], [12],
[13]. The main drawback of these techniques is their long
test application time. Thus, many methods reduce the test
data volume and test application time by directly compress-
ing the test set, without applying any useless vectors to the
core under test (CUT). Various compression codes have been
used for encoding the test vectors of a CUT. Golomb codes
were proposed in [2]-[4], [17], alternating run length codes in
[5], FDR codes in [6], [15], statistical codes in [7], [11], a
nine-coded technique in [19], and combinations of codes in
[16], [18]. Some methods use dictionaries but since they im-
pose high hardware overhead, due to the required large em-
bedded RAMs, they are not considered further in this paper.

* This research was co-funded by the European Union in the framework of
the program “Pythagoras IΙ” of the “Operational Program for Education and
Initial Vocational Training” of the 3rd Community Support Framework of
the Hellenic Ministry of Education, funded by 25% from national sources
and by 75% from the European Social Fund (ESF).

Compression is sometimes performed on the difference
vectors instead of the actual test vectors [2], [4], [6], [10]. In
this case either cyclical shift registers, which increase the
testing cost, should be incorporated in the system, or the scan
chains of other cores must be reused, if they are available.

Among the statistical codes used for test data compression,
Huffman codes are the most effective ones, since they
provably result in the shortest average codeword length [11].
Their main problem is the high hardware overhead of the
required decompressors. For that reason, selective Huffman
codes were proposed in [11], which significantly reduce the
decoder size, by slightly sacrificing the compression ratio.

The high efficiency of all the aforementioned codes is due
to the large number of 'x' values in the test sets. Traditionally,
ATPG tools fill these 'x' values randomly with logic 0 or 1,
so as to improve the coverage of unmodeled faults. On the
contrary, compression methods, in order to achieve high
compression ratios, replace all these 'x' values with the same
logic value (0 or 1), depending on the characteristics of the
implemented code. Therefore, compression methods may
adversely affect the coverage of un-modeled faults. In [19] it
is suggested that, if possible, at least a portion of a test set's
'x' values should be set randomly. This is why the authors of
[20] try to match test-data blocks with LFSR sequences.

In this paper we propose a statistical compression method
based on Huffman coding, which fills the majority of a test
set's 'x' values randomly. This random filling is achieved by
using a small LFSR. The proposed method improves the
compression ratio by using multilevel Huffman coding
(compression of different kinds of information with a single
code), while, at the same time, requires a very simple de-
compressor with low hardware overhead. It also offers the
ability of exploiting the trade-off between compression ratio
and area overhead. The proposed approach does not need any
structural information of the CUT, and therefore is proper for
IP cores of unknown structure. Additionally it does not re-
quire the incorporation of any special arithmetic modules,
processors or cyclical shift registers in the system, and does
not apply any useless vectors to the CUT.

2. Compression Method

The proposed compression method is based on Huffman
coding with a limited number of codewords. The test cubes
(test vectors with 'x' values) of the CUT are compared
against the pseudorandom sequences generated by various
cells of an LFSR, and if they match (i.e. they are compatible),

an appropriate cell is chosen for feeding the scan chain(s) of
the CUT. What is actually coded is an index for each se-
lected LFSR cell, i.e. each Huffman codeword is used for
enabling a specific LFSR cell to feed the scan chain(s). If no
match with an LFSR-cell sequence can be found, then the
test data are directly encoded using a selective Huffman code
as proposed in [11]. Direct test-data coding is, most of the
times, used for portions of the test cubes with many defined
bits, which are normally incompatible with the LFSR's pseu-
dorandom sequences. On the other hand, the major part of
the test data encoded by LFSR cells correspond to the test
cubes' 'x'-bits sequences. Therefore, most of the cubes' 'x'
values are replaced by pseudorandom data, increasing that
way the probability of detection of unmodeled faults. Com-
pared to the approach of [20], which also exploits LFSR-
generated pseudorandom sequences, the proposed one com-
presses more information (three different kinds) with the
same Huffman code. In the following we describe the pro-
posed method assuming a single scan chain.

At first, the CUT's test set is partitioned into clusters of
fixed length. The LFSR is set to a random initial state and is
let evolve for a number of cycles equal to the number of bits
of the test set. Then all the clusters of the test set are com-
pared against the normal and inverted pseudorandom se-
quences generated by each LFSR cell. When a cluster of test
data is compatible with the respective cluster of an LFSR-
cell sequence, a cell-hit occurs. A predetermined (defined by
the designer) number of LFSR cells with the largest hit ratios
are selected in order to feed the scan chain(s) of the CUT
through a multiplexer. Specifically, the multiplexer selection
address of each cell is encoded using Huffman code. We call
this type of encoding Cell encoding. All the clusters which
are compatible with the sequences generated by the selected
LFSR cells are encoded by those cells. The rest of the clus-
ters are labeled as failed and are processed in a different way,
as it will be explained later. Apart from encoding the selec-
tion address of the chosen LFSR cells according to the corre-
sponding hit ratios, Cell encoding also associates a single
Huffman codeword with all failed clusters, in order to distin-
guish them from the rest.

Since many clusters have a large number of 'x' values,
they are compatible with the sequences generated by more
than one LFSR cells. The proposed method associates each
cluster with the LFSR cell which skews the cell occurrence
probabilities the most. In other words, if for a cluster cl more
than one hits from different LFSR cells occur, cl is appointed
to the most frequently used cell. The construction of the
Huffman tree is done later, taking into account the matching
probabilities of each selected cell, as well as the frequency of
occurrence of the failed clusters.

A drawback of the Huffman code is that it is a fixed-to-
variable code, whereas variable-to-variable codes are more
efficient [7]. In the proposed approach we try to eliminate
this problem by allowing, if possible, consecutive clusters to
be generated by the same LFSR cell (this is feasible due to

the large number of 'x' values in the test sets). All these clus-
ters are encoded using only one codeword, which succeeds
the Cell- encoding codeword and indicates the number of
consecutive clusters (cluster group) that will be generated. In
order to keep the hardware overhead low, we allow the
length of each group of clusters to be among a predetermined
list of distinct lengths (group length quantization). These
distinct lengths are experimentally selected to be equal to the
powers of 2 in the interval [1, max_length), where
max_length is the maximum number of consecutive clusters
matched by the sequence of any of the selected cells. If, for
example, max_length = 40, then the list of lengths L will be:
L = {1, 2, 4, 8, 16, 32}. Each group of clusters is associated
with the largest possible length in the list, which does not
exceed the actual length of the group. Assuming the afore-
mentioned list, a group of 30 consecutive clusters will be
partitioned into a group of 16, a group of 8, a group of 4 and
a group of 2 clusters. These list lengths are also encoded us-
ing Huffman code. This choice is justified by the lengths'
occurrence probabilities which are normally skewed (large
lengths are expected to occur less frequently than short
lengths). We call this type of Huffman encoding, Length
encoding. As it will be explained later, the same Huffman
code is used for Cell and Length encoding, in order to keep
the decoding cost low. Therefore the maximum number of
potential list lengths is equal to the number of selected cells.
In case that there are more selected cells than the volume of
the powers of 2 in the interval [1, max_length), additional
lengths are appended in the list according to the following
rule: each additional length is selected iteratively as the mid
point of the greatest distance between two successive lengths
in the list. For example, if an extra list-length could be ap-
pended to list L, this would be equal to 24 (the mid point
between 16 and 32 - distance = 32-16 =16). A Cell encoding
codeword is always succeeded by a Length encoding code-
word, when the encoded cluster is not a failed one.

In the case of a failed cluster a different approach is
adopted. The cluster is partitioned into equally sized blocks,
and each block is encoded directly with a selective Huffman
code as proposed in [11]. We call this encoding Pure-Data
encoding. According to the selective-Huffman approach,
only the blocks with the highest probabilities of occurrence
are encoded. Thus, some blocks remain un-encoded (we call
them failed blocks) and are provided directly by the ATE. As
in the case of failed clusters, a single Huffman codeword is
associated with each failed block, while the other codewords
are appointed to the most frequently occurring blocks. The
data of an un-encoded block follow its codeword. In Pure-
Data encoding the same Huffman code as in Cell and Length
encoding is used. Therefore, a number of distinct blocks
equal to the number of the selected LFSR cells and to the
number of potential list lengths can be encoded. Note that the
failed data in both Cell and Pure-Data encoding are distin-
guished by using only Huffman codewords, in contrast to [11]
where an extra bit is used in front of all codewords.

The major advantage of the proposed compression
method is that the same Huffman decoder can be used for
performing the three different decodings. The size of the
Huffman decoder is determined by the number of the se-
lected LFSR cells. Note that the number of selected cells is
equal to the number of the list lengths in Length encoding
and to the number of unique blocks encoded by Pure-Data
encoding. The Huffman tree is constructed by summing the
corresponding occurrence probabilities of all three cases so
as a single Huffman code, covering all three of them, to be
generated. Thus the same codeword, depending on the mode
of the decoding process, corresponds to 3 different kinds of
information: to an LFSR cell (normal and/or inverted), to a
cluster-group length or to a block of data. Always the first
codeword in the code stream is considered as a Cell-
codeword. If it does not indicate a failed cluster then the next
codeword correspond to the length of the cluster group. If, on
the other hand, it corresponds to a failed cluster then the next

sizeblock
sizecluster codewords are processed as Pure-Data code-

words, where cluster size (block size) denotes the number of
bits of each cluster (block). Each one of them may indicate a
failed block or a Pure-Data block. In the first case the actual
block of data follows in the code stream, or else the block of
data is produced by the decompressor. This sequence is itera-
tively repeated starting always from a Cell encoding code-
word.
Example. Assume a test set of 744 bits. For its encoding we
use 4 LFSR cells and, consequently, 4 different cluster-
group-list lengths and 4 different encode-able data blocks for
each failed cluster. Let each cluster be 24 bit wide and each
block 4 bit wide (6 blocks per cluster). Figure 1 presents the
selected cells, the available list lengths and the most fre-
quently occurring data blocks sorted in descending order
according to their occurrence frequency. Each line of the
table (i.e., the respective case for all three encodings) corre-
sponds to a single codeword in the final encoded stream.
Note that there are 12 groups of clusters matched by LFSR-
cell sequences and 3 failed clusters which are partitioned into
18 blocks. Overall, there are 45 occurrences of encode-able
data and 5 unique codewords that will be used for encoding
them. The occurrence volumes in each line of the table are
summed and divided by the total number of occurrences (45),
generating the probability of occurrence of each distinct
codeword, as shown in Figure 1. The encoded stream in Fig-
ure 1 shows the representation of the data stored in the ATE.
The first codeword (0) corresponds to cell A and the next
codeword (10) indicates the group length, which is 2. There-
fore the scan chain is fed by cell A for the first two clusters.
The next codeword (110) indicates that the next cluster is a
failed one. According to the proposed compression scheme,
cluster 3 is partitioned into 6 blocks. The next codeword (10)
indicates that the first block is a failed one as well; therefore
the actual data (0010) are not encoded and follow codeword
10. The codeword for the second block is 0 which corre-

spond to the encoded block 0011 that will be shifted in the
scan chain. This is repeated until all 6 blocks have been
processed. The size of the encoded data stream is 109 bits.

Figure 1. Proposed Encoding Example

3. Decompression Architecture

The block diagram of the proposed decompression
architecture is shown in Figure 2. It consists of the following
units (the functionality of the proposed architecture has been
verified with extensive simulations. For convenience only
the most important signals are reported):

Figure 2. Decompression Architecture

Huffman FSM: This unit receives serially the data from the
ATE (ATE_DATA) using the ATE clock (ATE_CLK). Upon
reception of a codeword, the signal HSync is sent back to the
ATE to stop the transmission until the decompressor is ready
to receive the next one. At the same time, the FSM places on
the bus CodeIndex a binary index indicating which codeword
has been received and notifies the Decoding Controller with
the signal Valid Code.

Source Select Mux: Selects the source (an LFSR cell, Pure-
Data, or a failed block from ATE) that will feed the scan
chain, by setting bus Src to 01, 10 and 00 respectively.
Cell Mux: Selects the cell that will feed the scan chain.
CSR (Cell Select Register): Stores the address of the selected
cell when CSR_en=1 and holds it during scan loading.
LFSR: It is the Linear Feedback Shift Register. It is enabled
by the signal SE (Scan Enable) every time the scan chain is
loaded with any kind of test data. When pure or unencoded
data are fed in the scan chain, the LFSR data are simply ig-
nored.
Pure-Data / Cluster Group Length: Combinational blocks
(or Lookup Tables) which receive CodeIndex and return the
pure data / group length respectively.
Block Shifter: Shifts the data block received by the Pure-
Data unit in the scan chain. It is controlled by Sh_en.
Fail Cluster/Block: Sets Fail=1 when a codeword corre-
sponds to a failed cluster or a failed block.
Bit counter (BC), Block counter (BLC) and Cluster counter
(CLC): Count respectively the number of bits, blocks and
clusters that enter the scan chain. BC_Done=1 when a whole
block has been shifted in the scan chain, BLC_Done=1 when
all the blocks of a cluster have been shifted in the scan chain
and CLC_Done=1 when all the clusters of a group have been
shifted into the scan chain.
Decoding Controller: This is a finite state machine which
synchronizes the operation of all units. The state diagram of
this machine is shown on Figure 3. At WAIT_CHANNEL,
WAIT_LENGTH and WAIT_FAILED_CLUSTER states the
controller waits for a codeword of Cell, Length and Pure-
Data encoding respectively. At states SHIFT_LFSR_DATA,
SHIFT_PURE_DATA and WAIT_FAILED_BLOCK the con-
troller loads the scan chain with LFSR sequences, Pure-Data
encoded blocks and data of failed blocks from ATE, respec-
tively. As for, CLUSTER_DONE? state, it checks if all the
blocks of a failed cluster have been processed or not. During
WAIT_FAILED_BLOCK the controller sends the signal
CSync to the ATE to enable the transmission of an un-
encoded block. It also samples ATE_CLK and shifts each
data bit received from the ATE in the scan chain of the CUT
(using signal SE). During this state, BC counter is triggered
by ATE_CLK. Each time a vector is loaded in the scan chain,
a counter (not shown in Figure 2) is decreased by one. This
counter initially contains the number of test vectors which
must be applied to the core. When the counter reaches zero,
the end of the test session is indicated.

As it will be shown in Section 4, the efficiency of the pro-
posed encoding approach depends mainly on the number of
selected cells, which determine the number of codewords of
the Huffman code. The same decompressor can be used for
two or more cores by just replacing the units Cell Mux, Pure-
Data, Cluster Group Length and Fail Cluster/Block, which
occupy only a small portion of the area of the decompressor.
Moreover, if the Pure-Data and Cluster Group Length units
are implemented as Lookup Tables, they need to be loaded

with the specific data of each core only at the beginning of
the test session. Therefore, the decompressor can be easily
reused for different cores with almost zero area penalty. An
issue that will be also clarified in Section 4, is how effec-
tively the same Huffman codewords can be used for different
cores. As it will be demonstrated, in most cases the reduction
in the compression ratio, when using the same codewords, is
marginal. This is easily explained if we take into account that,
for the same number of cells (same number of codewords)
and for relatively skewed frequencies of occurrence, the
Huffman trees are not much different and thus the encoding,
if not optimal, will be very close to the optimal one. Note
that, regardless of the fact that the same Huffman FSM unit
is used, the selected cells, the cluster size and the block size
do not have to be the same for different cores.

Figure 3. Decoding Controller State Diagram

For applying the proposed scheme to multiple scan chains
architectures, a shift register with width equal to the number
of scan chains is required. The shift register is loaded by the
decompressor and then feeds the scan chains in parallel [19].

Let us now calculate the test application time reduction of
the proposed encoding scheme. Suppose that ⎜D⎜, ⎜E⎜ is the
size in bits of the uncompressed and compressed test data
respectively. The compression ratio is given by the formula
CR=(⎜D⎜-⎜E⎜)/⎜D⎜. Let fATE, fSYS be the ATE and system
clock frequencies respectively, with fSYS=m·fATE, and CS, BS
be the cluster and block sizes respectively. Also, in the en-
coded stream, let Gi be the number of occurrences of the
cluster group with length Li (i = 1...n, where n is the number
of codewords), and Fc, Fb be the number of failed clusters
and failed blocks respectively. The test application time of
the uncompressed test set is tD=(⎜D⎜/fATE) and the test appli-
cation time reduction is given by the formula tred=(tD-tE)/tD,
where tE is the test application time of the compressed test set.
tE consists of three main parts:
t1: The time for downloading the data stream from ATE to
the core. The data stream consists of codewords which enter
the Huffman FSM unit and un-encoded data (failed blocks)
which are shifted directly from the ATE to the scan chain.
Therefore the application time of this part is t1=⎜E⎜/fATE.

t2: The time required for loading the scan chain with LFSR
sequences of length equal to the number of bits of the de-

coded cluster groups; therefore, ∑
=

=
n

i
ii

SYS
LG

f
CSt

1
2 .

t3: The time for loading the scan chain with Pure-Data en-

coded blocks (not failed blocks); thus, 3
c b

SYS

F CS F BSt
f

⋅ − ⋅
= .

The total time required for the compressed test set is
tE=t1+t2+t3 and it can be easily proven that

()
mD

BSFCSF
LG

mD
CSCRt bc

n

i
iired ⋅

⋅−⋅
−

⋅
−= ∑

=1

4. Experimental results
The proposed compression method was implemented in C

programming language. We conducted experiments on a
Pentium PC for the largest ISCAS '89 benchmarks circuits,
assuming full scan and a single scan chain. As input we used
the dynamically compacted test sets generated by Mintest [8].
The same test sets were used in [2], [3], [5]-[7], [11], [14],
[15] and [17]-[19]. The run time of the compression method
is a few seconds for each benchmark circuit. After extensive
experiments we deduced that the size and the characteristic
(primitive) polynomial of the LFSR, as well as the initial
seed used affect the compression ratio marginally. Thus, in
our experiments, we utilized an internal-XOR LFSR of size
15. Note that for each LFSR cell, apart from its normal se-
quence, the inverted one is also considered (normal and in-
verted cell outputs are considered as different cells).

Figure 4. Varying Number of Cells for s15850

In Figure 4 we present the effect of the selected-cells vol-
ume on the compression ratio, for several cluster and block
sizes. We can see that an increase in the number of cells
leads to compression-ratio improvements. The saturation
value of each curve depends on the cluster- and block-size
values. We also observe that when the number of cells is
very small, the proposed method achieves better compression
with smaller block sizes.

Table 1. Compression results
 Cells = 4 Cells = 12 Cells = 24

Circuit ENC C, B ENC C, B ENC C, B
s5378 10416 18, 6 9686 16, 8 9358 20, 10
s9234 17449 16, 4 16268 20, 4 15511 20, 10

s13207 23021 40, 10 19335 40, 10 18384 30, 10
s15850 21738 20, 4 19901 32, 8 18926 32, 8
s38417 65545 20, 5 61602 40, 8 58785 48, 8
s38584 62955 20, 4 58437 32, 8 55200 20, 10

In Table 1 the compression results of the proposed
method for 4, 12 and 24 cells are presented. For each cell-
volume case, various cluster- and block-size cases were ex-
amined. The best results are shown in Table 1. Columns la-
beled "C, B" report the utilized cluster and block sizes, while
the "ENC" columns show the encoded data volumes. We see
that compression improves as the number of cells increases.

Table 2. Comparisons with [11] and [19]
 Size Red. % of prop. over

Circ. Mintest [11] [19] Prop. Mintest [11] [19]
s5378 23754 10666 10511 9358 60.6 12.3 11.0
s9234 39273 17987 17763 15511 60.5 13.8 12.7
s13207 165200 37996 24450 18384 88.9 51.6 24.8
s15850 76986 26175 22126 18926 75.4 27.7 14.5
s38417 164736 67542 61134 58785 64.3 13.0 3.8
s38584 199104 71478 62897 55200 72.3 22.8 12.2
In Table 2 we compare the proposed method against the

approach of [11], which is based on selective Huffman cod-
ing, and that of [19], which is the most effective compression
method proposed so far in the literature. In columns 2-5 the
sizes of the original Mintest test sets, as well as the volumes
of the encoded data of [11], [19] and the proposed method
are reported. The reductions achieved over Mintest, [11] and
[19] are presented in columns 6-8. It is obvious that the pro-
posed scheme offers better compression results than both [11]
and [19]. No comparisons are provided against the approach
of [20], which also exploits LFSR-generated pseudorandom
sequences, since its ATPG-synergy requirement renders it
unsuitable for IP cores of unknown structure.

Table 3. Improvement (%) versus other methods
Circuit [2] [17] [3] [15] [5] [6] [7] [18] [14]
s5378 - 36.0 - 18.0 20.0 24.2 18.3 14.8 34.2
s9234 30.3 35.2 31.0 27.0 28.2 30.0 25.1 24.6 48.5

s13207 55.9 51.6 47.7 38.7 43.7 40.5 32.5 36.4 12.4
s15850 53.5 39.6 38.1 23.2 28.1 27.2 23.3 24.7 24.7
s38417 36.1 20.0 35.5 9.5 9.5 37.1 23.5 0.4 31.0
s38584 47.0 36.1 38.6 25.3 28.7 29.1 26.5 26.3 3.4

In Table 3 we compare the proposed method against other
compression techniques for IP cores of unknown structure,
which impose similar hardware overhead to the CUT and
have reported results for the Mintest test sets. Techniques
compressing difference vectors have been excluded from the
comparisons, since they require cyclical shift registers. Again,
the proposed approach performs better than the rest methods.

As far as the test application time is concerned, it is obvi-
ous that as m=fSYS /fATE increases, greater test application time
reductions are achieved. Specifically, for the experiments
presented in the sixth column of Table 1, the test time reduc-
tion ranges from 14.7% for m=2 to 85.6% for m=30.

For calculating the hardware overhead of the proposed
technique, we synthesized three different decompressors for
4, 12 and 24 cells, with cluster size =16 bits and block size =
8 bits, using Leonardo Spectrum (Mentor tools). The Pure-
Data and Cluster Group Length units were implemented as
combinational circuits. The resulted area overhead is 203,
314 and 432 gate equivalents respectively (a gate equivalent

corresponds to a 2-input NAND gate). The hardware over-
head, in gate equivalents, for the most efficient methods in
the literature is: 416 for [19], 320 for [5], 136-296 for [7] and
125-307 for [2] (as reported in [7]). In [11] the hardware
overhead is provided as a percentage of the benchmark cir-
cuits' area and cannot be directly compared to the above
methods. However, it is greater than that of [7]. As can be
seen, the hardware overhead imposed by the proposed de-
compressors is comparable to that of the rest techniques.

The hardware overhead of the proposed method can be
reduced if the same decompressor is used for testing, one
after the other, several cores of a chip. The units Huffman
FSM, Decoding Controller, BC, BLC, CLC, CSR, LFSR and
the Source Select Mux of the decompressor can be imple-
mented only once on the chip. On the other hand the units
Pure-Data, Cluster Group Length, Fail Cluster/Block and
Cell Mux should be implemented for every core under test.
The area occupied by the latter units is equal to 5.9%, 16.6%
and 23.4% of the total decompressor area for 4, 12 and 24
cells respectively. Therefore, only a small amount of hard-
ware should be implemented for every additional core. The
main part of the decompressor is implemented only once.

The use of the same Huffman FSM unit for several cores
implies that the codewords, which correspond to LFSR cells,
list lengths and data blocks, are the same for every core,
while the actual cells, list lengths and data blocks do not
have to be the same. The question is if this common-FSM
choice can affect the compression efficiency. As we have
already seen in Figure 4, the compression improves (up to a
saturation value of course) as the number of selected cells
(which is defined by the designer) increases. The cell volume
affects also the implementation cost. Therefore, if we want to
use one decompressor for several cores, it is preferable to
implement the decompressor for the core requiring the larg-
est number of cells and then reuse it for the rest cores. For
assessing the influence of the utilization of the same code-
words for different cores, we generated for the test set of
s15850, the codes for 8 selected cells and various cluster and
block sizes, and among them we selected the cluster and
block size providing the maximum compression. The same
procedure was followed for the rest benchmarks circuits. We
then compressed their test sets again using the pre-generated
code of s15850. The results showed that the reduction in
compression ratio varies between 0% and 0.45%. Thus, we
conclude that the difference in compression is very small.

5. Conclusion

In this paper a test-data compression method based on
multilevel Huffman coding was presented. Different kinds of
information are encoded using the same Huffman code, and
thus improved compression results can be achieved. The area
overhead of the required decompressor is very low. Further-
more, most of the test set's 'x' values are filled with pseudo-
random data generated by an LFSR, which leads to increased
probability of detection of unmodeled faults.

References
[1] K. Chakrabarty et al., “Deterministic Built-In Test Pattern Gen-
eration for High-Performance Circuits using Twisted-Ring Count-
ers”, IEEE Trans. on VLSI Systems, vol. 8, no. 5, pp. 633-636, 2000.
[2] A. Chandra and K. Chakrabarty, “System-on-a-Chip Test-Data
Compression and Decompression Architectures Based on Golomb
Codes”, IEEE Trans. on CAD, vol. 20, no. 3, pp. 355-368, 2001.
[3] Chandra A. and Chakrabarty K., “Test Data Compression and
Decompression Based on Internal Scan Chains and Golomb Cod-
ing”, IEEE Trans. on CAD, vol. 21, no. 6, pp. 715-72, 2002.
[4] A. Chandra et al., “How Effective are Compression Codes for
Reducing Test Data Volume?”, Proc. of IEEE VTS, pp. 91-96, 2002.
[5] A. Chandra and K. Chakrabarty, “A Unified Approach to Re-
duce SOC Test Data Volume, Scan Power and Testing Time”, IEEE
Trans. on CAD, vol. 22, no. 3, pp. 352-363, 2003.
[6] A. Chandra and K. Chakrabarty, “Test Data Compression and
Test Resource Partitioning for System-On-A-Chip Using Fre-
quency-Directed Run-Length (FDR) codes”, IEEE Trans. on Com-
puters, vol. 52 , no. 8, pp. 1076-1088, 2003.
[7] P.T. Gonciari, B.M. Al-Hashimi and N. Nicolici, “Variable-
Length Input Huffman Coding for System-On-A-Chip Test”, IEEE
Trans. on CAD, vol. 22 , no. 6, pp. 783-796, 2003.
[8] I. Hamzaoglu and J. H. Patel, “Test Set Compaction Algorithms
for Combinational Circuits”, IEEE Trans. on CAD, vol. 19, no. 8,
pp. 957-963, 2000.
[9] G. Hetherington et al., “Logic BIST for Large Industrial Designs:
Real Issues and Case Studies”, Proc. of ITC, pp. 358-367, 1999.
[10] A. Jas and N. A. Touba, “Test Vector Decompression via Cy-
clical Scan Chains and Its Application to Testing Core-Based De-
signs”, Proc. of ITC, pp. 458-464, 1998.
[11] A. Jas, J. Ghosh-Dastidar, M. -E. Ng and N. A. Touba, “An
Efficient Test Vector Compression Scheme Using Selective Huff-
man Coding”, IEEE Trans. on CAD, vol.22, no.6, pp.797-806, 2003.
[12] D. Kaseridis et al., “An Efficient Test Set Embedding Scheme
with Reduced Test Data Storage and Test Sequence Length Re-
quirements for Scan-based Testing”, Inf. Papers Dig. of IEEE ETS,
pp. 147-150, 2005.
[13] L. Lei and K. Chakrabarty, “Test Set Embedding for Determi-
nistic BIST Using A Reconfigurable Interconnection Network”,
IEEE Trans. on CAD, vol.23, no. 12, pp. 1289-1305, 2004.
[14] Lei Li et al., “Efficient space/time compression to reduce test
data volume and testing time for IP cores”, Proc. of Int. Conf. on
VLSI Design, pp. 53-58, 2005.
[15] A.H. El-Maleh and R.H. Al-Abaji, “Extended Frequency-
Directed Run-Length Code with Improved Application to System-
On-A-Chip Test Data Compression” Proc of IEEE ICECS, vol. 2,
pp. 449-452, 2002.
[16] M. Nourani and M. H. Tehranipour, “RL-huffman Encoding
for Test Compression and Power Reduction in Scan Applications”,
ACM Trans. on Des. Aut. of El. Syst., vol.10, no.1, pp. 91-115, 2004.
[17] P. Rosinger et al., “Simultaneous Reduction in Volume of Test
Data and Power Dissipation for Systems-On-A-Chip”, Electr. Let-
ters, vol. 37, no. 24, pp. 1434-1436, 2001.
[18] M. Tehranipour et al., “Mixed RL-Huffman Encoding for
Power Reduction and Data Compression in Scan Test”, Proc. of
ISCAS, vol. 2, pp. II- 681-4, 2004.
[19] M. Tehranipour, M. Nourani and K. Chakrabarty, “Nine-Coded
Compression Technique for Testing Embedded Cores in SoCs”,
IEEE Trans. On VLSI Systems, vol. 13, no.6, pp. 719-731, 2005.
[20] E.H. Volkerink, A. Khoche and S. Mitra, “Packet-Based Input
Test Data Compression Techniques”, Proc. ITC, pp. 154-163, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

